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Ground-state properties of rare-earth nuclei in the Nilsson mean-field
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The Nilsson mean-field plus extended-pairing model for deformed nuclei is applied to describe the ground-state
properties of selected rare-earth nuclei. Binding energies, even-odd mass differences, energies of the first pairing
excitation states, and moments of inertia for the ground-state band of 152–164Er, 154–166Yb, and 156–168Hf are
calculated systematically in the model employing both proton-proton and neutron-neutron pairing interactions.
The pairing interaction strengths are determined as a function of the mass number in the isotopic chains. In
comparison with the corresponding experimental data, it is shown that pairing interaction is crucial in elucidating
the properties of both the ground state and the first pairing excitation state of these rare-earth nuclei. With model
parameters determined by fitting the energies of these states, ground-state occupation probabilities of valence
nucleon pairs with angular momentum J = 0,1, . . . ,12 for even-even 156–162Yb are calculated. It is inferred that
the occupation probabilities of valence nucleon pairs with even angular momenta are much higher than those of
valence nucleon pairs with odd angular momenta. The results clearly indicate that S, D, and G valence nucleon
pairs dominate in the ground state of these nuclei.
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I. INTRODUCTION

Nuclear pairing correlations, as an important part of the
residual interactions necessary to augment any nuclear mean-
field theory, represent one of the main and longstanding pillars
of current understanding of nuclear structure [1]. For example,
the pairing interaction of the nuclear shell model plays a key
role in reproducing ground-state and low-energy spectroscopic
properties of nuclei, such as binding energies, odd-even effects,
single-particle occupancies, excitation spectra, moments of in-
ertia, etc. [2–4]. Bohr, Mottelson, Pines, and Belyaev were the
first to introduce the Bardeen-Cooper-Schrieffer (BCS) theory
for superconductivity in condensed matter [5] to descriptions
of pairing phenomena in nuclei [2,6], which provides a simple
yet clear picture that demonstrates the importance of the pair-
ing interaction in nuclei. However, as an approximate theory,
both the BCS and the more refined Hartree-Fock-Bogolyubov
(HFB) methods suffer from serious drawbacks in nuclei due to
the fact that the number of valence nucleons under the influence
of the pairing force is too few to be treated by such particle-
number nonconserved (quasiparticle) approximations. A rem-
edy in terms of particle-number projection complicates the
algorithms considerably, often without yielding a better de-
scription of higher-lying excited states that are a natural part of
the spectrum of the pairing Hamiltonian [7–9]. Alternatively,
shell model calculations provide successful descriptions but
face a combinatorial growth of model space sizes, and hence,
for heavy nuclei, truncation schemes are normally needed and
applicability is often limited by existing computer resources.
The projected shell model (PSM) provides a way to overcome
this difficulty [10]. By using the PSM scheme, it is shown
that the projected BCS vacuum for a well-deformed system is
very close to the SU (3) dynamical symmetry limit of an S-D
pair fermion system [11]. On the other hand, the tremendous
success of the interacting boson model (IBM) [12] suggests

that s and d pairs play a dominant role in the spectroscopy
of low-lying excitations [13,14]. It is shown that, by using
the exact solutions of the standard pairing model (Richardson-
Gaudin method [15]), the angular momentum distributions of
the Richardson pairs in the ground state of the deformed 174Yb
nucleus can be used to clarify the microscopic foundation of
the IBM; these distributions, however, are strikingly different
from the ones obtained in the BCS ground state [16].

More recently, the Nilsson mean-field plus extended-
pairing model has been proposed to describe deformed nuclei
[17], which includes pairing interactions among valence pairs
in different orbits up to infinite order. It has been shown
in our recent work that the extended pairing model can be
regarded as the standard pairing Hamiltonian at a first-order
approximation; namely, only the lowest energy eigenstate
described by the Racah quasispin formulism of the standard
pure pairing interaction part is taken into consideration, and
the results thus display pair structures similar to the ones
found in the low-lying states of the standard pairing model
[18]. The advantage of the model lies in the fact that it can be
solved more easily than the standard pairing model. Though
solutions of the standard pairing model can now be obtained
more easily by using the extended Heine-Stieltjes polynomial
approach [19], the extended pairing model has been proved
to be more efficient, especially when both the number of
valence nucleon pairs and the number of single-particle
orbits are large, which, therefore, is more suitable to be used
for rare-earth nuclei [20]. While so far the calculations for
rare-earth nuclei employ a frozen-pair approximation [20], a
more realistic approach for systematically understanding the
ground-state properties has yet to be developed.

In this paper, we use the Nilsson mean-field plus extended-
pairing model with both proton-proton and neutron-neutron
pairing interactions to investigate Er, Yb, and Hf isotopes
in the rare-earth region. Binding energies, even-odd mass
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differences, energies of the first pairing excitation states and
the moments of inertia of these nuclei are calculated. The
results indicate that the extended pairing model is helpful to
understand the structural properties of these deformed nuclei
in the low-energy regime. We especially focus on analyzing
the ground-state occupation probabilities of valence nucleon
pairs with various angular momentum quantum numbers
(J = 0,1, . . . ,12) for even-even nuclei. We study which
pairs—in terms of their J angular momentum—are important
in the ground state and whether S and D pairs indeed dominate
in the ground state of these nuclei, as implied in the IBM.
Moreover, we intend to provide a reasonable range of pair
interaction strength in the model by comparing our model
calculations with the corresponding experimental data.

