
PHYSICAL REVIEW C 92, 044314 (2015)

Thermal shape fluctuation model study of the giant dipole resonance in 152Gd
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We have studied the giant dipole resonance (GDR) in the hot and rotating nucleus 152Gd within the framework
of the thermal shape fluctuation model (TSFM) built on the microscopic-macroscopic calculations of the free
energies with a macroscopic approach for the GDR. Our results for GDR cross sections are in good agreement with
the experimental values except for a component peaking around 17 MeV, where the data has large uncertainties.
Such a component is beyond our description which properly takes care of the splitting of GDR components due
to the deformation and Coriolis effects. Around 17 MeV lies the half maximum in experimental cross sections,
and hence the extracted GDR widths and deformations (estimated from these widths) turn out to be overestimated
and less reliable. Reproducing these widths with empirical formulas could conceal the information contained in
the cross sections. Fully microscopic GDR calculations and a more careful look at the data could be useful to
understand the GDR component around 17 MeV. We also discuss the occurrence of γ softness in the free energy
surfaces of 152Gd and its role on GDR.
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I. INTRODUCTION

In a simplistic view, the giant dipole resonance (GDR) is
due to collective oscillations between protons and neutrons
under the influence of the electromagnetic field induced by the
emitted (absorbed) photons, which results in a large peak in the
emission (absorption) spectrum of γ rays. This fundamental
mode of nuclear collective excitation can be built on any state
and hence GDR can probe the structure of the nucleus even at
finite temperature (T ) and angular momentum (I ) [1–3].

In a macroscopic theoretical description of GDR, the GDR
observables are coupled with the shape degrees of freedom.
Since the nucleus is a tiny system, the thermal fluctuations
are more dominant. In the thermal shape fluctuation model
(TSFM), the GDR observables are obtained as the average
over all the possible shapes of the nucleus [1,4,5]. In most
of such models, the probability of finding the nucleus with a
given shape is given in terms of the free energy calculated in a
microscopic-macroscopic approach.

In a microscopic way, the GDR can be explained in terms
of particle-hole, particle-particle, and hole-hole excitations [3].
One such approach is the phonon damping model, which has
been proved to be quite successful in explaining the measured
GDR widths (�) as a function of T [6–8]. Recently, these
calculations are extended to include the angular momentum for
noncollective rotations [9]. In another microscopic approach,
the GDR in hot and rotating nuclei were studied within the
frame work of linear response theory along with static path ap-
proximation to the grand canonical partition function [10,11].
Most of the other microscopic approaches for GDR [12–14]
are not extended to hot and rotating nuclei.

Apart from the theoretical models, phenomenological
formulas were also introduced to explain the global properties
of � [15,16] in hot and rotating nuclei. These formulas are
constructed to fit the experimental �. The results of these
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phenomenological formulas are similar to those of the TSFM
in some cases.

Despite the number of experiments that have been carried
out to understand the properties of GDR and the effect
of T and I on GDR [17–19], still there are several open
questions. By and large, the measured � are well interpreted
by TSFM calculations, and the phenomenological scaling
formula (PSF) [15] description also was successful in many
cases. The failure of PSF and TSFM at low T was recently
analyzed [16] and the PSF was modified suitably, leading
to a critical temperature formula (CTF) which overcomes
the discrepancies at low T . The microscopic origin of such
discrepancy is quite known [20] to be due to pairing and
extension of the TSFM to include pairing proved that TSFM is
quite successful at low T also [21,22]. Another case where the
PSF was observed to be insufficient to explain the measured
� is the hot and rotating nucleus 152Gd. It is shown in
Ref. [23] that the PSF could not explain the � measured at
two excitation energies with a single value for the parameter
of the PSF (reduced width, �0). This work highlighted the
need for performing proper TSFM calculations specifically
for this system to understand the GDR properties. The CTF
was demonstrated [24] to be successful and the discrepancy
with the PSF was attributed to the role of GDR-induced
quadrupole moment [25,26]. This argument was generalized
to TSFM based on the fact that the PSF mostly mimics the
results of TSFM. Simpler TSFM calculations with the liquid
drop model (LDM) were reported in Ref. [27] where the
average deformation (〈β〉) of 152Gd (and other selected nuclei)
extracted from the measured � were shown to be compatible
with the results of LDM and CTF.

In this article we present our results from the TSFM
calculations and analyze the structure of the hot and rotating
152Gd. We employ the TSFM built on Nilsson-Strutinsky
(NS) calculations with a macroscopic approach to GDR. Our
formalism is well tested to explain several GDR observations
at higher T and I [5,28–30]. In a recent work [18,19], the
GDR properties of hot and rotating 144Sm were studied and
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the experimental data were very well explained with the TSFM
results. A short description about this formalism and our results
for the hot and rotating nucleus 152Gd are discussed in the
forthcoming sections.

