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Background: A large number of hypernuclei, where a considerable fraction of nucleons is replaced with strange
baryons, and even pure hyperonic species are expected to be bound. However, the hypernuclear landscape remains
largely unknown because of scarce constraints on the NY and YY interactions.
Purpose: We want to estimate the number of potentially bound hypernuclei. To evaluate realistic error bars within
the theoretical uncertainties associated with the spherical mean-field approach and the present information from
already synthesized hypernuclei on the N -Y and Y -Y channels, we limit ourselves to purely � hypernuclei, to
magic numbers of �’s (for Z � 120 and � � 70), and to even-even-even systems.
Method: We consider a density-functional approach adjusted to microscopic Bruckner-Hartree-Fock calculations,
where the �� term is corrected in a phenomenological way, to reproduce present experimental constraints.
Different models which strongly deviate at large densities, but giving the same bond energy, are generated to take
into account the uncertainties related to the high-density equation of state.
Results: The number of bound even-even-even � hypernuclei is estimated to 491 680 ± 34 400. This relatively
low uncertainty is attributable to the fact that the well-constrained low-density and highly unconstrained high-
density behavior of the energy functional turn out to be largely decoupled. Results in � hypernuclei appear
to be almost independent of the choice for the high-density part of the �� interaction. The location of the �

hyperdriplines is also evaluated. Significant deviations from iron-nickel elements can be found for � hypernuclei
with the largest binding energy per baryon. Proton, neutron, and �-hyperon magicity evolution and triple magic
� hypernuclei are studied. Possible bubble and halo effects in � hypernuclei are also discussed.
Conclusions: The present results provide a first microscopic evaluation of the �-hypernuclear landscape. They
shall benefit from the more and more accurate design of the �-based functionals. The measurements of � and
multi-� hypernuclei together with additional constraints of the �� and �� interaction are mandatory to improve
such critical information.
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I. INTRODUCTION

The study of hypernuclei benefited from a great scientific
interest since the 1960s [1,2]. Various hyperon-nucleus in-
teraction [3], Skyrme Hartree-Fock [4–11], relativistic mean-
field [12–19], generalized liquid drop [20–24] and, G ma-
trix [25–27] models have been considered to underpin the
hyperon-nucleon interaction from hypernuclei, to test the
existence of bound hypernuclei, the stability of nucleonic
cores against hyperon addition, or the occurrence of exotic
pure strange systems or halo structures. With the advent of
new dedicated experimental programs such as Japan Proton
Accelerator Research Complex in Japan or proton antiproton
detector array at GSI Facility for Antiproton and Ion Research,
the study of the hypernuclei structure enjoys a revived
interest [28–30].

Present facilities can only produce single- and double-�
hypernuclei in a limited domain of mass. However, a general
understanding of the specificity of hypernuclear structure with
respect to nuclear structure requires the evaluation of the
global hypernuclear chart, with strangeness as the third dimen-
sion [22,31]. Some recent works [29,30] address this problem
within phenomenological mean-field models. However, the
uncertainties on the hypernuclear chart associated with the

choice of the functional in the strangeness sector are difficult
to evaluate, because present experimental data on hypernuclei
are scarce, and therefore a large arbitrariness is associated
with the modeling of the hyperonic energy functional. To
minimize such uncertainties, it is important to use as much
as possible microscopically founded energy functionals from
Brueckner or Dirac-Brueckner calculations, as well as the few
available experimental data. The present work is an attempt in
that direction.

The regular nuclear landscape, including an estimation of
the uncertainties on its limits defined by the driplines, has
been only recently microscopically studied [32], owing to the
growth of calculation capacities. This is also attributable to the
recent use of evaluation methods [33,34] for the uncertainties
generated by the only input of such microscopic calculations:
the nucleon-nucleon (NN ) energy functional. The resulting
uncertainty on the number of bound nuclei is typically of the
order of 7% [32].

The present work aims to generalize such a study by
designing the limits of the �-hypernuclear landscape and eval-
uating the uncertainties associated with the limited empirical
information on the hyperonic functionals. For this purpose
microscopic calculations of nuclei and � hypernuclei are
performed using the energy density functional approach. We
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use a Skyrme functional optimized on nuclear physics data
for the NN channel, while �N and �� functionals fitted on
microscopic Brueckner-Hartree-Fock (BHF) calculations are
used, with modifications to take into account �-hypernuclei
data constraints.

When dealing with a multistrange system, a very important
issue is the possible presence of hyperons other than �. In
particular, it was recognized since the early 1990s [16,18,35]
that the � + � → � + N decaying channel could play a
major role in multistrange systems, because of the attractive
character of the � potential in nuclear matter, which could
lead to the appearance of � hyperons already for a strangeness
number |S| > 8. The present most accepted value for the �
potential in symmetric nuclear matter V� = −14 MeV [36] is
much less attractive than the value proposed in those earlier
works [18], which pushes the � number threshold for �
contribution farther in strangeness. Moreover, it is clear that the
contribution of � will crucially depend on the �-� and �-�
interactions, which are presently completely unconstrained.
The inclusion or removal of the Fock term in relativistic
approaches seams to have, as well, an effect on the appearance
the various kinds of hyperons in uniform matter [37]. Because
of these uncertainties, we have chosen to limit ourselves to �
hypernuclei in this work because �’s are the only hyperons to
be (relatively) constrained by experimental data.

Section II details the energy-density functional used,
focusing on the way to design the �� component. Section III is
devoted to the determination of the corresponding parameters
of the �� functional. The Hartree-Fock calculations for
� hypernuclei are performed in Sec. IV. Because in the
hyperonic channel the spin-orbit interaction is expected to
be very weak [38], the �-hypernuclear charts, location of the
� hyperdriplines, and the estimation of the number of bound
even-even-even � hypernuclei are evaluated for hypernuclear
number � = 0, 2, 8, 20, 40, and 70. In Sec. V, the gross
properties of �-hypernuclear structure are analyzed, namely
the evolution of the energy per baryon as a function of the
�N and �� functionals. A study of magicity evolution in �
hypernuclei, as well as of possible bubble and halo effects is
also undertaken. Finally, Appendix A details the link between
the bond energy and the �� functional, whereas Appendix B
provides an update of the strangeness analog resonances in
multihyperon � hypernuclei.

II. DENSITY-FUNCTIONAL THEORY FOR
�-HYPERNUCLEAR MATTER AND � HYPERNUCLEI

We consider a nonrelativistic system composed of interact-
ing nucleons N and �’s. The total Hamiltonian reads

Ĥ = T̂N + T̂� + ĤNN + Ĥ�� + ĤN�, (1)

where T̂A is the kinetic energy operator and ĤAB the interaction
operator acting between A and B (=N and �). We work in
the mean-field approximation, where the ground state of the
system is given by the tensor product, |�N 〉 ⊗ |��〉, where
|�N 〉 = �ia

+
i |−〉 is a Slater determinant of nucleon states

and |��〉 = �λa
+
λ |−〉 is a Slater determinant of � states.

The total Hamiltonian (1) can be expressed in terms of the

nucleons (i) and λ states as

Ĥ =
∑

i

t̂i +
∑

λ

t̂λ + 1

2

∑
i,j

v̂NN
ij + 1

2

∑
λ,μ

v̂��
λμ +

∑
λ,i

v̂N�
iλ .

(2)

In the following, we consider the density-functional theory
which allows relating in a direct way the BHF predictions for
uniform matter to the properties of hypernuclei.