II. THE EXTENDED PAIRING MODEL

The Nilsson mean-field plus standard-pairing Hamiltonian
for a deformed nucleus is given by

Ĥ =
p∑

j=1

εjnj − Gst

p∑
i,j=1

b
†
i bj , (1)

where p is the total number of Nilsson levels (orbits)
considered, Gst > 0 is the overall pairing strength, εj are
the single-particle energies obtained in the Nilsson model,
nj = a

†
j�j

aj�j
+ a

†
j�̄j

aj�̄j
is the fermion number operator for

the j th Nilsson level, and b
†
i = a

†
i�i

a
†
i�̄i

[bi = (b†i )† = ai�̄i
ai�i

]
are pair creation [annihilation] operators, where �i is the
quantum number of the third component of the total
angular momentum in the intrinsic frame for the ith Nilsson
single-particle state, while �̄i denotes the time reversal state.
The Hamiltonian of the extended pairing model [17] is given by

Ĥ =
p∑

j=1

εjnj − G

p∑
i,j=1

b
†
i bj − G

∞∑
μ=2

1

(μ!)2

×
∑

i1 �=i2 �=···�=i2μ

b
†
i1
b
†
i2

· · · b†iμbiμ+1biμ+2 · · · bi2μ
, (2)

where G > 0 is the overall pairing strength. Besides the
Nilsson mean field and the standard pairing interaction (1), the
Hamiltonian (2) also includes many-pair hopping terms that
allow nucleon pairs to simultaneously scatter (hop) between
and among different Nilsson levels, which is thus simply
exactly solvable. Due to the Pauli principle and the particle
number conservation, the infinite sum in Eq. (2) naturally
truncates, namely, μ � [p/2], where [x] denotes the integer
part of x. It is also clear that each term of the form b

†
i · · · b†j that

enters into the eigenstates of (2) should have different indices
i �= · · · �= j . Let |j1, . . . ,jm〉 be the pairing vacuum state that
satisfies

bi |j1, . . . ,jm〉 = 0 (3)

for 1 � i � p, where each of the m levels, j1,j2, . . . ,jm, is
occupied by a single nucleon. Following the algebraic Bethe
ansatz used, one can write a k-pair eigenstate as

|k; ζ ; j1, . . . ,jm〉
=

∑
1�i1<···<ik�p

C
(ζ )
i1i2···ik b

†
i1
b
†
i2

· · · b†ik |j1, . . . ,jm〉, (4)

where C
(ζ )
i1i2···ik are expansion coefficients that need to be

determined. It is assumed that the levels j1, j2, . . ., jm should
be excluded from the summation in Eq. (4). The expansion
coefficient C

(ζ )
i1i2···ik can be expressed very simply as

C
(ζ )
i1i2···ik = 1

1 − χ (ζ )
∑k

μ=1 εiμ

, (5)

where χ (ζ ) is a parameter that needs to be determined. In
the seniority-zero cases, for example, directly applying the
Hamiltonian (2) on the k-pair state (4) yields that for the mean-
field part of (2)

∑
j

εjnj |k; ζ ; 0〉 = 2

χ (ζ )

⎛
⎝|k; ζ ; 0〉 −

∑
1�i1<i2<···<ik�p

b
†
i1
b
†
i2

· · · b†ik |0〉
⎞
⎠, (6)

and for the rearranged extended pairing part of (2)⎛
⎝∑

i

b
†
i bi +

∞∑
μ=1

1

(μ!)2

∑
i1 �=i2 �=···�=i2μ

b
†
i1
b
†
i2

· · · b†iμbiμ+1biμ+2 · · · bi2μ

⎞
⎠|k; ζ ; 0〉

=
⎛
⎝ ∑

1�i1<i2<···<ik�p

C
(ζ )
i1i2···ik

⎞
⎠ ∑

1�i1<i2<···<ik�p

b
†
i1
b
†
i2

· · · b†ik |0〉 + (k − 1)|k; ζ ; 0〉. (7)

By combining Eqs. (6) and (7), the k-pair eigenenergies of (2) are given by

E
(ζ )
k = 2

χ (ζ )
− G(k − 1), (8)

where χ (ζ ) should satisfy

2

χ (ζ )
+

∑
1�i1<i2<···<ik�p

G(
1 − χ (ζ )

∑k
μ=1 εiμ

) = 0, (9)
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in which χ (ζ ) is the ζ th solution of (9). Similar results for
even-odd systems can also be derived by using this approach,
except that the index j of the level occupied by the single
nucleon should be excluded from the summation (4) and the
single-particle energy εj contributing to the eigenenergy from
the first term of (2) should be included in Eq. (8). Extensions
to many broken-pair cases are thus straightforward.

III. BINDING ENERGIES AND EVEN-ODD
MASS DIFFERENCES

As for any valence-shell model, the total energy of the
ground state of a nuclear system is given by

EB = E
(core)
B + EB(ν) + EB(π ), (10)

where E
(core)
B is the energy of the ground state of the core,

taken to be 132Sn in this study (reasonably approximated by
a constant and given by the experimental binding energy of
132Sn), and EB(ν) and EB(π ) are the lowest energies of the
mean field and the residual pairing interaction for valence
neutrons and protons, respectively, calculated either from
Eq. (1) in the standard pairing model or from (2) in the
extended pairing model, while the interaction between protons
and neutrons is neglected in the present study. The neutron
single-particle energies in Eqs. (1) and (2) are expressed
as εj (ν) = εj (ν) − ε0(ν) − ε(ν), and similarly for proton
single-particle energies εj (π ), where εj are the single-particle
energies derived from the Nilsson model for open shell, ε0 is
the single-particle energy of the last Nilsson level filled by
the core particles, which determines the zero-point energy in
the Nilsson model for the valence particles, and ε (>0) is the
average binding energy per particle (neutron or proton), and is
approximately taken to be a constant.