II. THEORETICAL FRAMEWORK

Within the TSFM, the expectation value of an observable
O incorporating both thermal fluctuations and orientation
fluctuations is given by [1,31]

〈O〉β,γ,θ,φ

=
∫
β

∫
γ

∫
θ

∫
φ
D[α] exp[−FTOT(T ,I ; β,γ,θ,φ)/T ]I−3/2

TOT O∫
β

∫
γ

∫
θ

∫
φ
D[α] exp[−FTOT(T ,I ; β,γ,θ,φ)/T ]I−3/2

TOT

,

(1)

where φ,θ are the Euler angles specifying the intrinsic orien-
tation of the nucleus with respect to the axis of rotation. β and
γ are the deformation parameters describing the quadrupole
shapes. The volume element is chosen to be D[α] =
β4| sin 3γ | dβ dγ sin θ dθ dφ. ITOT = Irig + δI, where Irig =
Ix ′x ′ cos2 φ sin2 θ + Iy ′y ′ sin2 φ sin2 θ + Iz′z′ cos2 θ , is the
moment of inertia, about an axis with the orientation θ
and φ, given in terms of the principal moments of inertia
Ix ′x ′ , Iy ′y ′ , Iz′z′ . δI is the shell correction for moment of
inertia. The total free energy (FTOT) at a fixed deformation is
calculated using the Nilsson-Strutinsky method extended to
high spin and temperature [5,28]:

FTOT = ELDM +
∑
p,n

δFω + 1

2
ω

(
ITOT +

∑
p,n

δI

)
, (2)

where ELDM is the liquid-drop energy and δFω = Fω − F̃ ω is
the shell correction. ω and ITOT are the angular velocity and
the total spin, respectively. δI is the shell correction to the
spin. The microscopic free energy can be calculated using the
expression [28]

Fω =
∞∑
i=1

eω
i ni − T

∞∑
i=1

si . (3)

The single-particle energies (eω
i ) are obtained by diagonalizing

the triaxial Nilsson Hamiltonian in a cylindrical representation
up to first twelve major shells. ni are the occupation numbers
given by

ni = 1

1 + exp
( eω

i −λ

T

) , (4)

where λ is the chemical potential obtained using the constraint∑∞
i=1 ni = Np and Np is the total number of particles. si are

the single-particle entropies and the total entropy S = ∑∞
i=1 si

can be written as

S = −
∞∑
i=1

[ni ln ni + (1 − ni) ln(1 − ni)]. (5)

F̃ ω is calculated in a Strutinsky way [32] with exact T and
I dependance and more details in this regard can be found in
Refs. [5,28]. The effect of orientation fluctuations is negligible

while calculating the observables like GDR cross sections
and the width [5,11,28,33], and hence we have neglected the
orientation fluctuations in the present calculations.

The nuclear shapes are related to the GDR observables us-
ing a macroscopic model [5,34,35] comprising an anisotropic
harmonic oscillator potential with a separable dipole-dipole
interaction. The Hamiltonian describing GDR excitations can
be written as

H = Hosc + η D†D . (6)

Here Hosc stands for the anisotropic harmonic oscillator
Hamiltonian, η and D represent the dipole-dipole interaction
strength and dipole operator, respectively. The total GDR
cross section (σ ) is constructed by summing the individual
Lorentzians with the peaks at the GDR energies (Ei) given
by the frequencies corresponding to H . The width of these
individual components depend on Ei through the relation [36]

�i ≈ 0.026E1.9
i . (7)

The GDR full width at half maximum, comparable with the
measured value, is determined from the total GDR cross
section, σ averaged over all the possible shapes.

III. RESULTS AND DISCUSSION

The GDR cross sections and GDR width for the nucleus
152Gd are reported in Ref. [17] for the beam energy,
E ∼ 149 MeV and later compiled along with the data at
E ∼ 185 MeV in the Ref. [23]. TSFM calculations with free
energies from LDM were reported in Ref. [27]. We start our
analysis by comparing the GDR cross sections calculated with
TSFM, and the experimental cross sections at beam energy,
E ∼ 149 MeV. These results are presented in Fig. 1. The
TSFM calculations are carried out with two different values
for the dipole-dipole interaction parameter η. The value of η

FIG. 1. The GDR experimental cross sections (filled circles) of
152Gd at beam energy E ∼ 149 MeV taken from Ref. [23] are
compared with the TSFM results obtained using η = 2.3 (solid lines)
and η = 3.35 (dashed lines) at different values of temperature (T )
and angular momentum (I ).
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TABLE I. The experimental GDR widths (�Expt) in 152Gd at
beam energy E ∼ 149 MeV are compared with the GDR widths
calculated with TSFM (�TSFM) using two different values for the
dipole-dipole interaction strength parameter η. The temperature (T )
and angular momentum (I ) correspond to the average values extracted
from experimental data [23].

