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Consistent description of the cluster-decay phenomenon in transactinide nuclei
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Systematic investigation of the known even-even transactinide cluster emitters has been carried out by
considering the cluster as a point particle and using the exact quantum mechanical treatment of the decay process.
It is shown that the cluster decay phenomenon can be described reasonably well using a simple Woods-Saxon
mean field. Sensitivity of the half-lives on various aspects of the mean field has been investigated in detail.
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I. INTRODUCTION

The nuclear many-body problem is one of the most
complex and intriguing problems in nature. The availability of
sophisticated and powerful detection techniques has led to the
discovery of a number of unusual phenomena, including halo
nuclei and the existence of super- and hyperdeformed bands.
It was theoretically predicted at the end of the 1970s that
transactinide nuclei would decay spontaneously by emitting
heavy clusters [1]. This was later confirmed experimentally [2]
by measuring the spontaneous emission of 14C from the 223Ra
mother nucleus. In the following years, several experimental
investigations (see, e.g., [3–5]) reported more such decays.
The lightest known cluster emitting nucleus is 114Ba, and the
heaviest is 242Cm [6], which decays by emission of 34Si. These
decays are difficult to detect, since their typical branching
ratios are very small as compared to α emission, thereby
making the corresponding half-lives very large (see, e.g., [6]).
It is therefore important to have a reliable and simple method
to perform an estimation of the expected cluster decay rate.

Theoretically, the cluster decay mode is quite difficult
to describe consistently due to the apparent complexity of
i) cluster-daughter interaction and ii) sensitive dependence
of the half-lives on structures of the cluster and daughter
involved. A number of investigations of the cluster decay
phenomenon have been reported in the literature. These
investigations principally belong to a few wide classes, namely,
i) determination of half-lives using a universal formula [7,8],
ii) superasymmetric fission approach [9,10], iii) Coulomb and
proximity potential model [11], iv) cluster models [12], and v)
semiclassical approaches based on the WKB approximation
(see, e.g., [13]). It has been found that these different
approaches do describe the decay half-lives reasonably well.

A full microscopic quantum mechanical treatment of
cluster decay is extremely difficult. Moreover, rather rough
approximations have to be made in order to be able to perform
the calculations [14].

In the present work, we propose to describe the cluster as a
point particle moving in a Gamow state under the interaction
potential (nuclear plus Coulomb). This approach was pursued
in the past and is still been followed [15]. The new feature of
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the formalism presented here is that it gives the exact cluster
decay width from a given state of the potential well [16].

Relevant details of the theoretical framework are presented
and discussed in Sec. II. The calculational aspects are detailed
in Sec. III, along with the results. Summary and conclusions
are contained in Sec. IV.

II. FORMALISM

As in, e.g., Ref. [12], we will treat the cluster as a point
particle with well-defined attributes like mass and total angular
momentum. The point particle is assumed to move in an
external potential, which is determined from the interaction
between the cluster and the daughter nucleus. We will use as
mean field a Woods-Saxon potential of the standard form.

In principle, one needs to take the finite size of cluster into
account. This leads to further complications, since one needs
to build a fully antisymmetric wave function for the cluster.
Even if one assumes that the cluster is moving in a mean field
induced by the cluster-daughter interaction, constructing the
cluster wave function with internal structure is a very difficult
task. The model presented here is intended to be a simple
effective model, and therefore we consider the cluster to be a
point particle. The size of the external potential is considered
to be equal to roA

1/3, where A is the mass of the parent nucleus,
and ro is a parameter (see the discussion in Sec. III). This is
expected to take care of the finite size effects of the cluster
into account, at least to some extent, which is apparent from
the quality of agreement achieved between experiment and the
present calculations.