We consider a valence model space consisting of the
sixth major shell with 22 Nilsson levels (orbits) for valence
neutrons and 16 levels for valence protons. Hence, in our
calculations, the total number of Nilsson levels is p = 22
for valence neutrons. Similarly, the total number of Nilsson
levels for valence protons is p = 16. Finally, the odd-even
mass difference is given by

P (A) = EB(A + 1) + EB(A − 1) − 2EB(A), (11)

where EB(A) is the energy of the ground state of a nucleus
with mass number A.

For each isotopic chain, by fitting to the experimental values
of the binding energies, the odd-even mass differences, and the
energies of the first pairing excitation states, the neutron G(ν)
and proton G(π ) pairing interaction strengths and the average
binding energy per particle ε(ν) and ε(π ) used in the extended
pairing model are thus determined. The pairing interaction
strengths G(ν) and G(π ) fitted for these isotopes are shown
in Fig. 1. In addition, the best-fit parameter values for ε
are ε(ν) = 7.78 MeV and ε(π ) = 5.82 MeV for Er isotopes,
ε(ν) = 8.04 MeV and ε(π ) = 5.74 MeV for Yb isotopes, and
ε(ν) = 8.28 MeV and ε(π ) = 5.00 MeV for Hf isotopes.

FIG. 1. (Color online) Pairing interaction strengths G(ν) and
G(π ) (in MeV) determined for the extended pairing model for
152–164Er, 154–166Yb, and 156–168Hf.

To estimate the deviation between the predicted and
experimental binding energies in a chain of isotopes, we use a
root-mean-square deviation measure

σ =
[∑

μ

(
Eth

B;μ − E
exp
B;μ

)2

/
N

]1/2

, (12)

where Eth
B;μ is the theoretical value of the ground-state energy,

E
exp
B;μ is the corresponding experimental value [21], N is the

total number of nuclei in a chain fitted and the summation
runs over all nuclei fitted in a chain. Namely, for the energy
deviation, we obtain σ = 0.704 MeV for the Er isotopes, σ =
0.819 MeV for the Yb isotopes, and σ = 0.442 MeV for the
Hf isotopes.

The even-odd mass differences P (A) of the three chains of
isotopes are calculated according to Eq. (11). These quantities
are more sensitive to pairing correlations as compared to
binding energies. As shown in Fig. 2, the even-odd mass
differences of the three chains of isotopes are very close to
the corresponding experimental data.

As shown in Fig. 1, the proton pairing interaction strength
G(π ) exhibits almost no change with mass number A because,
for nuclei in an isotopic chain, the number of valence protons
remains the same and also the proton-neutron interaction is
neglected. In contrast, the neutron pairing interaction strength
G(ν) changes noticeably with increasing number of valence
neutrons due to the fact that the pairing strength G in the
extended pairing model is strongly dependent on the number
of valence nucleon pairs [17,18]. According to [18], if only the
first few eigenstates are considered, the pair structure of these
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FIG. 2. (Color online) Theoretical and experimental even-odd
mass differences (in MeV) for 153–163Er, 155–165Yb, and 157–167Hf.
Experimental values are denoted as “Exp .”, and theoretical values
calculated in the extended pairing model are denoted as “Th.”.

states in the extended pairing model and the standard pairing
model are similar, especially in the ground state. Moreover,
when the number of pairs k or pairing interaction strength G is
small, the difference between the two models is negligible. The
parameter G in the extended pairing Hamiltonian (2) and the
parameter Gst in the standard pairing Hamiltonian (1) satisfy
the following relation [18]:

G = (p − k)!k!

p!
(p − k + 1)kGst . (13)

The value of G in the extended pairing Hamiltonian (1) fitted
for each nucleus shown in Fig. 1 and the corresponding value of
Gst in the standard pairing Hamiltonian (2) obtained according
to Eq. (13) is shown in Table I. Though the value of G
shown in Fig. 1 seems small in the extended pairing model,
the corresponding values of Gst in the standard pairing are
reasonable as shown in Table I.

In addition, since the quantum number of the angular
momentum projection along the third axis in the intrinsic frame
is considered to be a conserved quantity, the excited states
determined by the model can be regarded approximately as
pairing excitation states with the same spin and parity as those
of the ground state of a nucleus. The first pairing excitation
states as calculated in the model are provided in Table II and are
compared to experiment. As shown in Table II, there are some
deviations between the theoretical results and the experimental
data. One possible cause for such deviation is due to the fact
that the proton-neutron quadrupole-quadrupole interaction is
neglected in the model.

TABLE I. The pairing interaction strength G(ν) [G(π )] (in MeV)
in the extended pairing Hamiltonian (2) and the parameter Gst (ν)
[Gst (π )] (in MeV) in the standard pairing Hamiltonian (1) for
152–164Er, 154–166Yb, and 156–168Hf.