T I �Expt �TSFM (MeV)

(MeV) (�) (MeV) η = 2.3 η = 3.35

1.59 27.0 8.5 ± 0.3 7.4 8.7
1.56 32.1 8.5 ± 0.3 7.5 8.8
1.53 37.3 8.8 ± 0.4 7.7 9.0
1.47 44.0 8.8 ± 0.4 8.0 9.2
1.39 50.9 8.8 ± 0.4 8.4 9.6
1.34 55.1 10.1 ± 0.5 8.7 9.8

as 2.3 is chosen by fitting the experimental cross sections. In
this case, we have a good agreement between the experimental
and theoretical GDR cross sections represented by the solid
lines. However, as shown in Table I, the corresponding TSFM
GDR widths (�TSFM) are smaller than the experimental GDR
widths (�Expt). On a careful examination of the cross sections,
shown in Fig. 1, we can note that the experimental data in
the higher energy side around the half maximum is quite
scattered in most of the cases. Due to this scattered data, the
fitting of smooth curves (two-component Lorentzian) will
carry large errors as reported in Ref. [23]. These experimental
cross sections, with large errors in the higher energies, tend to
yield an overestimated width.

A perfect fit to the GDR cross sections could be possible
with a fragmented GDR spectrum. In a microscopic approach,
there can be numerous components of GDR corresponding
to various combinations of particle-hole (ph), particle-particle
(pp), and hole-hole (hh) excitations [37]. The strength func-
tions for these components can be calculated microscopically
but the width is rather artificially introduced. For example,
in Ref. [8] one can see a fragmented GDR for 120Sn (Fig. 3
of Ref. [8]) with a protruding component around 20 MeV.
Restricting the coupling to ph, pp, and hh configurations
via the doorways can lead to a different scenario (Fig. 5 of
Ref. [8]). These variations can be understood in terms of
the choice of doorway configurations but it is rather difficult
to associate a simple physical process. In a macroscopic
approach, the picture of splitting of GDR components is quite
vivid in terms of the deformation and the Coriolis effects
leading to a maximum of five components [34]. Even after
considering all these effects, our model does not yield such a
fragmented GDR consistent with the experimental data. The
temperatures corresponding to the observations are sufficiently
high so that the macroscopic approach is good enough. The
fit achieved for cross sections by our calculations are quite
reasonable considering the uncertainties in the data. Hence,
the discrepancy in matching the width as shown in Table I shall
be attributed to the inaccuracy in experimental cross sections.
In other words, with large uncertainties in cross sections, it
could be inappropriate to rely on �Expt for comparison with
the theory. This fact is exemplified by our calculations with

FIG. 2. Similar to Fig. 1 but at beam energy E ∼ 185 MeV.

η = 3.35 which fits the �Expt in a better way as shown in
the last column of Table I. This choice of η is far from the
systematic values [5] and yields the cross sections which are
very far from the experimental data as shown in Fig. 1. with
dashed lines.

Our results for cross sections at beam energy E ∼ 185 MeV
are presented in Fig. 2, in comparison with the experimental
data. In this case also the quality of agreement between our
calculations and the data is good except for the very high
angular momenta. The corresponding widths are presented in
Table II. From these results at E ∼ 185 MeV, we see the same
trend as noticed in the case of E ∼ 149 MeV, viz., (i) the
cross sections around the half maximum at the higher energy
are scattered, leading to overestimation of �Expt, and (ii) with
larger η, we can obtain a better fit to �Expt but the corresponding
theoretical cross sections are far from the data. In the present
case, the hump at high energy is more pronounced and renders
larger width. A simple double Lorentzian fit would suggest
a second peak around 15 MeV, which is perhaps inexplicable
within the present theoretical approach. These facts strengthen
our argument that one should not rely on the GDR width when
the cross sections have large uncertainties.

In order to understand the variation in GDR cross sections
in terms of the shape transitions in the nucleus 152Gd, we
present the free energy surfaces (FES) calculated within our
microscopic-macroscopic approach. These FES at different

TABLE II. Similar to Table I but at beam energy E ∼ 185 MeV.

T I �Expt �TSFM (MeV)

(MeV) (�) (MeV) η = 2.3 η = 3.35

1.91 13.3 9.5 ± 0.5 7.4 8.7
1.87 22.9 9.8 ± 0.3 7.5 8.8
1.81 34.5 10.0 ± 0.4 7.9 9.2
1.75 43.7 10.9 ± 0.5 8.3 9.6
1.69 51.2 11.1 ± 0.4 8.7 9.9
1.64 56.5 11.7 ± 0.8 9.1 10.4
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FIG. 3. (Color online) The free energy surfaces (FES) of 152Gd at different temperature (T ) and angular momentum (I ) combinations
corresponding to the data measured at beam energy E ∼ 149 MeV. In this convention, γ = 0◦ and −120◦ represent the noncollective and
collective prolate shapes, respectively; γ = −180◦ and −60◦ represent the noncollective and collective oblate shapes, respectively. The contour
line spacing is 0.2 MeV. The most probable shape is represented by a filled circle and first two minima are represented by thick lines.