A. Energy-density functional deduced from BHF

In the present study of � hypernuclei and nuclear matter we
use a density functional which has been determined directly
from BHF theory including nucleons and � hyperons [26,27].
The total energy density ε(ρN,ρ�) is related to the energy
per particle calculated within the BHF framework, eBHF, as
ε(ρN,ρ�) = (ρN + ρ�)eBHF(ρN,ρ�) and is decomposed in
different terms,

ε(ρN,ρ�) = �
2

2mN

τN + �
2

2m�

τ� + εNN (ρN )

+ εN�(ρN,ρ�) + ε��(ρ�), (3)

where, in infinite nuclear matter, the kinetic energy densities
τN and τ� are simple functions of the matter density: τi =
3
5 (6π2/gi)2/3ρ

5/3
i , with gi = 4(2) for i = N (�).

In the nucleon sector, we use the SLy5 parametrization of
the phenomenological Skyrme functional including nonlocal
and spin-orbit terms, because it can correctly reproduce the
properties of stable and exotic nuclei [39]. In the case of
the strangeness sector, the spin-orbit interaction is known to
be small [38] and is therefore neglected. The local density
dependence of the N� component of the energy density,
εN�(ρN,ρ�), is solely adjusted to the BHF predictions. To
pin down the N� coupling, the following energy den-
sity is defined: (ρN + ρ�)eBHF(ρN,ρ�) − ρNeBHF(ρN,0) −
ρ�eBHF(0,ρ�), where eBHF(ρN,ρ�) is the BHF energy per
baryon in an infinite hypernuclear matter calculation. It is
parametrized in terms of the nucleon and hyperon densities
as Refs. [26,27],

εN�(ρN,ρ�) = −f1(ρN )ρNρ� + f2(ρN )ρNρ
5/3
� , (4)

where the first term physically corresponds to the attractive
N� interaction, corrected by the presence of the medium
given by the function f1, and the second term is induced by
the repulsive momentum-dependent term of the � potential
(considering the low-momentum quadratic approximation),
also corrected by the medium through the function f2. In
the presence of the attractive �� interaction, the term ε��

is solely determined by the hyperon density as Ref. [27]

ε��(ρ�) = −f3(ρ�)ρ2
�. (5)

The functions fi are given by the polynomial forms,

f1(ρN ) = α1 − α2ρN + α3ρ
2
N, (6)

f2(ρN ) = α4 − α5ρN + α6ρ
2
N, (7)

f3(ρ�) = α7 − α8ρ� + α9ρ
2
�. (8)
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In principle, the functions f1 and f2 depend on the densities
ρN and ρ� associated with conserved charges in the medium.
However, because nucleons are the dominant species, even in
the presence of �’s, the dependence on ρ� is neglected in
these functions. In the case of f3, it trivially depends on ρ�

only, because it impacts the part of the functional referring to
pure � matter.

Different N� potentials have been parametrized which fit
equally well the scarce N� phase shifts; see, for instance,
discussion and references in Ref. [40]. The present study
is based on three of them for which a density functional
has been derived, based on BHF predictions [26,27], namely
DF-NSC89, DF-NSC97a, and DF-NSC97f. The functional
DF-NSC89 is based on the Nijmegen soft-core potential
NSC89 [41], while the functionals DF-NSC97a and DF-
NSC97f are based on two of a series of six different
hyperon-nucleon potentials which equally well reproduce the
measured scattering lengths in the �N and �N channels
and correspond to different values of the magnetic vector
meson ratio α, which cannot be constrained by the phase-shift
information [42,43].

Although more recent functionals have been
parametrized [40], by adding, for instance, isospin degree
of freedom, the functionals considered in this study already
represent a good sample of the uncertainty generated by the
lack of empirical information in the strangeness sector. This
affects microscopic approaches like BHF [8,26,27], although
to a lesser extent than fully phenomenological mean-field
models [6,7,9–11,15–18,25,28–30]. Indeed, the models
DF-NSC97a and DF-NSC97f correspond to the two extreme
choices for the unconstrained α parameter [42,43], leading
to the softest and stiffest equation of state, respectively. It
should be noted that no experimental information is available
on �-� scattering, meaning that these phenomenological
bare interactions are completely unconstrained in the �-�
channel. For this reason, NSC89 does not contain any �-�
interaction. The NSC97 models assume for this channel a
simple SU(3) extension of the original Nijmegen potential
models to multiple strangeness S = −2. The values for the
parameters α1 − α9 of the functions f1 − f3 are given in
Table I for the functionals DF-NSC89, DF-NSC976a, and
DF-NSC97f.

The single-particle energies in uniform matter are deduced
from the energy functional (3), as eunif

N (k) = �
2k2

2mN
+ vunif

N and

eunif
� (k) = �

2k2

2m�
+ vunif

� , where

vunif
N (ρN,ρ�) = v

Sky
N + ∂εN�

∂ρN

, (9)

TABLE I. Parameters of the fi functions [see Eqs. (6)–(8)] for
the functionals DF-NSC89, DF-NSC97a, and DF-NSC97f.

Force α1 α2 α3 α4 α5 α6 α7 α8 α9

DF-NSC89 [26,27] 327 1159 1163 335 1102 1660 0 0 0
DF-NSC97a [27] 423 1899 3795 577 4017 11 061 38 186 22
DF-NSC97f [27] 384 1473 1933 635 1829 4100 50 545 981
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FIG. 1. (Color online) Potential v
(N),unif
� (ρN,ρ�) as a function of

the nucleon density ρN (in units of the saturation density ρ0) for the
functionals DF-NSC89, DF-NSC97a, and DF-NSC97f without � (a)
and with ρ� = 0.03 fm−3 (b).

v
Sky
N being deduced from the Skyrme functional [44,45], and

vunif
� (ρN,ρ�) = ∂εN�

∂ρ�

+ ∂ε��

∂ρ�

. (10)

In the following, the hyperon potential vunif
� is decomposed

into two terms, vunif
� = v

(N),unif
� + v

(�),unif
� using Eqs. (4)

and (5),

v
(N),unif
� = ∂εN�

∂ρ�

= −f1(ρN )ρN + 5

3
f2(ρN )ρNρ

2/3
� (11)

v
(�),unif
� = ∂ε��

∂ρ�

= −2α7ρ� + 3α8ρ
2
� − 4α9ρ

3
�. (12)

The term v
(N),unif
� stands for the contribution of the nucleons

to the hyperon potential, while the term v
(�),unif
� represents

the direct contribution of the hyperons to their own potential.
The properties of the potential v

(N),unif
� are analyzed in Fig. 1,

imposing ρn = ρp. In the left panel, the potential v
(N),unif
� is

displayed without � particles, while in the right panel a small
amount of � is considered, corresponding to a representative
average � density in single-� hypernuclei (see Sec. III A).
It is expected, from experimental single-�-hypernuclei data,
that the potential v

(N)
� is about −30 MeV at saturation den-

sity [26]. This empirical condition is satisfied for the three
functionals—DF-NSC89, DF-NSC97a, and DF-NSC97f—at
saturation density, as shown on the left panel of Fig. 1. For a
fixed and small amount of �, the potential v

(N),unif
� is attractive

at large densities for all the functionals, owing to the α3 term
in the function f1. Already in the late 1980s it was clear
that some repulsion is necessary at high densities to explain
hypernuclear data [3]. For a finite amount of �, the α6 term in
function f2 gives a repulsive contribution and can compensate
the attractive α3 term if ρ� > ( 3

5
α3
α6

)
3/2

. For the functionals DF-
NSC89, DF-NSC97a, and DF-NSC97f, this occurs for ρ� >
0.27, 0.09, and 0.15 fm−3, respectively. These substantially
different numbers reveal the large uncertainties at high density
in the predictions of the considered functionals. These three
functionals have been used before in Skyrme-Hartree-Fock
calculations of single-� hypernuclei from C to Pb, and the
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resulting � single-particle levels have been confronted in
detail to experimental data [27]. The single-particle levels
of the heaviest � hypernuclei, which should, in principle,
be reasonably well described in a mean-field calculation,
were seen to be systematically overbound by DF-NSC97a and
slightly underbound by DF-NSC89, while DF-NSC97f nicely
reproduces the data. In this sense, we can consider that the
� potentials in uniform matter v

(N),unif
� presented in Fig. 1

span the range compatible with �-hypernuclear data, even if
the functionals appear to be probably too attractive at high
density [27].