Nucleus A G(ν) Gst (ν) G(π ) Gst (π )

152–164Er 152 0.3850 0.3850 0.0099 1.5730
153 0.4600 0.4600 0.0097 1.5444
154 0.0600 0.3300 0.0095 1.5145
155 0.0730 0.4015 0.0093 1.4726
156 0.0124 0.3185 0.0090 1.4348
157 0.0122 0.3131 0.0088 1.3905
158 0.0032 0.3119 0.0085 1.3467
159 0.0037 0.3561 0.0082 1.3083
160 0.0011 0.3217 0.0080 1.2679
161 0.0014 0.4096 0.0077 1.2282
162 0.0005 0.3330 0.0076 1.2150
163 0.0003 0.2414 0.0072 1.1402
164 0.0002 0.3502 0.0069 1.0963

154–166Yb 154 0.3900 0.3900 0.0149 1.7057
155 0.4010 0.4010 0.0145 1.6603
156 0.0590 0.3245 0.0141 1.6176
157 0.0620 0.3410 0.0138 1.5747
158 0.0127 0.3255 0.0133 1.5222
159 0.0135 0.3465 0.0130 1.4821
160 0.0031 0.3013 0.0128 1.4643
161 0.0037 0.3561 0.0121 1.3831
162 0.0010 0.3043 0.0117 1.3396
163 0.0011 0.3219 0.0113 1.2944
164 0.0004 0.3167 0.0109 1.2492
165 0.0004 0.2926 0.0105 1.2035
166 0.0002 0.3350 0.0101 1.1573

156–168Hf 156 0.1850 0.1850 0.0314 2.0755
157 0.2700 0.2700 0.0304 2.0119
158 0.0520 0.2860 0.0301 1.9923
159 0.0614 0.3377 0.0288 1.9041
160 0.0117 0.3000 0.0279 1.8481
161 0.0127 0.3260 0.0271 1.7941
162 0.0030 0.2888 0.0264 1.7479
163 0.0034 0.3292 0.0256 1.6931
164 0.0010 0.2938 0.0259 1.7132
165 0.0011 0.3219 0.0247 1.6347
166 0.0004 0.3007 0.0231 1.5268
167 0.0004 0.2926 0.0223 1.4784
168 0.0001 0.1523 0.0215 1.4196

IV. MOMENT OF INERTIA

The moments of inertia of the even-even nuclei in the three
isotopic chains considered here and the even-odd differences
of the moments of inertia of 157–164Yb in the framework of
the extended pairing model are also calculated. According to
the Inglis cranking formula [22], the moment of inertia of a
nucleus is calculated by

� = 2�
2
∑

n

|〈n|Jx ′ |0〉|2
En − E0

, (14)

where Jx ′ is the total angular momentum along the intrinsic x ′
axis, |n〉 is the nth excited state, and En is the corresponding
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TABLE II. The first pairing excitation energy (in MeV) of
156–164Er, 160–165Yb, and 166–168Hf, where the values in the Eth and
Eexp columns are the calculated pairing excitation energies and
the corresponding experimental values taken from [23], respectively
(energies not experimentally available are marked by “–”).

Nucleus A Spin and Parity Eexp Eth

156–164Er 156 0+
2 0.930 1.360

157 3
2

−
2

0.110 0.444

158 0+
2 0.806 0.886

159 3
2

−
2

– 0.231

160 0+
2 0.894 0.476

161 3
2

−
2

0.725 0.375

162 0+
2 1.087 1.264

163 5
2

−
2

0.164 0.359

164 0+
2 1.246 1.870

160–165Yb 160 0+
2 1.086 0.791

161 3
2

−
2

0.211 0.386

162 0+
2 0.606 0.487

163 3
2

−
2

0.871 0.559

164 0+
2 0.976 0.325

165 5
2

−
2

0.174 0.190
166–168Hf 166 02

+ 0.695 0.387

167 5
2

−
2

– 0.106

168 0+
2 0.942 1.298

excitation energy. In principle, the summation in Eq. (14)
should run over all excited states. As a good approximation,
only the pairing case and one broken pair case are taken into
account in our calculations. This approximation is justified
since excited states with two or more broken pairs lie much
higher in energy above the ground state and their contribution
to the moment of inertia (14) is negligible [24]. The matrix
elements of Jx ′ used in Eq. (14) for both even-even and odd-A
nuclei are provided in Appendix A.

In this paper, the moments of inertia of the even-even nuclei
considered are all calculated. However, only the moments of
inertia of odd Yb nuclei are calculated because either the spin
or the first excited level energy in the ground-state band in
odd Er or odd Hf nuclei is not available experimentally. The
difference of the spins of adjacent levels in the ground-state
band with bandhead spin � satisfies 	I = 1 in 161Yb, of which
the experimental value of the moment of inertia is obtained ac-
cording to Eq. (B3) shown in Appendix B, while the difference
of the spins of adjacent levels in the ground-state band with
bandhead spin � satisfies 	I = 2 in 163,165Yb, of which the
experimental values of the moments of inertia are obtained
according to Eq. (B4) provided in Appendix B. The level
energies of these isotopes are all taken form [25]. For 157Yb and
159Yb, the total spin I of the first excited state in the ground-
state band is also not observed experimentally. Hence, the
experimental moments of inertia of 157Yb and 159Yb are absent.