The parent nuclei and a number of clusters are known to
be deformed in their ground states, whereas all the daughter
nuclei turn out to be spherical or nearly spherical. In the
present calculations, the explicit deformation effects have
been ignored. This might change the half-lives by a factor
which can be rather large for superdeformed nuclei, but for
deformations up to β = 0.3 the influence of the deformation
amount to a factor of at most three [17]. Moreover, it has
been demonstrated that the double folded cluster-daughter
potential computed by using the L = 0 projected densities
describes the cluster decay half-lives rather well within the
framework of the WKB approximation [13], supporting the
approximation made in the present calculation.
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It has been shown by Gherghescu et al. that the emission
process is strongly influenced by the shell effects of the
participants [18,19]. We will asses whether our approach
considers shell effects effectively by its adequacy to reproduce
the experimental half-lives.

The radial wave function corresponding to the outgoing
particle in a certain state (in our case, s state) is just the
linear combination of regular (F ) and irregular (G) Coulomb
functions [16]:

rψout
00 (r) = N00[G0(r) + iF0]. (1)

Here, N is the normalisation constant. Since we shall be
considering s waves only, we suppress the subscript 00 for
the sake of brevity. In the limit as r → ∞, it is

lim
r→∞

∣
∣rψout(r)

∣
∣
2 = N 2. (2)

The normalization constant is determined by a matching
condition, where we demand that ψout(r) is equal to the internal
Gamow wave function φ(r) at some matching radius, R. That
is,

|N |2 = R2|φ(R)|2
F 2(kR) + G2(kR)

, (3)

where k is wave number of the outgoing particle. Physically,
this quantity represents the decay probability per unit length
at infinity. Therefore, it follows that the quantity v|N |2 is the
decay probability per second. Here, v is the velocity of the
outgoing particle, and is given by v = �k/μ, where μ is the
reduced mass of the cluster-daughter binary system. Hence, if
T1/2 is the decay half-life, then the decay width is [16]

� = �

T1/2
= �

2k

μ

R2|φ(R)|2
F 2(kR) + G2(kR)

. (4)

This quantity is an exact quantum mechanical expression for
the decay width. Clearly, this identification is meaningful,
provided the quantity on the right-hand side is independent
of R, as we shall see below in an example.

III. CALCULATIONAL DETAILS AND RESULTS

In the calculations to be presented below we shall evaluate
the outgoing cluster wave function by using the computer code
GAMOW [20].

As stated earlier, in the present work the mean field is
assumed to be of the usual Woods-Saxon form, with three
adjustable parameters, depth (Vo), half-density radius (R1/2 =
roA

1/3, A being the mass number of parent nucleus) and
diffusivity (a). We shall focus on even-even clusters emitted
by even even parent nuclei. In particular, we shall consider
cluster emission from 222–226Ra, 228–232Th, 230–236U, 236,238Pu,
and 242Cm. The cluster decays from these parent nuclei have
Q values ranging from 28 MeV to 96 MeV. In our model, the
cluster is assumed to be a point particle, moving in a state
with energy equal to the Q value. In the calculations, we keep
the Q value fixed, and adjust the depth of the potential to get
the desired state. Since we are looking at states induced by
heavy particles and lying very high up in the continuum, the
potential well results to be quite deep. It has been found that

FIG. 1. Variation of log10 T1/2 as a function of a for the decay
process 232U → 24Ne + 208Pb.

it is adequate to search for the depth around −200 MeV. This
initial value of the depth is used in all the calculations.

Next we discuss the diffusivity parameter, a. We focus on
only one decay process: 232U → 24Ne + 208Pb. It has been
explicitly verified that the conclusions drawn in this case are
valid for all the decay processes studied here. The diffusivity
parameter is usually assumed to be in the range 0.5 fm to
0.6 fm. Pinning down the diffusivity precisely is quite difficult.
Therefore, we first investigate the sensitivity of half-lives on a.
For this purpose, we choose ro = 1.31 fm (see the discussion
below). The calculated half-lives as function of a for the 24Ne
emission from 232U have been plotted in Fig. 1. It is seen that
variation in a from 0.46 fm to 0.62 fm leads to a change of only
1.5 orders of magnitude in the resulting half-lives, implying
that the half-lives do not depend strongly on the parameter a.
Moreover, it is worthwhile to notice that around a = 0.5 fm,
T1/2 is practically a constant.