T and I combinations corresponding to E ∼ 149 MeV are
presented in Fig. 3. In general, it is well known that the GDR
width (�) is proportional to the average axial deformation
parameter β (〈β〉). Within our macroscopic model for GDR,
for a given β, �Prolate > �Triaxial > �Oblate. While considering
thermal fluctuations, the shallowness of the minimum will lead
to pronounced fluctuations and hence larger width. Apart from
these shape effects, the GDR width increases with I due to the
Coriolis splitting and this change is rapid after ∼40� in this
mass region [15]. From Fig. 3, we can note that at high T
and low I , the most probable shape is oblate with a small
deformation. As I increases, the most probable shape changes
to a more deformed oblate. At high I , the nucleus shows a
clear γ softness with the contour for F � 0.4 MeV being
quite narrow with respect to β (∼0.2) but spanning the region
with γ = −180◦ to −120◦. In such a case, the GDR samples
a wider variety of shapes and this sampling is enhanced by

fluctuations at finite T . For a given β, since the oblate shape
leads to the least �, the γ softness leads to an enhanced � in
comparison with that of the oblate shape.

Before discussing in detail the role of γ softness in �,
we present in Fig. 4 the FES corresponding to the T and
I combinations extracted from the data measured at E ∼
185 MeV. In this case, at low I , the most probable shape is
spherical; as the I increases the most probable shape changes
to an oblate; and at high I , the nucleus shows a clear γ
softness similar to the previous case. An overall but important
observation, from the two sets of FES, is that there are no
drastic shape transitions as the I increases. This observation
implies that we do not expect any drastic change in the �
with the variation of T and I , within the limits suggested by
the data at both excitation energies. Second, some interesting
features seen in the FES need not be reflected in the observables
due to the thermal fluctuations, which can play a strong role
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FIG. 4. (Color online) Similar to Fig. 3 but for beam energy, E ∼ 185 MeV.

in the considered range of T (∼1.5 MeV) by smearing out
the structural changes caused by shell effects. Such smearing
effects can be well depicted while comparing our results with
those obtained using the liquid drop model (LDM) FES instead
of the FES from the Nilsson-Strutinsky (NS) approach, as
shown in Fig. 5, where the former and latter results are
depicted by dotted and solid lines, respectively. Except for
low T and low I the TSFM results with FES from LDM and
NS agree well. Thus a LDM description is quite reasonable
for the GDR in 152Gd. Consequently, we observe that some
interesting shape effects like the γ softness and the shape
transitions, as depicted by the FES, are not effectively reflected
in the corresponding �. This can be ascribed to the domination
of thermal fluctuations which smear out the effects of shape
transitions. To see this in detail, we have plotted in Fig. 6 the
probabilities corresponding to different shapes as given by the
Boltzmann’s factor [exp(−F/T )], which can be understood as
the weights corresponding to the shapes while averaging the
cross sections over different shapes [Eq. (1)].

In Fig. 6, first we would like to draw attention towards
the calculations at 0� (open squares) where we can see that
the probability distribution (P ) is wider in the case of NS
calculations and hence yield larger � (as seen in Fig. 5).
This difference between LDM and NS results is obviously
due to shell effects which would melt as the temperature
increases. This difference in P seems to be more at 30� but
the contribution from triaxial shapes become significant (not
depicted in Fig. 6) due to the thermal fluctuations and hence the
resulting � are not very different. The dominance of thermal
shape fluctuations is quite vivid in the case of I = 60�, as
evident from the very distinct P for LDM and NS leading to
same �. It would be interesting to see how well these shape
effects can be reflected by � at lower T where the shape
fluctuations are not that dominant.

The correlation between the shape parameter β and � are
well known [38]. In Ref. [27] an empirical correlation is
proposed so that one can estimate an experimental deformation
(βexp) from the measured values of �. This allows us to
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FIG. 5. (Color online) The GDR width (�) in 152Gd calculated
with various approaches at different angular momenta are plotted as a
function of temperature (T ). The phenomenological scaling formula
(PSF) [15], critical temperature formula (CTF) [16], TSFM (LDM),
and TSFM (NS) results are represented by dash-dotted, dashed,
dotted, and solid lines, respectively. I = 0�,30�, and 60� are rep-
resented by open squares, downward triangles, and upward triangles,
respectively. The experimental results are taken for Ref. [23], the
results at beam energy E ∼ 149 and 185 MeV are represented by
filled squares and filled circles, respectively.