The calculated moments of inertia and the corresponding
experimental data for the even-even nuclei in the three isotopic

FIG. 3. (Color online) Theoretical and experimentally deduced
values of the moment of inertia in �

2MeV−1 for even-even 154–162Er,
156–164Yb, and 158–166Hf, where “Ext.” denotes theoretical results
obtained in the extended pairing model, “Nil.” denotes theoretical
results obtained in the Nilsson mean field without pairing interaction,
and the values denoted by “Exp.” are extracted from the experimental
spectra of these nuclei [25] according to (B2).

chains are shown in Fig. 3. It shows that the results obtained
from the Nilsson mean-field plus extended-pairing model are
in excellent agreement with the corresponding experimental
data. For comparison, the moments of inertia obtained by
the Inglis formula from the Nilsson mean field without
pairing interaction are also provided, though the difference
in calculated moments of inertia with and without pairing
interaction has been well known [26,27].

Similar to the definition of the odd-even mass difference,
the relative odd-even difference of the moments of inertia may
be defined as [27]

P� = δ�
�

∣∣∣∣
av

= �(A) − 1
2 [�(A + 1) + �(A − 1)]

1
2 [�(A + 1) + �(A − 1)]

, (15)

where A is the mass number and 1
2 [�(A + 1) + �(A − 1)] is

the average of the ground-state band moments of inertia of the
neighboring nuclei.

The theoretical and experimental values of the moment of
inertia � for both even-even and odd-A Yb nuclei are shown in
Fig. 4(a). The relative odd-even differences of the moments of
inertia P� for Yb are shown in Fig. 4(b). Clearly, the theoretical
values of the moment of inertia are in a good agreement
with the corresponding experimentally deduced values for
even-even nuclei, while there are small deviations between
the theoretical and experimental moments of inertia for odd-A
nuclei.
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FIG. 4. (Color online) (a) Theoretical and experimentally de-
duced moments of inertia in �

2MeV−1 for 156–165Yb, where “Ext.”
denotes results obtained in the extended pairing model, and “Exp.”
denotes the corresponding values extracted from the experimental
spectra of these nuclei [25] according to (B2) for even-even
nuclei and (B3) or (B4) for odd-A nuclei. (b) Relative even-
odd differences of the moments of inertia of 157–164Yb, calcu-
lated by (15), where experimental data is denoted by “Exp.” and
theoretical values in the extended pairing model are denoted as
“Ext.”.

V. GROUND-STATE OCCUPATION PROBABILITIES OF
VALENCE NUCLEON PAIRS WITH VARIOUS ANGULAR

MOMENTUM QUANTUM NUMBERS

In this section, we calculate the ground-state occupation
probabilities of valence nucleon pairs with various angular
momentum quantum numbers for even-even nuclei in the
extended pairing model. Our aim is to identify angular
momentum values of valence pairs that are important in the
ground state of these nuclei.

For the ith Nilsson level, the pair creation operators b
†
i can

be expressed in terms of the single-particle creation operators
of the spherical harmonic oscillator shell model,

b
†
i =

∑
ji j

′
i

W i
ji
W i

j ′
i
(−)j

′
i −�i c

†
ji�i

c
†
j ′
i �i

, (16)

where c
†
ji�i

are the single-particle creation operators with
definite angular momentum quantum number ji , �i is the
projection of ji onto the third axis of the intrinsic frame,
and Wi

ji
, as shown in Eq. (A9), are normalized expansion

coefficients of the ith Nilsson state expanded in terms of a set
of spherical shell model states. In addition,

c
†
ji�i

c
†
j ′
i �i

=
∑
Ji

〈ji�ij
′
i�i |Ji0〉B†

ji j
′
i Ji0

, (17)

where 〈ji�ij
′
i�i |Ji0〉 is a Clebsch-Gordan coefficient, and

B
†
ji j

′
i Ji0

is the pairing operator with total angular momentum

FIG. 5. (Color online) Ground state occupation probabilities of
valence nucleon pairs with angular momentum quantum number J in
156–162Yb calculated in the Nilsson mean-field plus extended-pairing
model.

quantum number Ji . Thus, we also have

B
†
ji j

′
i Ji0

=
∑
ji j

′
i

〈ji�ij
′
i�|Ji0〉c†ji�i

c
†
j ′
i �i

. (18)
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By substituting (17) into (16), Eq. (16) becomes

b
†
i =

∑
ji j

′
i

W i
ji
W i

j ′
i
(−)j

′
i −�i

∑
Ji

〈ji�ij
′
i�i |Ji0〉B†

ji j
′
i Ji0

. (19)

By substituting (19) into (4), the kρ-pair eigenstates of the
model can be expressed as

|kρ ; ζ ; 0〉 =
∑

1�i1<···<ik�p

C
(ζ )
i1i2···ik

kρ∏
i=1

⎛
⎝∑

ji j
′
i

W i
ji
W i

j ′
i
(−)j

′
i −�i

×
∑
Ji

〈ji�ij
′
i�i |Ji0〉B†

ji j
′
i Ji0

(ρ)

⎞
⎠|0〉, (20)

where ρ = π for protons or ρ = ν for neutrons.
The number of like-nucleon pairs with angular momentum

J in the ground state can then be calculated by

n
ρ
J = 〈kρ ; ζ = 1; 0|

∑
jj ′

B
†
jj ′J0(ρ)