These functionals have also been extended to other hyper-
onic channels, namely � and �, assuming SU(3) symmetry,
and exploited in BHF matter calculations [46]. However, these
extrapolations of the N − � channel to the rest of the octet
have been severely questioned in recent years owing to the
difficulty of standard functionals to predict the existence of
very massive neutron stars [47,48]. For this reason we do not
consider these extensions here. It is, however, interesting to
note that all functionals predict that, for a sufficiently high
number of �, the � + � → � + N decay channel should
open and � should contribute to the multistrange nuclei.
The threshold � fraction for � appearance is estimated to
be ρ�/ρN = 0.17 for DF-NSC89, the only functional that
predicts a � potential in symmetric matter V� = −15 MeV
[27], compatible with experimental data [36]. It should be
noted that this criterion is largely influenced by the value of
the � potential in symmetric matter, as expected, because,
for instance, the threshold � fraction for � appearance is
estimated to be ρ�/ρN = 0.15 and 0.08 fm−3 for the DF-
NSC97a and DF-NSC97f functionals having more attractive
� potentials [27].

This means that the results we get for highly strange
� hypernuclei have to be taken with caution. In particular,
driplines associated with a � fraction ρ�/ρN = 0.17 have to
be considered as a lower bound, because even more strangeness
would be compatible with bound systems if � would be
accounted for.

The two terms v
(N),unif
� and v

(�),unif
� contributing to the

potential vunif
� [Eq. (10)] are compared in Fig. 2, as a function

of the nucleonic density ρN and for different proportions of
�. As expected, for a sufficiently large amount of �, the term
v

(N),unif
� becomes repulsive at high nucleonic density. At low

density the functionals DF-NSC97a and DF-NSC97f predict
very close potentials v

(�),unif
� , but as the nucleonic density

increases the predictions of these two functionals increasingly
deviate. Because the dominant term in α9 is attractive, the
potential v(�),unif

� will finally curve down at very high densities,
but this occurs in physical situations which will be hardly
met in nature. Indeed, for the functional DF-NSC97a, the
potential continuously increases up to ρN ≈ 10ρ0 and for a
fraction of hyperons �50%. For DF-NSC97f, the effect of
α9 is already curving down the potential for ρN ≈ 8ρ0 and
20% of �. In pure � matter, the potential v

(�),unif
� becomes

repulsive between ρ0/2 and ρ0. The functional DF-NSC97f
predicts also a decreasing potential starting from 1.5ρ0, while
this behavior is pushed to much larger values (beyond 20ρ0)
with DF-NSC97a.
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FIG. 2. (Color online) Comparison of v
(N),unif
� (a),(b) and v

(�),unif
�

(c),(d) as a function of the nucleon density ρN (in units of the
saturation density ρ0) for the functionals DF-NSC89, DF-NSC97a,
and DF-NSC97f and a � fraction set to 10% (a),(c) and 20% (b),(d).

These differences between the functionals clearly show
that the high-density properties of � hypermatter are largely
unconstrained. From the phenomenological point of view, the
existence of very massive neutron stars (about 2M� [49])
requires a strongly repulsive vunif

� potential at high density,
which corresponds to a low value of the α parameter, in
terms of the elementary Nijmegen interactions. In principle,
the very existence of such massive stars could be used as an
extra constraint for the functional, and was often considered
in the relativistic mean-field literature (see, for instance, the
recent work [19], and Refs. therein). However, owing to the
presence of different hyperon species in the core of massive
neutron stars, with highly unknown interaction couplings, it is
not straightforward to convert this qualitative statement into
a sharp constraint on the vunif

� potential. More specifically, it
should be noted that no BHF calculation is presently able to
reproduce the empirical observation of 2M� neutrons stars.
This contradiction between our knowledge of supranuclear
matter and observation is usually called the hyperonization
puzzle [50].

Finally, it can be noted from Fig. 2 that the v
(�),unif
� term

is much smaller than v
(N),unif
� : v

(�),unif
� contributes to less than

10% to the total potential vunif
� . In the functionals DF-NSC97a

and DF-NSC97f, the contribution of the term v
(�),unif
� , induced

by the �� interaction, to the properties of hyperonic matter
is therefore expected to be rather weak. As discussed above,
this result might not be entirely physical, because the �-�
interaction in the NSC97 models is not fitted on experimental
data, but only extrapolated from the N -� interaction. The
�� term of the functional can thus be phenomenologically
adjusted, as explained in the next section.

B. Phenomenological correction to the term ε��

The term ε�� defined by Eq. (5) is generated by the ��
interaction: Only the functionals DF-NSC97a and DF-NSC97f
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for which the �� interaction has been included in the BHF
calculation, have a nonzero ε�� [26,27].

However, large uncertainties remain on the �� interaction,
as discussed above. The functionals introduced in Sec. II A,
based on an SU(3) extrapolation of the N -� bare interaction
to the S = −2 channel [41,43], do not lead to a satisfactory de-
scription of the binding energy of double-� hypernuclei [27],
which is the only empirical information that we have on �-�
couplings [51–53]. Moreover, Fig. 2 shows that, though the
DF-NSC97a and DF-NSC97f functionals in the �-� channel
are very similar at low density, they drastically differ above
saturation. In view of the already-mentioned hyperonization
puzzle, it is therefore reasonable to consider that an even larger
uncertainty in the high-density behavior has to be associated
with the term ε��.

In the following, we therefore propose to modify the ε��

term taking into account phenomenological arguments to deal
with the uncertainty on the microscopic BHF results. In
practice, the values of the α7, α8, α9 parameters of the original
functional (3) are replaced with different values α̃7, α̃8, α̃9

defining the new ε̃�� term,

ε̃�� = −(
α̃7 − α̃8ρ� + α̃9ρ

2
�

)
ρ2

�, (13)

and the new potential ṽ
(�),unif
� ,

ṽ
(�),unif
� = −2α̃7ρ� + 3α̃8ρ

2
� − 4α̃9ρ

3
�. (14)

The determination of these parameters is based on the
following phenomenological prescription.

(i) Because the �� interaction is expected to be repulsive
at high density (to support, for instance, the observed
2M� neutron stars), the coefficient α̃9 is taken as �0.

(ii) A parameter x is introduced, which represents the
� density (in units of the saturation density ρ0),
where the � potential in hyperonic matter ṽ

(�),unif
� (14)

changes its sign and becomes repulsive.
(iii) Finally, we impose a relation between the �� inter-

action and the bond energy in 6He, obtained from
the local density approximation, which we discuss
hereafter [27].

Condition (i) imposes α̃9 � 0. For convenience, we set
α̃9 = 0, giving minimal repulsion. Figure 2 shows that the
contribution of the term α9 appears at very high densities which
are certainly never reached in neutron stars.

Condition (ii) and Eq. (14) give

2α̃7 = 3α̃8ρ� = 3α̃8xρ0, (15)

meaning that the parameter x controls the high-density
behavior of � matter: the larger x, the softer the equation
of state (EoS) with hyperons.

Condition (iii) is related to the bond energy �B��, which
is defined as [26,27]

�B��(A) = −E(A−2Z) + 2E
(A−1
�

Z
) − E

(A

��
Z

)
, (16)

where A−2Z is a nucleus with no hyperon, A−1
� Z is a single-�

hypernucleus, and A
��Z is a double-� hypernucleus. It should

be noted that, experimentally, 6He and related hypernuclei

provide the most accurate value of a bond energy, with
�B�� � 1 MeV [52,53].