compare the theoretical (average) deformations (〈β〉) with
βexp in a way independent of the model for the GDR. Such
an analysis has been carried out in Ref. [27] for the nuclei

FIG. 6. (Color online) The probability distribution of 152Gd
shapes calculated with liquid drop model (LDM) and Nilsson-
Strutinsky (NS) approach at different angular momenta (I ) are plotted
as a function of axial deformation parameter β. The peaks are
normalized to unity. For the axially deformed shapes, the positive
and negative values of β can be associated to γ = −180◦ and −120◦,
respectively. The LDM and NS results are represented by dotted and
solid lines, respectively. The results for I = 0�,30�, and 60� are
represented by squares, downward triangles, and upward triangles,
respectively.

FIG. 7. (Color online) The average deformation (〈β〉) of 152Gd
calculated with liquid drop model (LDM) and Nilsson-Strutinsky
(NS) approach at temperature (T = 1.8 MeV) is plotted as a function
of angular momentum (I ). The LDM and NS results are represented
by dotted and solid lines, respectively. The values extracted from
GDR data [27] are represented by filled circles.

59Cu, 110Sn, 113Sb, 152Gd, and 176W. Our results for 〈β〉
in 152Gd obtained with TSFM calculations are presented in
Fig. 7. The TSFM results with LDM and NS methods are
represented by dotted and solid lines, respectively, and the βexp

taken from Ref. [27] are represented by filled circles. We infer
that our TSFM calculations underestimate the deformation
and is explicable as discussed in the case of our results for �
shown in Fig. 5 and hence strengthen the associated arguments.
Here such a discrepancy can be seen as a function of angular
momentum (I ). The 〈β〉 of 152Gd obtained with the TSFM
(LDM) presented in Fig. 3 of Ref. [27] shows a higher value
when compared with our results. Such results based on LDM
(at least for I = 0) should vary smoothly with the mass number
but an abrupt raise in 〈β〉 of 152Gd could be seen in Fig. 3 of
Ref. [27]. This raise could be possible with the choice of the
parameters in the calculations which are not known clearly.

Apart from the TSFM results, in Fig. 5, we have presented
the experimental � along with the values calculated using the
phenomenological scaling formula (PSF) [15] and the critical
temperature formula (CTF) [16]. In the PSF, the ground-state
GDR width is assumed to be �0 = 3.8 MeV and all the other
parameters are fitted empirically in a global way. As shown in
Ref. [24], the CTF can explain the enhanced � whereas the
PSF fails in this regard. However, a larger �0 of 5.7 MeV is
used to reproduce the measured �. Another parameter of CTF
is the critical temperature, Tc, which is also adjusted to get
a better fit with the experimental results. Naturally, with the
help of two adjustable parameters, the CTF could explain the
data much better than the PSF. These parameters can change
the rate at which � changes with I and T . At T = 1.2 MeV,
the difference in � values with PSF (dash-dotted lines) at
two extreme values of I is δ� ∼ 1.6 MeV, whereas with CTF
(dashed lines), δ� ∼ 2.5 MeV. So the CTF parameters are
chosen to have a stiff � with respect to both I and T , and hence
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the CTF is able to explain the �Expt in a larger range. Results
from such a stiff parametrization cover more regions in Fig. 5
and eventually the CTF encompasses all the experimental data.
The success of CTF in explaining the � in an empirical manner
shall not be considered as a validation of the extracted �, as
the reliable information lies within the GDR cross sections.

IV. SUMMARY

The thermal shape fluctuation model (TSFM) study, of
the giant dipole resonance (GDR) in the hot and rotating
nucleus 152Gd, reveals that there are no major anomalies in
the values measured at two excitation energies. The GDR
cross sections calculated with standard parameters are in
agreement with the experiment, except for a shoulder around
17 MeV where the uncertainties are large. The component of
GDR leading to such a shoulder cannot be explained within
a macroscopic approach for GDR where the splitting due
to the deformation and Coriolis effects are properly taken
care of. It could be instructive to see whether such a high-
energy component can be explained with fully microscopic

approaches for GDR. It will also be useful to have a careful
introspection of the data to ascertain the shoulder around
17 MeV. Due to this shoulder, the corresponding GDR widths
are overestimated and hence their comparison with calculated
values does not convey the complete information. Tuning the
phenomenological parametrizations to reproduce such widths
conceals the interesting information contained in the cross
sections. The free energy surfaces in 152Gd calculated at higher
angular momenta show a clear γ softness which could have
led to larger GDR widths. However, such shape aspects are
smeared by the thermal fluctuations which are dominant in the
considered temperatures. It would be interesting to see how
such shape effects survive at lower temperatures.
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Grümmer, and P.-G. Reinhard, Phys. Rev. Lett. 109, 092502
(2012).