∂

∂B
†
jj ′J0(ρ)

|kρ ; ζ = 1; 0〉,

(21)

which counts the number of like-nucleon pairs with angular
momentum J in the ground state. Since both the proton and
neutron sectors are considered in this work, the ground state
occupation probability of valence nucleon pairs with angular
momentum J in the model can be expressed as

ηJ = nπ
J + nν

J

k
, (22)

where the total number of pairs is k = kπ + kν .
Figure 5 displays the calculated results for the ground

state occupation probabilities of valence nucleon pairs with
angular momentum J = 0 to J = 12 for 156–162Yb. It is
obvious that the pair occupation probability decreases with
increasing J and is much higher for even-J pairs as compared
to odd-J pairs. Moreover, among the occupation probabilities
of even-J pairs, those with J = 0, 2, and 4 are the three
highest ones. However, the occupation probabilities of J = 6
and J = 8 pairs, even those of J = 10 and J = 12 pairs, are
non-negligible. Fig. 5 also shows that the above conclusions
are independent of the number of valence nucleon pairs k and,
therefore, hold for any k cases.

Anyway, the results shown in Fig. 5 reveal that, in the
framework of the Nilsson mean-field plus extended-pairing
model, the S, D, and G valence nucleon pairs dominate
in the ground state of these nuclei. The total occupation
probability of S, D, and G valence nucleon pairs is higher
than 60%, while other even-J pairs also contribute to the
ground state noticeably. In addition, our analysis shows that
the G-pair contribution to the ground state of these nuclei is
also significant. Hence, the IBM with s, d, and g bosons seems
to provide a reasonable simplified description of the collective
motion of these deformed nuclei [28].

VI. CONCLUSION

In summary, the Nilsson mean-field plus extended-pairing
model for well-deformed nuclei is applied to describe rare
earth nuclei. Binding energies, energies of the first pairing
excitation states, even-odd mass differences, and moments of

inertia of 152–164Er, 154–166Yb, and 156–168Hf are calculated
systematically in the model with both proton-proton and
neutron-neutron pairing interactions. We find that, for these
three chains of isotopes, the outcomes of the model, with
only four adjustable parameters (proton and neutron pairing
strengths and the average binding energy per nucleon),
reproduce rather well the corresponding experimental values
of binding energies, even-odd mass differences, and moments
of inertia. The analysis shows that pairing interaction is crucial
in elucidating spectral properties of these nuclei. However,
observed small deviations in the energy of the first pairing
excitation states predicted in the model from the corresponding
experimental results may result from the fact that the proton-
neutron quadrupole-quadrupole interaction is neglected.

Ground-state occupation probabilities of valence nucleon
pairs with angular momentum quantum number J in 156–162Yb
are also calculated. The model outcome suggests that the
even-J pair occupation probabilities are much higher than
the odd-J ones. Most importantly, we find that S, D, and G
pairs dominate in the ground state of these nuclei. Though the
ground-state occupation probabilities of valence nucleon pairs
with angular momentum quantum number J in 156–162Yb are
calculated by using the Nilsson plus extended-pairing model,
the results seem independent of the specific pairing model
used. For example, one can also calculate these occupation
probabilities by using the Nilsson mean field and the standard
pairing model, which should yield results similar to those
shown in this paper. As shown in Ref. [16], in which the
Nilsson mean field plus the standard pairing model was used
to analyze the angular momentum decomposition of only
one valence neutron pair, the result of the case studied and
the conclusions made are quite similar to the ones shown in
this work. Hence, the IBM with s, d, and g bosons seems to
provide a reasonable simplified description of the collective
motion of these deformed nuclei. Our analysis thus provides
a fermionic shell-model reasoning for IBM studies.

In addition, by comparing our model calculations with
experimental data, we provide a reasonable range of pairing in-
teraction strength G, with which the quantum phase transition
and related critical phenomena induced by the competition
of the deformed mean-field and the pairing interaction can
further be analyzed as suggested in Ref. [29]. Moreover,
since the total angular momentum is not conserved in the
model and proton-neutron quadrupole-quadrupole interaction
is neglected in this work, it should be interesting to explore
more realistic situations to take these issues into account. For
example, the results of this work may be used to investigate
excited states in the model by using the angular momentum
projection technique, which will be a part of our future work.
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APPENDIX A: THE MATRIX ELEMENTS OF Jx′

In the Nilsson basis, Jx ′ can be expressed as

Jx ′ =
∑

jβ�βjβ′�β′

〈jβ�β |Jx ′ |jβ ′�β ′ 〉a†
jβ�β

ajβ′ �β′ . (A1)

For even-even case, when the two valence nucleons are in the
Nilsson states (jρ�ρ,jγ �γ ), the matrix element of Jx ′ can be
written as

〈k − 1; ζ ′; jρ�ρ,jγ �γ |Jx ′ |k,ζ = 1; 0〉

=
k∑

p=1

∑
i1<···<ip−1<ip+1<···<ik

C
(ζ ′)
i1i2···ip−1ip+1···ik

×(
C

(ζ )
i1i2...ip−1jρ ip+1...ik

〈jγ �γ |Jx ′ |jρ�̄ρ〉δipjρ

−C
(ζ )
i1i2...ip−1jγ ip+1...ik

〈jρ�ρ |Jx ′ |jγ �̄γ 〉δipjγ

)
. (A2)