The relation between the bond energy and the functional is
derived in Appendix A, providing

�B��(A) ≈ −2
ε̃��[ρ�(A)]

ρ�(A)
. (17)

Injecting Eq. (13) into Eq. (17), the following relation is
deduced:

2ρ�(A)[α̃7 − α̃8ρ�(A)] = �B��(A). (18)

Using Eq. (15) and introducing x�(A) = ρ�(A)/ρ0, the
average � density in double-� hypernucleus A

��Z, we obtain
from Eq. (18),

[3x − 2x�(A)]x�(A)ρ2
0 α̃8 = �B��(A). (19)

We can thus express the new parameters α̃7 and α̃8 as a
function of x,x�(A) and �B��(A) from Eqs. (15) and (19) as

α̃7 = 3

2

x �B��(A)

[3x − 2x�(A)]x�(A)ρ0
, (20)

α̃8 = �B��(A)

[3x − 2x�(A)]x�(A)ρ2
0

. (21)

The following expressions for the energy density and the
potential are deduced from Eqs. (13) and (14):

ε̃�� = − α̃8

2
ρ2

�(3xρ0 − 2ρ�), (22)

ṽ
(�),unif
� = −3α̃8ρ�(xρ0 − ρ�). (23)

Because the parameters α̃7 and α̃8 are linearly related to the
bond energy, the energy density ε̃�� also scales with the bond
energy. The relation between α̃7 and α̃8 and the parameters x
and x� is more complicated. Let us consider the limit where
x � x�. In this case, the parameters α̃7 and α̃8 reduce to the
simpler expressions:

α̃∗
7 = �B��(A)

2x�(A)ρ0
and α̃∗

8 = �B��(A)

3xx�(A)ρ2
0

. (24)

It should be noted that α̃∗
7 is independent of x, while α̃∗

8 is
inversely related to x. Therefore, the parameter α̃8 is mostly
related to the prescription (ii), modifying the high-density
part of the mean field, while α̃7 is almost independent of
x. Moreover, at the limit x � x�, the � potential at the
density ρ�(A) is given by ṽ

(�)
� [ρ� = x�(A)ρ0] ≈ ṽ

(�)∗
� , and

the potential energy density is given by ε̃��[ρ� = x�(A)ρ0] ≈
ε̃∗
��, where

ṽ
(�)∗
� = −�B��(A), (25)

ε̃∗
�� = −0.5�B��(A)x�(A)ρ0. (26)

The parameter ṽ
(�)∗
� is only related to the bond energy and

is independent of x and x�(A), while the parameter ε̃∗
��

depends only on the bond energy and x�(A), independently
of the value of x. At the limit where x � x�, the potential
and the energy density at x�(A) depends only on the bond
energy and x�(A), and are independent of x. More generally,
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FIG. 3. (Color online) Normalized potential V
(�)
� (ρ�)/|V (�)∗

� |
for several choices of x and x�; see text.

the relations

ṽ
(�)
� [ρ� = x�(A)ρ0]∣∣ṽ(�)∗

�

∣∣ = −1 + 1

3

x�

x
+ o

[(
x�

x

)2]
, (27)

ε̃��[ρ� = x�(A)ρ0]

|ε̃∗
��| = −1 + o

[(
x�

x

)2]
, (28)

hold, where the correction goes like x�(A)/x.
Equations (27) and (28) show that the scaled �� potential

ṽ
(�)
� /ṽ

(�)∗
� and the scaled � energy ε̃��/ε̃∗

�� solely depend on
x and x� and are independent of the bond energy. A complete
representation of the parameter space can therefore be obtained
by representing these scaled quantities as a function of the �
density and largely varying only the two parameters x and
x�. These normalized potentials (respectively energies) are
represented in Fig. 3 (Fig. 4).

According to condition (ii), the mean-field potential
changes its sign for the density ρ� = xρ0. This is well observed
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FIG. 4. (Color online) Normalized energy density ε��(ρ�)/
|ε∗

��| for the same parameters as in Fig. 3.

in Fig. 3. Therefore, the effect of increasing the parameter x
makes the � mean-field potential and energy density softer. In
a similar but weaker way, Figs. 3 and 4 show that the effect of
the parameter x� is to soften the mean-field potential and the
energy density as x� increases.

The potential and energy-density behavior, displayed in
Figs. 3 and 4, show that this choice of parameters spans a wide
range of qualitative behaviors of the energy functional.

C. Application of the energy-density functionals
to � hypernuclei

For the sake of completeness, we recall here the results
obtained in [26,27], also used in the present work, describing
the implementation of the Hartree-Fock approach in the
�-hypernuclear case. Nucleons and �’s in the medium acquire
an effective mass which is generated by the momentum
dependence of the interaction. The description of finite nuclei
requires disentangling the momentum-dependent part of the
in-medium potential (the correction to the masses) from the
momentum-independent one, hereafter called the local part.
The local energy density is defined by

�
2

2mN

τN + εNN (ρN ) = �
2

2m∗
N (ρN )

τN + εloc
NN (ρN ), (29)

�
2

2m�

τ� + εN�(ρN,ρ�) = �
2

2m∗
�(ρN )

τ� + εloc
N�(ρN,ρ�), (30)

which can be recast as

εloc
NN = εNN − 3ρN�

2

10

(
6π2ρN

gN

)2/3( 1

m∗
N

− 1

mN

)
, (31)

εloc
N� = εN� − 3ρ��

2

10

(
6π2ρ�

g�

)2/3( 1

m∗
�

− 1

m�

)
, (32)

where εNN is derived from the Skyrme functional [44,45] and
εN� is given by Eq. (4). We have already seen that the nucleon
contribution to the � potential, εN�, is much bigger than the
� contribution, ε��. For this reason, the contribution of the
�� interaction to the �-effective mass can be considered as
a small corrections, and it has been neglected in Ref. [27]. We
can therefore write

εloc
��(ρ�) = ε��(ρ�). (33)

In Eqs. (31) and (32) the local part of the energy density
requires the knowledge of the effective masses m∗

N and m∗
�.

The nucleon-effective mass m∗
N is given from the Skyrme

interaction [44,45]. The effective mass of the � particles is
mainly generated by the momentum dependence of the N�
interaction, and it can be deduced from the BHF calculations.
The result is expressed as a polynomial in the nucleonic density
ρN as [26]

m∗
�(ρN )

m�

= μ1 − μ2ρN + μ3ρ
2
N − μ4ρ

3
N . (34)

The values for the parameters μ1−4 for the functional consid-
ered here are given in Table II and the density dependence of
the effective mass is shown in Fig. 5. Because the effective
mass is only necessary in the description of finite nuclei, we
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TABLE II. Parameters of the �-effective mass given by Eq. (34)
for the functionals considered in this paper.

Force μ1 μ2 μ3 μ4

DF-NSC89 [26,27] 1 1.83 5.33 6.07
DF-NSC97a [27] 0.98 1.72 3.18 0
DF-NSC97f [27] 0.93 2.19 3.89 0

have limited the densities to values around saturation densities
in Fig. 5. We can again observe, on the left panel, that the
three functionals show a qualitatively similar behavior for
the �-effective mass at low density, with the stiffest model
DF-NSC97f showing, as expected, the strongest momentum
dependence.