[14] S. Bacca, N. Barnea, G. Hagen, G. Orlandini, and T. Papenbrock,
Phys. Rev. Lett. 111, 122502 (2013).

[15] D. Kusnezov, Y. Alhassid, and K. A. Snover, Phys. Rev. Lett.
81, 542 (1998).

[16] D. Pandit, S. Mukhopadhyay, S. Pal, A. De, and S. R. Banerjee,
Phys. Lett. B 713, 434 (2012).

[17] D. R. Chakrabarty, V. Nanal, V. M. Datar, S. Kumar, A. Mitra,
E. T. Mirgule, and R. G. Pillay, Nucl. Phys. A 770, 126 (2006).

[18] I. Mukul, A. Roy, P. Sugathan, J. Gehlot, G. Mohanto, S. Nath,
N. Madhavan, R. Dubey, T. Banerjee, N. Saneesh et al., J. Phys.
G: Nucl. Part. Phys 41, 115103 (2014).

[19] I. Mukul, A. Roy, P. Sugathan, J. Gehlot, G. Mohanto, N.
Madhavan, S. Nath, R. Dubey, I. Mazumdar, D. A. Gothe
et al., Phys. Rev. C 88, 024312 (2013).

[20] N. D. Dang, K. Tanabe, and A. Arima, Nucl. Phys. A 675, 531
(2000).

[21] A. K. Rhine Kumar, P. Arumugam, and N. D. Dang, Phys. Rev.
C 91, 044305 (2015).

[22] A. K. Rhine Kumar, P. Arumugam, and N. D. Dang, Phys. Rev.
C 90, 044308 (2014).

[23] D. R. Chakrabarty, V. M. Datar, S. Kumar, E. T. Mirgule, A.
Mitra, V. Nanal, R. G. Pillay, and P. C. Raut, J. Phys. G: Nucl.
Part. Phys. 37, 055105 (2010).

[24] D. Pandit, S. Bhattacharya, B. Dey, D. Mondal, S.
Mukhopadhyay, S. Pal, A. De, and S. R. Banerjee, Phys. Rev. C
88, 054327 (2013).

[25] C. Simenel and P. Chomaz, Phys. Rev. C 80, 064309 (2009).
[26] C. Simenel and P. Chomaz, Phys. Rev. C 68, 024302 (2003).
[27] D. Pandit, B. Dey, D. Mondal, S. Mukhopadhyay, S. Pal, S.

Bhattacharya, A. De, and S. R. Banerjee, Phys. Rev. C 87,
044325 (2013).

[28] P. Arumugam, A. G. Deb, and S. K. Patra, Eur. Phys. J. A 25,
199 (2005).

[29] P. Arumugam, A. G. Deb, and S. K. Patra, Europhys. Lett. 70,
313 (2005).

[30] P. Arumugam, A. G. Deb, and S. K. Patra, Acta Phys. Pol. B 36,
1181 (2005).

[31] Y. Alhassid and B. Bush, Nucl. Phys. A 531, 39 (1991).
[32] V. M. Strutinsky, Nucl. Phys. A 95, 420 (1967).
[33] W. E. Ormand, P. F. Bortignon, and R. A. Broglia, Nucl. Phys.

A 618, 20 (1997).
[34] R. R. Hilton, Z. Phys. A 309, 233 (1983).
[35] G. Shanmugam and M. Thiagasundaram, Phys. Rev. C 37, 853

(1988).
[36] P. Carlos, H. Beil, R. Bergère, A. Leprêtre, A. De Miniac, and

A. Veyssière, Nucl. Phys. A 225, 171 (1974).
[37] K. Goeke and J. Speth, Ann. Rev. Nucl. Part. Sci. 32, 65 (1982).
[38] M. Gallardo, M. Diebel, T. Døssing, and R. A. Broglia, Nucl.

Phys. A 443, 415 (1985).