In order to understand this behavior, we plot the sum of
nuclear and Coulomb potentials for the 24Ne-208Pb system for
different values of a in Fig. 2. The Q value for the decay
process has been indicated as horizontal line. Considering
that the half-lives depend on the width of the barrier that the
particle encounters, it is clear from the figure that the change in
diffusivity does not change the barrier width much, explaining
why the half-lives are not very sensitive to a. We therefore set
the value of a to 0.54 fm.

Next we investigate the behavior of half-lives with respect
to the parameter ro. In order to quantify this, we consider, as
before, the decay of 232U by 24Ne emission. The calculated
half-lives are plotted as a function of ro in Fig. 3. It is seen
that as ro changes from 1.25 to 1.41 fm, the half-life decreases
by nearly 10 orders of magnitude, which is indeed a dramatic
effect. The same feature has also been observed for all the
other decays considered here. The horizontal line in the graph
stands for the experimental half-life, from which it is apparent
that the ‘correct’ value of ro should be around 1.31 fm, at least
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FIG. 2. (Color online) Sum of nuclear and Coulomb potentials
for different values of a, for the decay process 232U → 24Ne +
208Pb.

for this process. The strong variation thus observed at first
seems to be counterintuitive, since it is generally believed that
such decay processes are governed by the Coulomb potential,
and ro has to do with the nuclear potential. However, this can
be understood if one studies the behavior of the total barrier
encountered by the particle for different values of ro, as shown
in Fig. 4.

With changing values of ro, the width and height of the
barrier encountered by the particle changes. Since the pene-
trability (i.e., the Coulomb functions) depends exponentially
upon the distance as well as the barrier extension, Fig. 4
reveals the dramatic changes in the half-lives. In other words,
the classical turning points for the particle in this case change
significantly. This should be compared with Fig. 2, where
one sees that the barrier is only weakly dependent (and the
turning point virtually independent) upon the diffusivity. If

FIG. 3. Variation of log10 T1/2 as a function of ro for the decay
process 232U → 24Ne + 208Pb.

FIG. 4. (Color online) Sum of nuclear and Coulomb potentials
for different values of ro, for the decay process 232U → 24Ne +
208Pb.

such analysis is carried out for all the cluster decays considered
here, it turns out that the value of ro has a dependence on the
Q value. By studying these systematically, we choose, for the
sake of simplicity, ro = 1.31 fm for Q values up to 70 MeV,
and ro = 1.35 fm for Q values above 70 MeV.

Before presenting the numerical results, one very important
test needs to be conducted. Referring to Eq. 3 again, the
quantity N that we compute, should be independent of the
matching radius chosen, so far as the matching radius is large
enough. In order to check this, we plot the ratio N 2 in Fig. 5.

The quantity N 2 exhibits variation up to a distance of ∼10
fm, beyond which it is a constant, thus validating our claim
that the normalization constant is a measure of the width. The
same observation holds good for all the other decay processes
considered here.

We now present the calculated half-lives for the different
cluster decay processes considered here, in Table I. For the
sake of completeness, we also present there the corresponding

FIG. 5. The modulus squared of the normalisation constant
[Eq. (3)] for the decay process 232U → 24Ne + 208Pb.

044312-3



A. BHAGWAT AND R. J. LIOTTA PHYSICAL REVIEW C 92, 044312 (2015)

TABLE I. The calculated and experimental values of log10 T1/2 for even-even cluster emitters. The corresponding half-lives against α decay
are also presented for completeness.

Parent Daughter Cluster Q (MeV) log10 T1/2 Qα (MeV) log10 T1/2

(Calc.) (Expt.) (Calc.) (Expt.)