Given the functional form of εloc and m∗ for the nucleons
and the �’s, Eq. (3) can be rewritten in a form which explicitly
disentangles the terms coming from the local operator ρ̂ and
the nonlocal operator τ̂ = 
∇ρ̂ 
∇ as

ε(ρN,ρ�,τN,τ�) = �
2

2m∗
N (ρN )

τN + �
2

2m∗
�(ρN )

τ� + εloc
NN (ρN )

+ εloc
N�(ρN,ρ�) + ε��(ρ�). (35)

Minimizing the total energy, defined from the density
functional (35), and using the Skyrme model for the nucleonic
part, we obtain the usual Schrödinger equation (i = N,�),

[
−∇ �

2

2m∗
i (r)

∇ + Vi(r) − iWi(r)(∇ × σ )

]
ϕi,α(r)

= −ei,αϕi,α(r), (36)

where the nucleon potential VN is defined as

VN (r) = vunif
N (r) + ∂

∂ρN

[
m�

m∗
�(ρN )

]

×
[

τ�

2m�

− 3

5

(3π2)2/3
�

2

2m�

ρ
5/3
�

]
. (37)
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density ρN (in units of the saturation density ρ0) for the functionals
DF-NSC89, DF-NSC97a, and DF-NSC97f.

The hyperon potential V� is given by

V�(r) = vunif
� −

[
m�

m∗
�(ρN )

− 1

]
(3π2)2/3

�
2

2m�

ρ
2/3
� . (38)

As in the uniform case, the hyperon potential V� is
decomposed into two terms, V� = V

(N)
� + V

(�)
� , where

V
(N)
� (r) = v

(N),unif
� −

[
m�

m∗
�(ρN )

− 1

]
(3π2)2/3

�
2

2m�

ρ
2/3
� , (39)

V
(�)
� (r) = v

(�),unif
� . (40)

The factor [m�/m∗
�(ρN ) − 1] in Eq. (39) is displayed on

the right panel of Fig. 5, showing that it is quite large around
saturation density, between 0.2 and 0.5. The modification of
the � potential in nuclei with respect to the uniform potential
can be quite important as it scales approximately with the
kinetic energy density of the �’s.

III. DETERMINATION OF THE �� FUNCTIONAL

In the following we use the previous formalism to perform
calculations in finite nuclei and to determine the parameters
of the �� functional. In the case of single-�-hypernuclei,
there is no �� interaction, and the corresponding terms in
the functional shall therefore not be considered. We therefore
set ε�� = 0 for single-�-hypernuclei, while for double- and
many-�-hypernuclei, we consider the original expression (5)
for ε��.

A. The average � density in hypernuclei

According to Eq. (17), the bond energy and the average
density in the double-� hypernucleus A

��Z are closely related.
The bond energy can be experimentally constrained, but no
experimental determination of the average � density exists
yet. Figure 6 displays the nucleon and � densities in 5

�He
and 6

��He for the functionals DF-NSC89, DF-NSC97a, and
DF-NSC97f, using SLy5 for the nucleons. The average single-
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density; solid (dashed) lines, one (two) � is added to the 4He
nucleus. Three different functionals—from left to right DF-NSC89,
DF-NSC97a, and DF-NSC97f—are considered.
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and double-� densities (Fig. 6) show a moderate dependence
on the model.

A definition of the average � density from the �-density
profile is required to properly define the parameter x�(A).
Figure 6 clearly shows that the �-density profile does not
have a flat behavior at the center of a small hypernuclear
system; as a consequence, the standard deviation from the
average will be quite large. Table III displays the calculated
average double-� densities and standard deviations for the
same functionals as in Fig. 6, using three different ways to
estimate the average � density,

〈ρ�〉� =
∫

d3r ρ�ρ�∫
d3r ρ�

, (41)

〈ρ�〉N =
∫

d3r ρ�ρN∫
d3r ρN

, (42)

〈ρ�〉T =
∫

d3r ρ�ρT∫
d3r ρT

, (43)

where ρT = ρN + ρ�. The standard deviation is defined as
σi =

√
〈ρ2

�〉i − 〈ρ�〉2
i , with i = �, N , or T . The comparison

between the different ways to extract the average � density in
Table III shows a 15% deviation. As anticipated, the standard
deviation is very large, almost of the order of the average
value. It is therefore difficult to properly define an average �
density in 6

��He.
A general expression for the average � density in hyper-

nuclei was given in Ref. [27], supposing that the � density
scales with the nucleon density. A general expression [27] was
therefore proposed,

ρ
general
� (A) ≈ �

ρ0

A
, (44)

where � = 1 for single-� hypernuclei and � = 2 for double-
� hypernuclei. Figure 7 shows the ratio of the microscopically
calculated average � density 〈ρ�〉T over the general expres-
sion (44). The general expression is rather well satisfied for
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the approximate relation [Eq. (44)] as a function of baryon number
for � = 1 (purple) and � = 2 (green). A fit is also shown. Three
different functionals—from left to right DF-NSC89, DF-NSC97a,
and DF-NSC97f—are considered.

large A, but a systematic deviation is observed for small A.
The fit of the deviation is also shown in Fig. 7 and we obtain

〈ρ�〉T ≈ ρ
general
� (A)[0.957 − 2.54A−1]. (45)

This shows that Eq. (44) of Ref. [27] is not valid for A � 50.
It should be noted that we have used the expression 〈ρ�〉T [see
Eq. (43)] as a reference to estimate the average � density.
Similar results are obtained with 〈ρ�〉N for large nuclei, but
the definition 〈ρ�〉� gives a systematic increase by a factor of
about 2 compared to the two other definitions in large nuclei.

B. Empirical determination of the term ε̃��

The relation between the �B��(A) parameters and x�(A)
is given by Eq. (17) for a given � hypernucleus A. However,
while the bond energy can be determined from experimental
mass measurements, the average � density has never been
measured. We have seen in the previous section that the average
� density depends on the functional and that the standard
deviation in 6

��He, the nucleus for which the best measurement
of the bond energy exists [52,53], is almost comparable with
the average � density. Two different methods are used to set
the value of x�.

EmpA: The value of x�(6
��He) is fixed to an average value

(=1/6) in 6
��He, independently of the functional.

EmpB: The value of x� is optimized to obtain a fixed bond
energy (≈1 MeV, consistent with Refs. [52,53] or
≈5 MeV, as suggested in Ref. [51]) in He for each
functional.

In prescription EmpA, the relation between the bond energy
and the functional is based on the local density approximation
[see Eq. (17) and Appendix A for more details]. It is therefore
interesting to calculate the bond energy which is obtained
from the microscopic HF calculations to estimate the accuracy
of the local density approximation. Doing so for DF-NSC89,
DF-NSC97a, and DF-NSC97f, and varying the parameter x
from 1/2 to 4, the difference between the bound energy set
to determine the parameters and the one calculated from HF
calculation in 6

��He is less than 20%. A larger difference is
found between the parameter x� = 1/6 and the average �
density in 6

��He. We conclude that the the prescription EmpA,
based on the local density approximation, cannot provide
accurate parameters. This is related the analysis of the �
density profile in 6

��He, which is not flat enough to allow
for the local density approximation (see Table III).

TABLE III. Calculations of average � densities in 6
��He (in fm−3)

for the functionals DF-NSC89, DF-NSC97a, and DF-NSC97f.

DF-NSC89 DF-NSC97a DF-NSC97f

102〈ρ�〉� 2.25 3.69 2.31
102〈ρ�〉N 2.64 3.48 2.65
102〈ρ�〉T 2.51 3.55 2.53

102σ� 1.97 2.89 1.85
102σN 1.85 2.74 1.76
102σT 1.90 2.79 1.80
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In the present approach, given by the prescription EmpB,
the value of x� is not fixed a priori but it is varied and correlated
with the bond energy determined from the HF calculation.
In such a way, the parameter x� is treated as a variational
parameter making it possible to fit the bond energy in He. The
correlation between the parameter x� and the bond energy
�B��(A = 6)HF is shown in Fig. 8 for the functional DF-
NSC89 with x = 1/2 and DF-NSC89 with x = 4. The results
for the functionals DF-NSC89, DF-NSC97a, and DF-NSC97f
using this empirical prescription (called EmpB hereafter) are
given in Table IV, obtained from the adjustment to the bond
energy. Because a large arbitrariness is associated with the
�� functional, the simplest polynomial form that allows for
the needed repulsion at high density, and corresponds to a
bond energy of 1 MeV in 6He and neighboring hypernuclei,
is chosen. We therefore use the functionals of Table IV
for the calculations of this work. Allowing for this large
variation of the x parameter, the largely unknown behavior
at supersaturation is therefore decoupled from the behavior at
the very low densities implied for the hypernuclei.
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� to be 20%. In the left panel, we have fixed x = 1/2, while in the
right, x = 4.