When the two valence nucleons are in the Nilsson states
(jρ�ρ,jγ �̄γ ), the matrix element of Jx ′ can be written as

〈k − 1; ζ ′; jρ�ρ,jγ �̄γ |Jx ′ |k,ζ = 1; 0〉

=
k∑

p=1

∑
i1<···<ip−1<ip+1<···<ik

C
(ζ ′)
i1i2···ip−1ip+1···ik

×(
C

(ζ )
i1i2...ip−1jρ ip+1...ik

〈jγ �̄γ |Jx ′ |jρ�̄ρ〉δipjρ

+C
(ζ )
i1i2...ip−1jγ ip+1...ik

〈jρ�ρ |Jx ′ |jγ �γ 〉δipjγ

)
. (A3)

When the two valence nucleons are in the Nilsson states
(jρ�̄ρ,jγ �̄γ ), the matrix element of Jx ′ can be written as

〈k − 1; ζ ′; jρ�̄ρ,jγ �̄γ |Jx ′ |k,ζ = 1; 0〉

=
k∑

p=1

∑
i1<···<ip−1<ip+1<···<ik

C
(ζ ′)
i1i2···ip−1ip+1···ik

×(−C
(ζ )
i1i2...ip−1jρ ip+1...ik

〈jγ �̄γ |Jx ′ |jρ�ρ〉δipjρ

+C
(ζ )
i1i2...ip−1jγ ip+1...ik

〈jρ�̄ρ |Jx ′ |jγ �γ 〉δipjγ

)
. (A4)

For the odd-A case, when the three valence nucleons are in the
Nilsson states (jρ�ρ,jγ �γ ,jμ�μ), the matrix element of Jx ′

can be written as

〈k − 1,ζ ′,jρ�ρ,jγ �γ ,jμ�μ|Jx ′ |k,ζ = 1; j ′
μ�′

μ〉

=
k∑

p=1

∑
i1<i2<···<ip−1<ip+1<···<ik

C
(ζ ′)
i1i2...ip−1ip+1···ik

×[
C

(ζ )
i1i2...ip−1jγ ip+1···ik

(〈jμ�μ|Jx ′ |jγ �̄γ 〉δjρj ′
μ

−〈jρ�ρ |Jx ′ |jγ �̄γ 〉δjμj ′
μ

)
δipjγ

+C
(ζ )
i1i2...ip−1jρ ip+1···ik

(〈jγ �γ |Jx ′ |jρ�̄ρ〉δjμj ′
μ

−〈jμ�μ|Jx ′ |jρ�̄ρ〉δjγ j ′
μ

)
δipjρ

+C
(ζ )
i1i2...ip−1jμip+1···ik

(〈jρ�ρ |Jx ′ |jμ�̄μ〉δjγ j ′
μ

−〈jγ �γ |Jx ′ |jμ�̄μ〉δjρj ′
μ

)
δipjμ

]
. (A5)

When the three valence nucleons are in the Nilsson states
(jρ�ρ,jγ �̄γ ,jμ�μ), the matrix element of Jx ′ can be written
as

〈k − 1,ζ ′,jρ�ρ,jγ �̄γ ,jμ�μ|Jx ′ |k,ζ = 1; j ′
μ�′

μ〉

=
k∑

p=1

∑
i1<i2<···<ip−1<ip+1<···<ik

C
(ζ ′)
i1i2...ip−1ip+1···ik

×[−C
(ζ )
i1i2...ip−1jγ ip+1···ik

(〈jμ�μ|Jx ′ |jγ �γ 〉δjρj ′
μ

−〈jρ�ρ |Jx ′ |jγ �γ 〉δjμj ′
μ

)
δipjγ

+C
(ζ )
i1i2...ip−1jρ ip+1···ik

(〈jγ �γ |Jx ′ |jρ�̄ρ〉δjμj ′
μ

−〈jμ�μ|Jx ′ |jρ�̄ρ〉δjγ j ′
μ

)
δipjρ

+C
(ζ )
i1i2...ip−1jμip+1···ik

(〈jρ�ρ |Jx ′ |jμ�̄μ〉δjγ j ′
μ

−〈jγ �γ |Jx ′ |jμ�̄μ〉δjρj ′
μ

)
δipjμ

]
. (A6)

When the three valence nucleons are in the Nilsson states
(jρ�̄ρ,jγ �̄γ ,jμ�μ), the matrix element of Jx ′ can be written as

〈k − 1,ζ ′,jρ�̄ρ,jγ �̄γ ,jμ�μ|Jx ′ |k,ζ = 1; j ′
μ�′

μ〉

=
k∑

p=1

∑
i1<i2<···<ip−1<ip+1<···<ik

C
(ζ ′)
i1i2...ip−1ip+1···ik

×[−C
(ζ )
i1i2...ip−1jγ ip+1···ik

(〈jμ�μ|Jx ′ |jγ �γ 〉δjρj ′
μ

−〈jρ�̄ρ |Jx ′ |jγ �γ 〉δjμj ′
μ

)
δipjγ

−C
(ζ )
i1i2...ip−1jρ ip+1···ik

(〈jγ �̄γ |Jx ′ |jρ�ρ〉δjμj ′
μ

−〈jμ�μ|Jx ′ |jρ�ρ〉δjγ j ′
μ

)
δipjρ

+C
(ζ )
i1i2...ip−1jμip+1···ik

(〈jρ�̄ρ |Jx ′ |jμ�̄μ〉δjγ j ′
μ

−〈jγ �̄γ |Jx ′ |jμ�̄μ〉δjρj ′
μ

)
δipjμ

]
. (A7)