222Ra 208Pb 14C 33.05 10.44 11.22 6.68 1.82 1.58
224Ra 210Pb 14C 30.54 15.17 15.86 5.79 5.83 5.50
226Ra 212Pb 14C 28.20 20.39 21.34 4.87 11.13 10.70
228Th 208Pb 20O 44.72 21.86 20.72 5.52 8.23 7.78
230Th 206Hg 24Ne 57.76 26.13 24.61 4.77 13.21 12.38
232Th 208Hg 24Ne 54.67 31.19 >29.20 4.08 18.62 17.65
232Th 206Hg 26Ne 55.91 30.76 >29.20
230U 208Pb 22Ne 61.39 21.77 19.57 5.99 7.01 6.26
232U 208Pb 24Ne 62.31 21.89 21.08 5.41 10.15 9.34
232U 204Hg 28Mg 74.32 25.42 >22.26
234U 210Pb 24Ne 58.83 27.05 25.92 4.86 13.69 12.89
234U 208Pb 26Ne 59.42 27.75 25.92
234U 206Hg 28Mg 74.11 25.53 27.54
236U 212Pb 24Ne 55.95 31.91 >25.90 4.57 15.73 14.87
236U 210Pb 26Ne 56.70 32.40 >25.90
236U 208Hg 28Mg 70.73 30.35 27.58
236U 206Hg 30Mg 72.28 29.48 27.58
236Pu 208Pb 28Mg 79.67 21.07 21.67 5.87 8.57 7.96
238Pu 210Pb 28Mg 75.91 25.95 25.70 5.59 10.06 10.44
238Pu 208Pb 30Mg 76.80 26.05 25.70
238Pu 206Hg 32Si 91.19 26.66 25.27
240Pu 206Hg 34Si 91.03 27.71 >25.52 5.26 12.06 11.32
242Cm 208Pb 34Si 96.51 24.23 23.15 6.22 7.66 7.15

α decay half-lives. In all these calculations the experimental Q
values were extracted from [21], whereas, the half-lives against
cluster decay have been adopted from [6]. The experimental α
decay half-lives have been taken from [22]. The calculation of
α-decay half-lives has been carried out exactly in the same way
as described above, with a potential of the depth of 65 MeV,
ro = 1.27 fm and a = 0.67 fm. Interestingly, the same set of
parameters reproduced all the α decay half-lives from the Sn
region to superheavies, indicating that the α particle is more
like a real point particle than the heavy clusters, as perhaps
expected.

An inspection of Table I reveals that the calculated half-lives
against cluster decays are reasonable, and are within a couple
of orders of magnitude for most of the cases. In certain cases the
experimental half-lives are not known and only lower bounds
have been set on them. Our calculated half-lives are found
to be above these lower bounds, which is quite satisfactory.
The α decay half-lives are reproduced very well, and they
are within an order of magnitude of the experimental values.
It is worthwhile to point out that the α decay half-lives here
are orders of magnitude smaller than the cluster decay half-
lives, indicating that the former is a comparatively dominant
process, at least in the cases that have been investigated here.
Considering the complexity of the cluster decay phenomenon,
and the simplicity of the present model, one may conclude that
the agreement achieved here is satisfactory.

IV. SUMMARY AND CONCLUSIONS

Systematic calculations of half-lives of even-even trans-
actinides have been carried out by evaluating the exact
decay width quantum mechanically. The mean field has been
assumed to be of the Woods-Saxon form with the standard
three parameters, i.e., the depth, the half-density radius, and
the diffusivity. It has been shown that in spite of the enormous
complexity of the cluster decay phenomenon, it is possible to
describe the decay and hence the half-lives reasonably well
using a simple mean field potential. The sensitivity of the half
lives on the half-density radii has been demonstrated and it has
been shown that this is due to the fact that the half-lives depend
on the width of the barrier that the cluster encounters, and it is
this width that depends sensitively on the half-density radius.
This can be readily understood in terms of the classical turning
points. We have further shown that the half-lives do not depend
very sensitively on the diffusivity parameter. A variation of
35% in the diffusivity parameter changes the half lives by
an order of magnitude and a half. This may be compared
to changes in the radius parameter ro. By changing ro from
1.25 fm to 1.41 fm the half-life changes by about 10 orders
of magnitude. This is because variations of the diffusivity do
not have an appreciable effect on the classical turning points.
However, it is important to stress that the calculated half-lives
are independent of the matching radius.
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