Finally, Fig. 9 compares the potentials v
(�),unif
� obtained

from the functionals DF-NSC89, DF-NSC97a, and DF-
NSC97f associated with the empirical prescriptions EmpB1
and EmpB2, where the bond energy is fixed to 1 MeV. Around
saturation density, the different models shown in Fig. 9 predict
negative values ranging from −1 to −2 MeV. At densities
higher than normal nuclear saturation density, the prescription
EmpB1 makes the potential v

(�),unif
� much stiffer than the

prescription EmpB2. It is also interesting to compare the
empirical models shown in Fig. 9 with the initial ones dis-
played in Fig. 2: The empirical prescription EmpB1 produces
the stiffest potential, while EmpB2 the softest. Our empirical
prescription increases the exploratory domain of variation for
the �� potential, as well as includes the initial potential.

C. Calculations in � hypernuclei

In the following, we consider the three functionals—
DF-NSC89, DF-NSC97a, and DF-NSC97f—corrected with

TABLE IV. Prescription EmpB. We present the adjustment of the parameter x�(4) to the bond energy (≈1 or 5 MeV in 4He), the values of
the parameters α̃B

7 and α̃B
8 , and the ratio of the � density to the saturation density in He.

Potential �N DF-NSC89 DF-NSC89 DF-NSC97a DF-NSC97a DF-NSC97f DF-NSC97f
Potential �� EmpB1 EmpB2 EmpB1 EmpB2 EmpB1 EmpB2
x 1/2 4 1/2 4 1/2 4

�B��(A = 6) = 5 MeV
α̃7 150 80.82 150 70.64 160.48 100.33
α̃8 1250 84.19 1250 73.59 1337 104.51
�B��(6)HF 5.05 4.86 5.17 5.03 4.84 5.00
x� 0.125 0.2 0.125 0.23 0.115 0.16

�B��(A = 6) = 1 MeV
α̃7 36.05 25.53 39.46 22.85 49.24 35.25
α̃8 300.48 26.60 328.81 23.81 410.32 36.72
�B��(6)HF 0.97 1.1 0.95 1.04 0.98 1.05
x� 0.1 0.125 0.09 0.14 0.07 0.09
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the empirical prescriptions EmpB1 and EmpB2 associated
with a bond energy of 1 MeV. We therefore consider six
N� + �� functionals, corresponding to Table IV, together
with SLy5 [39] for the NN functional. For each N� functional
(DF-NSC89, DF-NSC97a, and DF-NSC97f), the first one
(e.g., DF-NSC89-EmpB1) corresponds to the lowest hyperon
density in nuclear matter (x = 1/2), whereas the second one
(e.g., DF-NSC89-EmpB2) corresponds to the largest hyperon
density (x = 4).

It should be noted that the present work is focused on
the uncertainty generated by the � related functionals on the
number of bound systems. The uncertainties generated by the
NN functional itself have already been studied on the nuclear
chart and is typically of 7% on the number of bound nuclei [32].

In the present work, the �-hypernuclear charts are calcu-
lated for even-even-even � hypernuclei. Because spherical
symmetry is imposed, only magic � number � hypernuclei
are considered. It should be noted that a fully microscopic
deformed approach such as Ref. [8] is the most accurate one
to predict driplines. However, such a task is numerically very
demanding, and it is beyond the scope of the present paper.

As mentioned above, the spin-orbit interaction is known
to be weak in the � channel [38], a factor 100 lower than in
the nucleonic sector [54], according to experimental data. The
� magic numbers are therefore expected to be close to the
harmonic oscillator ones: 2, 8, 20, 40, and 70. Calculations are
performed for �-hypernuclear charts corresponding to these
specific numbers of �.

IV. THE � HYPERDRIPLINES

The � hyperdripline has been studied in Ref. [26] with
a similar HF approach, showing that the maximum number
of bound � in a hypernucleus is about 1/3 of the number
of nucleons. We aim here to provide a more general study
of hyperdriplines, namely also showing the evolution of the
proton and neutron driplines with the number of hyperons.
It is important to stress that driplines associated with a �
fraction ρ�/ρN ≈ 0.17 have to be considered as a lower
bound, because even more strangeness would be compatible
with bound systems if �, which are neglected in the present
approach, were accounted for.

Figure 10 displays the microscopically calculated �-
hypernuclear charts for � = 0, 2, 8, 20, 40, and 70 using
the DF-NSC89 + EmpB1 functional. Adding �’s to a nucleus
increases the binding energy for � < 40, but conversely
decreases it for � = 40 and 70. This is attributable to the
balance between the attractive �N and �� functionals and
the progressive energy filling of the � states in the mean �
potential. Figure 10 also shows that with a large number of
�’s, the corresponding hypernuclear chart is shifted towards
larger N,Z values. This effect is mainly attributable to the �N
functional and is related to the maximum fraction of 1/3 of
hyperons with respect to nucleons, as mentioned above. For
instance, the exotic 190Th core becomes bound in the presence
of 70 �. A similar stabilization of exotic nuclear core has been
predicted in Ref. [18].

To get a more accurate estimation of the dripline, Fig. 11
displays the dripline neutron numbers for each Z value in the
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FIG. 10. (Color online) �-hypernuclear charts for magic � num-
bers calculated with the DF-NSC89 + EmpB1 functional.

case of � = 20 and for the six (�� + �N ) functionals that
we consider. The dripline is here defined when the chemical
potential becomes positive. The results are rather similar
among the various functionals. This shows that, despite the
very large differences among these functionals, in both the
N� and the �� channels, the error bars are not so large for
the dripline determination, contrary to what could be expected.
This may be attributable to the narrower density range
corresponding to finite hypernuclei compared to hypernuclear
matter, because the six functionals provide similar potentials
for subsaturation densities.

The number of bound even-even-even � hypernuclei found
for � � 70 and Z � 120 are given in Table V. The dispersion
owing to the uncertainty on the �-related functional is rather
small: The average total number of even-even-even hypernu-
clei for � = 0, 2, 8, 20, 40, and 70 is 9770 ± 429. Interpolating
the number of even-even-even hypernuclei on the whole
hypernuclear chart, provides 59 538 ± 4020 hypernuclei with
a larger relative systematic uncertainties, which can be inferred
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FIG. 11. Minimal (upper line) and maximal (lower line) neutron
number value for hypernuclei with � = 20 using the six functionals
described in Table IV.
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TABLE V. Number of bound even-even-even � hypernuclei for � < 70 and Z < 120.

DF-NSC89 DF-NSC89 DF-NSC97a DF-NSC97a DF-NSC97f DF-NSC97a
No. of nuclei + EmpB1 + EmpB2 + EmpB1 + EmpB2 + EmpB1 + EmpB2

� = 0 1578 1578 1573 1573 1578 1578
� = 2 1628 1640 1617 1619 1634 1621
� = 8 1647 1644 1692 1680 1750 1749
� = 20 1650 1681 1696 1724 1675 1683
� = 40 1713 1736 1961 1972 1722 1716
� = 70 1162 1237 1746 1886 1127 1152
Total 9378 9516 10 285 10 454 9486 9499
Total interpolated 56 140 57 287 64 459 65 587 56 646 56 809

from the interpolation procedure. The interpolation is linearly
performed between the calculated magic � hypercharts.