044314-7

http://dx.doi.org/10.1016/S0375-9474(99)00047-0
http://dx.doi.org/10.1016/S0375-9474(99)00047-0
http://dx.doi.org/10.1016/S0375-9474(99)00047-0
http://dx.doi.org/10.1016/S0375-9474(99)00047-0
http://dx.doi.org/10.1146/annurev.ns.36.120186.002553
http://dx.doi.org/10.1146/annurev.ns.36.120186.002553
http://dx.doi.org/10.1146/annurev.ns.36.120186.002553
http://dx.doi.org/10.1146/annurev.ns.36.120186.002553
http://dx.doi.org/10.1146/annurev.ns.42.120192.002411
http://dx.doi.org/10.1146/annurev.ns.42.120192.002411
http://dx.doi.org/10.1146/annurev.ns.42.120192.002411
http://dx.doi.org/10.1146/annurev.ns.42.120192.002411
http://dx.doi.org/10.1103/PhysRevLett.63.2452
http://dx.doi.org/10.1103/PhysRevLett.63.2452
http://dx.doi.org/10.1103/PhysRevLett.63.2452
http://dx.doi.org/10.1103/PhysRevLett.63.2452
http://dx.doi.org/10.1103/PhysRevC.69.054313
http://dx.doi.org/10.1103/PhysRevC.69.054313
http://dx.doi.org/10.1103/PhysRevC.69.054313
http://dx.doi.org/10.1103/PhysRevC.69.054313
http://dx.doi.org/10.1016/S0370-2693(98)01454-3
http://dx.doi.org/10.1016/S0370-2693(98)01454-3
http://dx.doi.org/10.1016/S0370-2693(98)01454-3
http://dx.doi.org/10.1016/S0370-2693(98)01454-3
http://dx.doi.org/10.1016/S0375-9474(98)00211-5
http://dx.doi.org/10.1016/S0375-9474(98)00211-5
http://dx.doi.org/10.1016/S0375-9474(98)00211-5
http://dx.doi.org/10.1016/S0375-9474(98)00211-5
http://dx.doi.org/10.1016/S0375-9474(98)00621-6
http://dx.doi.org/10.1016/S0375-9474(98)00621-6
http://dx.doi.org/10.1016/S0375-9474(98)00621-6
http://dx.doi.org/10.1016/S0375-9474(98)00621-6
http://dx.doi.org/10.1103/PhysRevC.87.054313
http://dx.doi.org/10.1103/PhysRevC.87.054313
http://dx.doi.org/10.1103/PhysRevC.87.054313
http://dx.doi.org/10.1103/PhysRevC.87.054313
http://dx.doi.org/10.1103/PhysRevC.62.011302
http://dx.doi.org/10.1103/PhysRevC.62.011302
http://dx.doi.org/10.1103/PhysRevC.62.011302
http://dx.doi.org/10.1103/PhysRevC.62.011302
http://dx.doi.org/10.1103/PhysRevC.63.024310
http://dx.doi.org/10.1103/PhysRevC.63.024310
http://dx.doi.org/10.1103/PhysRevC.63.024310
http://dx.doi.org/10.1103/PhysRevC.63.024310
http://dx.doi.org/10.1103/PhysRevC.83.044303
http://dx.doi.org/10.1103/PhysRevC.83.044303
http://dx.doi.org/10.1103/PhysRevC.83.044303
http://dx.doi.org/10.1103/PhysRevC.83.044303
http://dx.doi.org/10.1103/PhysRevLett.109.092502
http://dx.doi.org/10.1103/PhysRevLett.109.092502
http://dx.doi.org/10.1103/PhysRevLett.109.092502
http://dx.doi.org/10.1103/PhysRevLett.109.092502
http://dx.doi.org/10.1103/PhysRevLett.111.122502
http://dx.doi.org/10.1103/PhysRevLett.111.122502
http://dx.doi.org/10.1103/PhysRevLett.111.122502
http://dx.doi.org/10.1103/PhysRevLett.111.122502
http://dx.doi.org/10.1103/PhysRevLett.81.542
http://dx.doi.org/10.1103/PhysRevLett.81.542
http://dx.doi.org/10.1103/PhysRevLett.81.542
http://dx.doi.org/10.1103/PhysRevLett.81.542
http://dx.doi.org/10.1016/j.physletb.2012.06.033
http://dx.doi.org/10.1016/j.physletb.2012.06.033
http://dx.doi.org/10.1016/j.physletb.2012.06.033
http://dx.doi.org/10.1016/j.physletb.2012.06.033
http://dx.doi.org/10.1016/j.nuclphysa.2006.02.012
http://dx.doi.org/10.1016/j.nuclphysa.2006.02.012
http://dx.doi.org/10.1016/j.nuclphysa.2006.02.012
http://dx.doi.org/10.1016/j.nuclphysa.2006.02.012
http://dx.doi.org/10.1088/0954-3899/41/11/115103
http://dx.doi.org/10.1088/0954-3899/41/11/115103
http://dx.doi.org/10.1088/0954-3899/41/11/115103
http://dx.doi.org/10.1088/0954-3899/41/11/115103
http://dx.doi.org/10.1103/PhysRevC.88.024312