When the three valence nucleons are in the Nilsson states
(jρ�̄ρ,jγ �̄γ ,jμ�̄μ), the matrix element of Jx ′ can be written as

〈k − 1,ζ ′,jρ�̄ρ,jγ �̄γ ,jμ�̄μ|Jx ′ |k,ζ = 1; j ′
μ�′

μ〉

=
k∑

p=1

∑
i1<i2<···<ip−1<ip+1<···<ik

C
(ζ ′)
i1i2...ip−1ip+1···ik

×[−C
(ζ )
i1i2...ip−1jγ ip+1···ik

(〈jμ�̄μ|Jx ′ |jγ �γ 〉δjρj ′
μ

−〈jρ�̄ρ |Jx ′ |jγ �γ 〉δjμj ′
μ

)
δipjγ

−C
(ζ )
i1i2...ip−1jρ ip+1···ik

(〈jγ �̄γ |Jx ′ |jρ�ρ〉δjμj ′
μ

−〈jμ�̄μ|Jx ′ |jρ�ρ〉δjγ j ′
μ

)
δipjρ

−C
(ζ )
i1i2...ip−1jμip+1···ik

(〈jρ�̄ρ |Jx ′ |jμ�μ〉δjγ j ′
μ

−〈jγ �̄γ |Jx ′ |jμ�μ〉δjρj ′
μ

)
δipjμ

]
. (A8)
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It should be noted that the Nilsson orbits occupied by the
unpaired particles, jρ , jγ , and jμ should be excluded in the
summation in Eqs. (A2)–(A8). In Eq. (14), only excited
states up to one broken pair are considered. By substituting
these matrix elements into (14), one obtains a good estimate
of the moment of inertia of a nucleus. This is a reasonable
approximation as long as the quantum number of the total
angular momentum is small. Therefore, (14) can be also used
to calculate the moment of inertia of a nucleus for the first
excited state in the ground-state band. In order to obtain the
matrix elements of Jx ′ , the ith Nilsson single-particle states
are expanded in terms of single-particle states |Nj�i〉 of the
spherical harmonic oscillator shell model with

|i; �i〉 =
∑

j

W i
j |Nj�i〉,

|i; �̄i〉 =
∑

j

W i
j (−)j−�i |Nj − �i〉, (A9)

where N is the principal quantum number, which is fixed
according to the major shell used in our calculations, j is
the total angular momentum quantum number, i labels the
ith Nilsson level, and Wi

j are expansion coefficients. The
total angular momentum j is obtained by coupling the orbital
angular moment l with the spin s = 1/2 of a valence nucleon.
For example, since Jx ′ only changes �i ,

〈Nj ′�i ′ |Jx ′ |Nj�i〉 = 〈j�i ′ ± 1|Jx ′ |j�i〉δjj ′δ�i′ �i±1, (A10)

where 〈j�i ± 1|Jx ′ |j�i〉 = �

2

√
(j ± �i + 1)(j ∓ �i), the

matrix elements of Jx ′ in the Nilsson basis can be expressed as

〈i ′; �i ′ |Jx ′ |i; �i〉
=

∑
j

W i ′
j W i

j

�

2

√
(j ± �i + 1)(j ∓ �i)δ�i′�i±1, (A11)

which is used in Eqs. (A2)–(A8).

APPENDIX B: EXPERIMENTAL VALUE
OF THE MOMENT OF INERTIA

The experimental value of the moment of inertia of a
deformed nucleus is extracted from the rotational spectrum,
which is assumed to be described by the particle-rotor model
with eigenenergy

E(I ) = E� + �
2

2� [I (I + 1) + δ�,1/2a(−1)I+1/2(I + 1/2)]

(B1)

for given total spin I and the quantum number of its third
component in the intrinsic frame �, and a is the decoupling
factor. Within a rotational band, E� is a constant. Moreover,
since the Inglis formula is derived perturbatively, it only
applies to excited states with small angular momentum
quantum number. Therefore, according to (B1), for even-even
nuclei, the experimental value of the moment of inertia is then
obtained with

2�Exp.

�2
= 6

E(2+
1 ) − E(0+

g )
≡ 6

E(2+
1 )

, (B2)

where E(2+
1 ) is the energy of the first 2+ excited state taken

from the experimental spectrum. Similarly, for odd-A nuclei,
if an � �= 1/2 band is considered, which is always the case
for the ground-state band studied in this paper, the decoupling
term in Eq. (B1) is zero. The experimental value of the moment
of inertia can then be obtained either as

2�Exp.

�2
= 2(� + 1)

E(� + 1) − E(�)
≡ 2(� + 1)

E(� + 1)
, (B3)

if the difference of the spins of adjacent levels in the ground-
state band with bandhead spin � satisfies 	I = 1, or as

2�Exp.

�2
= 2(2� + 3)

E(� + 2) − E(�)
≡ 2(2� + 3)

E(� + 2)
, (B4)

if the difference of the spins of adjacent levels in the ground-
state band with bandhead spin � satisfies 	I = 2, where
E(� + 1) or E(� + 2) is the experimental energy of the first
excited state in the ground-state band.
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