We stress that this interpolation is only done with the
purpose of estimating of the total number of bound systems.
To have a detailed description of the nonmagic hypernuclear
chart, taking into account deformations would be essential [8].

The corresponding uncertainty is calculated from the
dispersion of the total number of even-even-even hypernuclei
obtained with the six (�� + �N ) functionals. It should
also be noted that magic nuclei are specific nuclei in the
hypernuclear channel and therefore the interpolation proce-
dure is not optimal. Considering the uncertainty on the bond
energy (between 1 and 5 MeV, as explained in the previous
section), the number of estimated even-even-even nuclei is
61 460 ± 4300. The total number of hypernuclei, considering
the odd ones is therefore 491 680 ± 34 400. If the uncertainty
of the NN functional [32] is included (here in a decorrelated
way), the total number of hypernuclei with � � 70 and
Z � 120 is 491 680 ± 59 000.

The relative uncertainty is therefore of about 4% on the
magic �-hypernuclear charts. It is determined using the mean
value and the corresponding standard deviation considering
the six (�N + ��) functionals. It should be noted that
the DF-NSC97a functional is more attractive than the other
functionals, which is the main contribution to the uncertainties
on the number of bound hypernuclei. If the bond energy
requirement is changed from 1 to 5 MeV, the variation among
the six newly derived functionals is about 5%. All in all, it
is safe to consider an upper limit of 7% uncertainty owing to
the �� and the �N functionals on the magic � hypernuclear
charts. In the case of interpolated values, the uncertainty is
of about 7% considering the six (�N + ��) functionals,
plus 5% from changing the bond energy requirement from
1 to 5 MeV. These values should be compared to the relative
uncertainty of about 7% when the NN Skyrme functional is
changed [32] on the nuclear chart. It shows that the uncertainty
from the �-related functionals is not significantly larger than
the one from the NN functional. This is attributable to the
focused range of densities (i.e., below the saturation one)
relevant for hypernuclei, as mentioned above.

Coming back to the sensitivity of the hyperdriplines to the
� + � → N + � decay channel, we mention that within the
generalized liquid-drop model proposed by Samanta [24] and
straightforward to use it comes out that the n-rich frontier is
almost unaffected by considering �’s in addition to �s while

the neutron-poor frontier is shifted to lower N values. Quite
remarkable, according to Ref. [24] along the n-poor dripline
strangeness consists almost entirely out of �−, while along
the n-rich dripline strangeness is to a large extent made of
�s. The broadening of the hypernuclear chart is proportional
with the strangeness fraction. The same qualitative behavior is
expected to manifest also in the case of the present model.

V. �-HYPERNUCLEAR STRUCTURE

A. Binding energy: Fusion and fission of � hypernuclei

It may be relevant to study how the presence of hyperons
impacts the most bound hypernuclei per baryon, which is
known to be in the Fe-Ni region in the case of nuclei.

Figure 12 displays the evolution of the largest B/A value as
a function of the number of hyperons in hypernuclei calculated
with four (�N + ��) functionals. A remarkable agreement
between the four functionals considered is observed, which
may suggests that the theoretical uncertainty on the problem of
hypernuclear binding is relatively under control, at least in the
low-density region corresponding to nuclei. It would be very
interesting to know if this agreement is kept using relativistic
functionals as in Ref. [29]. In the case of DF-NSC89 + EmpB1
and for � = 2 or 8, the optimal Z value is not much changed
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FIG. 12. � hypernuclei with maximum binding energy
per baryon as a function of � for the DF-NSC89 +
EmpB1 (a), DF-NSC89 + EmpB2 (b), DF-NSC97a + EmpB1 (c),
DF-NSC97f + EmpB1 (d) functionals.
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FIG. 13. The two protons gap in the bound nickel isotopes for
� = 0 and � = 40, defined as δ2p ≡ S2p(A,Z) − S2p(A + 2,Z + 2),
calculated with the DF-NSC89 + EmpB1 functional.

compared to the nickel-iron area. For a number of hyperons
from 20 and larger the most bound hypernucleus is obtained
for larger Z, typically for Zr, Ce, and Pb. The results are
qualitatively similar with the other functionals, except in the
case of DF-NSC97a + EmpB1 and DF-NSC97f + EmpB1,
for 2� hypernuclei: The addition of only 2� makes Si and,
respectively, Ti the most bound nucleus in terms of binding
energy per baryon. This result shows the non-negligible impact
of hyperons on the binding energy of the system.

B. Magicity

Several signals of the evolution of the magic gaps along the
nuclear chart have been obtained these past decades [55]. It
may therefore be relevant to extend prediction of magicity to
the hypernuclear chart. The two protons or two neutrons gap
are known to be a relevant quantity to provide a first insight
on magicity features in nuclei.

It is known that shell effects can vanish in the case of very
neutron-rich nuclei [56,57] because of the smoothness of the
neutron skin triggering a weakening of the spin-orbit effect and
therefore its corresponding magic numbers. This is the case
for hypernuclei with a low number of �. However, in the case
of � = 40, Fig. 13 shows a restoration of the Z = 28 magicity
for the very neutron-rich hypernickels with 70 < N < 80:
The spin-orbit weakening of the Z = 28 magic number for
very neutron-rich hypernuclei is reduced by the presence of
hyperons. A similar effect is observed for � = 70 and the
N = 186 magic number: It is restored for 82 < Z < 98. The
present results were obtained with DF-NSC89 + EmpB1 and
similar results are obtained with the other functionals. A
weakening of the N = 28 shell closure is found for � < 8, in
agreement with the previous results. Also a Z = 40 weakening
is observed for these hypernuclei.

Figure 14 displays the neutron, proton, and hyperon den-
sities for the triply magic hypernucleus 208+�Pb with � = 2,
8, 20, 40, and 70. The proton and neutron densities are almost
not impacted by the hyperon addition, showing a relative
independence of the hyperons with respect to the nucleonic
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FIG. 14. (Color online) Baryonic densities for the triply magic
208+�Pb hypernucleus with � = 2, 8, 20, 40, 70.

core. The results are in agreement with Ref. [26], where the
Skyrme parametrization SIII was used and the �� functional
neglected. Qualitative agreement, that is stability of radial
nucleonic mass distribution and nonmonotonic evolution of
strangeness radial distributions upon increasing the number of
�’s, is also obtained with the pioneering work of Ref. [14],
where double and triple magic O and Ca hypernuclei have
been addressed within a relativistic mean-field (RMF) model.
This validates the present approach and more globally the
microscopic prediction of hypernuclei properties.

C. Bubbles and halos

Bubble and halo effects have recently been studied in �
hypernuclei [29]. Hyperons are more diffuse in a nucleus
than nucleons. This could be attributable to the weaker ��
attraction compared to the NN one, generating a hyperon
saturation density about 1/3 smaller than the nucleonic one.
This may also be attributable to the �� functional, which is
much more intense in Ref. [29] than the one used in the present
work. It emphasizes the importance of taking into account the
bond energy to constrain the �� functional, as depicted in
Secs. II and III.

It is well known that the addition of a single-� hyperon
shrinks the nuclear core [58], both from predictions and from
measurements. It is therefore relevant to study the effect on the
neutron and proton densities of a large number of hyperons.
We find no large effect of the increase of the � number on
the proton nor on the neutron density in 16O. In the case
of 104+40�Cr, the �’s act like a glue between protons and
neutrons and even drive the proton to larger radii, as shown by
Fig. 15. A similar effect is observed on the neutron density.
This is attributable to the fact that hyperons attract nucleons
at larger radii. It should also be noted that the halo effect in
104+40�Cr is rather small compared to predictions using RMF
approaches [29].