http://dx.doi.org/10.1103/PhysRevC.88.024312
http://dx.doi.org/10.1103/PhysRevC.88.024312
http://dx.doi.org/10.1103/PhysRevC.88.024312
http://dx.doi.org/10.1016/S0375-9474(00)00186-X
http://dx.doi.org/10.1016/S0375-9474(00)00186-X
http://dx.doi.org/10.1016/S0375-9474(00)00186-X
http://dx.doi.org/10.1016/S0375-9474(00)00186-X
http://dx.doi.org/10.1103/PhysRevC.91.044305
http://dx.doi.org/10.1103/PhysRevC.91.044305
http://dx.doi.org/10.1103/PhysRevC.91.044305
http://dx.doi.org/10.1103/PhysRevC.91.044305
http://dx.doi.org/10.1103/PhysRevC.90.044308
http://dx.doi.org/10.1103/PhysRevC.90.044308
http://dx.doi.org/10.1103/PhysRevC.90.044308
http://dx.doi.org/10.1103/PhysRevC.90.044308
http://dx.doi.org/10.1088/0954-3899/37/5/055105
http://dx.doi.org/10.1088/0954-3899/37/5/055105
http://dx.doi.org/10.1088/0954-3899/37/5/055105
http://dx.doi.org/10.1088/0954-3899/37/5/055105
http://dx.doi.org/10.1103/PhysRevC.88.054327
http://dx.doi.org/10.1103/PhysRevC.88.054327
http://dx.doi.org/10.1103/PhysRevC.88.054327
http://dx.doi.org/10.1103/PhysRevC.88.054327
http://dx.doi.org/10.1103/PhysRevC.80.064309
http://dx.doi.org/10.1103/PhysRevC.80.064309
http://dx.doi.org/10.1103/PhysRevC.80.064309
http://dx.doi.org/10.1103/PhysRevC.80.064309
http://dx.doi.org/10.1103/PhysRevC.68.024302
http://dx.doi.org/10.1103/PhysRevC.68.024302
http://dx.doi.org/10.1103/PhysRevC.68.024302
http://dx.doi.org/10.1103/PhysRevC.68.024302
http://dx.doi.org/10.1103/PhysRevC.87.044325
http://dx.doi.org/10.1103/PhysRevC.87.044325
http://dx.doi.org/10.1103/PhysRevC.87.044325
http://dx.doi.org/10.1103/PhysRevC.87.044325
http://dx.doi.org/10.1140/epja/i2005-10080-8
http://dx.doi.org/10.1140/epja/i2005-10080-8
http://dx.doi.org/10.1140/epja/i2005-10080-8
http://dx.doi.org/10.1140/epja/i2005-10080-8
http://dx.doi.org/10.1209/epl/i2005-10012-8
http://dx.doi.org/10.1209/epl/i2005-10012-8
http://dx.doi.org/10.1209/epl/i2005-10012-8
http://dx.doi.org/10.1209/epl/i2005-10012-8
http://www.actaphys.uj.edu.pl/_cur/store/vol36/pdf/v36p1181.pdf
http://dx.doi.org/10.1016/0375-9474(91)90567-P
http://dx.doi.org/10.1016/0375-9474(91)90567-P
http://dx.doi.org/10.1016/0375-9474(91)90567-P
http://dx.doi.org/10.1016/0375-9474(91)90567-P
http://dx.doi.org/10.1016/0375-9474(67)90510-6
http://dx.doi.org/10.1016/0375-9474(67)90510-6
http://dx.doi.org/10.1016/0375-9474(67)90510-6
http://dx.doi.org/10.1016/0375-9474(67)90510-6
http://dx.doi.org/10.1016/S0375-9474(97)00027-4
http://dx.doi.org/10.1016/S0375-9474(97)00027-4
http://dx.doi.org/10.1016/S0375-9474(97)00027-4
http://dx.doi.org/10.1016/S0375-9474(97)00027-4
http://dx.doi.org/10.1007/BF01413754
http://dx.doi.org/10.1007/BF01413754
http://dx.doi.org/10.1007/BF01413754
http://dx.doi.org/10.1007/BF01413754
http://dx.doi.org/10.1103/PhysRevC.37.853
http://dx.doi.org/10.1103/PhysRevC.37.853
http://dx.doi.org/10.1103/PhysRevC.37.853
http://dx.doi.org/10.1103/PhysRevC.37.853
http://dx.doi.org/10.1016/0375-9474(74)90373-X
http://dx.doi.org/10.1016/0375-9474(74)90373-X
http://dx.doi.org/10.1016/0375-9474(74)90373-X
http://dx.doi.org/10.1016/0375-9474(74)90373-X
http://dx.doi.org/10.1146/annurev.ns.32.120182.000433
http://dx.doi.org/10.1146/annurev.ns.32.120182.000433
http://dx.doi.org/10.1146/annurev.ns.32.120182.000433
http://dx.doi.org/10.1146/annurev.ns.32.120182.000433
http://dx.doi.org/10.1016/0375-9474(85)90409-9
http://dx.doi.org/10.1016/0375-9474(85)90409-9
http://dx.doi.org/10.1016/0375-9474(85)90409-9
http://dx.doi.org/10.1016/0375-9474(85)90409-9