In the case of bubbles [29,59,60], there is no strong impact
of the increase of number of hyperons on the depletion.
Figure 16 displays the proton, neutron, and hyperon densities
in 34Si with no hyperons and the addition of two and eight
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FIG. 15. (Color online) Baryon densities for the magic 144Cr40�

hypernucleus (solid lines). The neutron and proton densities for the
104Cr nucleus are shown as dashed lines.

hyperons. As described above, the proton and neutron densities
are almost not impacted by the addition of hyperons and
therefore the predicted proton depletion in 34Si remains.
This small interdependence is at variance with relativistic
calculations obtained with the RMF approach [29].

In summary, the present results show that the effect of �
hyperons on the nucleon core is much weaker than in the RMF
case. This may be attributable to the different (N� + ��)
functionals that are used in the two approaches, as well as to
the Fock term, which is not considered in the RMF case [37].
It should be noted that the present (N� + ��) functionals are
constrained with bond energy requirements.

VI. CONCLUSIONS

In this work, we have investigated the relations between
�-hyperonic data (at low � density), and high-density prop-
erties. For that we have proceeded in two steps. First we have
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FIG. 16. (Color online) Baryon densities for 34+�Si hypernu-
cleus with � = 2 (dot-dashed lines for neutron and proton densities)
and � = 8 (solid lines). The neutron and proton densities for the 34Si
nucleus are shown as dashed lines.

discussed the properties of the functionals, based on BHF
data, and proposed an empirical prescription for the �� term.
Then we have explored the hypernuclear chart allowing the
functional to vary inside our domain of uncertainty.

In the first step, we found that the low-density part of
the functional is well determined by the value of the bond
energy, while the high-density part is determined by the unique
free parameter of the model, which controls the density at
which the �� term changes its sign. As such, we show that
the bond energy controls the low-density part of the EoS
solely. This means that hypernuclear data cannot be used to
determine the high-density behavior of hyperonic matter, and
other constraints from neutron star physics or heavy-ion data
are needed in that region. This general conclusion is certainly
independent of our model and shall be found also in other
approaches.

In the second step, the �-hypernuclear chart for even-even-
even hypernuclei with Z � 120 and � = 2, 8, 20, 40, and
70 has been calculated using the Hartree-Fock method with
Skyrme NN functional and designed N� and �� functionals.
Six (N� + ��) functionals were used, optimized such as
to reproduce the present experimental constraint of a bond
energy of 1 MeV. The position of the � hyperdriplines is
determined with a 7% accuracy, with comparable contribution
from the uncertainty on the NN functionals and on the �
related functionals. The number of such bound even-even-
even � hypernuclei is estimated to 9770 ± 429, leading to an
estimation of the total number of � hypernuclei with � < 70
and Z < 120 of 491 680 ± 59 000.

Significant deviations from iron-nickel elements can be
found for � hypernuclei with the largest binding energy per
baryon, especially for � � 20. The spin-orbit weakening of
the neutron magicity close to the neutron dripline is quenched
by the presence of hyperons. The nucleonic-core profile is
not much affected by the presence of hyperons, allowing for
the persistence of the proton bubble in 34Si with additional
hyperons.

The present results shall benefit from the more and more
accurate design of the �-based functionals. The measurements
of � and multi-� hypernuclei, �-density profiles, as well as
�-� and �-� interactions, would greatly help to provide such
critical information.
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APPENDIX A: RELATION BETWEEN THE BOND
ENERGY AND THE FUNCTIONAL

For a nucleus hereafter called (A − 1), including one � and
A − 2 nucleons, its total energy can be approximatively given
by

E
(A−1
�

Z
) ≈ E(A−2Z) + e�(A − 1), (A1)
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where e�(A − 1) is the single-particle energy of the � state
in the A−1

� Z hypernucleus, taking into account only the N�
interaction. For the double-� A

��Z hypernucleus, we have also

E
(A

��
Z

) ≈ E(A−2Z) + 2e�(A) + U
(�)
� [ρ�(A)], (A2)

where U
(�)
� [ρ�(A)] is the � potential term induced by the

presence of � particles. In the present functional approach,
we remind the reader that the momentum dependence of
the �� interaction is neglected and that U

(�)
� is momentum

independent. Using the local density approximation, it is a
function of the average � density in the A

��Z hypernucleus,
ρ�(A). From the BHF framework, it can be shown that [27]

ε�� = 1
2ρ�U

(�)
� . (A3)

Inserting Eqs. (A1) and (A2) into Eq. (16), the bond energy
reads

�B��(A) ≈ 2e�(A − 1) − 2e�(A) − U
(�)
� [ρ�(A)]. (A4)

It should be noted that, to obtain Eq. (A4), we have
assumed the independent particle approximation. Because the
momentum dependence of U

(�)
� is neglected, the �-effective

mass is the same in double-� and single-� hypernuclei and
depend only on ρN as in Eq. (34). The difference e�(A −
1) − e�(A), which is mostly induced by the rearrangement
term in the mean field, is calculated to be small. We therefore
approximate e�(A − 1) ≈ e�(A) to obtain

�B��(A) ≈ −U
(�)
� [ρ�(A)] = −2

ε��[ρ�(A)]

ρ�(A)
, (A5)

where Eq. (A3) has been used.

APPENDIX B: STRANGENESS ANALOG RESONANCES

Strangeness analog resonances (SARs) are similar to
isobaric analog states, with the transformation of a nucleon
into an hyperon instead of a transformation of, e.g., a neutron
into a proton. In Ref. [61], Kerman and Lipkin studied the
SAR states between nuclei and excited states of single-hyperon
hypernuclei. It is interesting to generalize this approach to
multi-� systems.

Kerman and Lipkin assumed that the energy difference (the
degeneracy raising) between a nucleus and the corresponding
hypernucleus state where a neutron is replaced by an hyperon
is attributable to (i) the mass difference between the � and the
neutron and (ii) the difference between the nucleonic and the

hyperonic potentials [61],

�E(SAR) ≡ m
(A

X∗
�

) − m(AX) = (V0� − V0n) + (m� − mn),

(B1)

where V0� and V0n are the depth of the hyperon and nucleons
potentials, respectively, and � = 1 here.

This corresponds to an excitation energy in the hypernu-
cleus of

E∗ ≡ m
(A

X∗
�

) − m
(A

X�

)= −Sn(AX) + (V0� − V0n) + B�,

(B2)

where B� is the binding energy of the hyperon in the single-�
hypernucleus and Sn(AX) the one neutron separation energy
of the AX nucleus.

The questions arises as to whether the above relation can
be generalized to multi-� nuclei. A straightforward derivation
makes it possible to derive the mass (namely, the excited state)
of the hypernucleus having � hyperons from the mass of the
initial nucleus,

�E(SAR) = �[(V0� − V0n) + (m� − mn)], (B3)

where � � 1. It should be noted that the �� interaction is
neglected here, as well as rearrangement terms. This could
result in a significant different form of Eq. (B3). However, as
shown below, the energy position of SAR states will mainly
be impacted by the nucleon vs � mass difference.

Equation (B3) shows that the SAR states in multihyperons
are expected to display a rather harmonic spectrum, because
the last term in brackets of the right-hand side remains rather
constant: There is about 30 MeV difference between the
neutron and the hyperon mean potentials [26] and 170-MeV
difference between the neutron and the hyperon masses:

m
(A

X∗
�

) � m(AX) + �.200 MeV. (B4)

It should be noted that this 200-MeV constant value
originates from the saturation properties in hypernuclei, which,
in turn, leads to a constant difference between the nucleon
and the hyperon potentials. Moreover, in the corresponding
hypernuclei, these states would correspond to excited states
located around �.30 MeV, which becomes unbound already
for small value of �. In summary, the SAR states have
been generalized to multihyperon hypernuclei. They shall not
correspond to bound states for most of them, but to resonances
embedded in the continuum.
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