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High-momentum distributions and short-range correlation probabilities in the deuteron are studied with a
variety of modern potentials based on chiral effective field theory up to fifth order in the chiral expansion.
Conventional (meson-exchange and phenomenological) interactions are also considered. Predictions are
examined in the context of short-range correlation probabilities as extracted from analyses of inclusive electron
scattering data, with a discussion on whether modern interactions can be reconciled with the latter.
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I. INTRODUCTION

High-momentum components in the nuclear wave function
and in momentum distributions are a reflection of short-range
correlations (SRC) in nuclei. The presence of high-momentum
components is mainly due to the repulsive short-range central
force and the tensor force.

Although high-quality meson-theoretic interactions con-
tinue to be employed in contemporary calculations of nu-
clear structure and reactions, since the 1990s there exists a
general understanding that chiral effective field theory (EFT)
[1,2] is a superior framework. First, chiral EFT has a firm
connection with quantum chromodynamics (QCD) through
the symmetries of low-energy QCD. Second, it allows for a
systematic expansion which makes possible a quantification of
the theoretical error. At each order of chiral perturbation theory
(χPT), the uncertainty associated with a particular prediction
can be controlled and quantified. For these reasons, nuclear
chiral effective theory is becoming increasingly popular as a
model-independent approach.

The nucleon-nucleon (NN) potentials constructed within
chiral EFT are generally softer than “conventional” potentials,
which makes them computationally more amenable to nuclear
structure calculations. Also, potentials with a low resolution
scale, obtained through a unitary transformation (that is,
through renormalization group (RG) methods [3]) applied
to a “harder” interaction, are very popular for many-body
calculations. The resulting “low-k” potentials are equivalent to
the original ones for all physical purposes, although essentially
void of high momentum components.

On the experimental side, inclusive electron scattering mea-
surements at high momentum transfer, on both light and heavy
nuclei, have been analyzed with the purpose of extracting
information on short-range correlations (SRCs) [4–6]. In a
suitable range of Q2 and xB , the cross section is factorized in
order to single out the probability of a nucleon to be involved in
SRC, either two-body or three-body. When extended to nuclear
matter, this probability is equivalent to the “wound integral,”
which measures the amount of correlations in the so-called
defect function [7]. Information about two-body correlations
can also be obtained in coincidence experiments involving
knock-out of a nucleon pair with protons [8] or electrons
[9–12].

Nuclear scaling and the plateaus seen in inclusive scattering
cross section ratios [4] are due to the dominance of SRC for
momenta above approximately 2 fm−1. In the same region,
the momentum distribution in a nucleus relative to the one in
the deuteron becomes almost flat, so that those distributions
simply scale with A.

The discussion around some of these measurements which
is presently going on in the literature is quite intriguing.
The probabilities mentioned above are a manifestation of the
off-shell nature of the potential, which cannot be determined
uniquely from NN elastic data and is not an observable.
Interactions may differ dramatically in their off-shell behavior
while remaining phase equivalent. The most striking example
is provided by the RG-evolved potentials mentioned above,
where the high-momentum structures of the original and the
RG-evolved potential are obviously not the same.

Naturally, a low-resolution scale will impact the ability to
resolve high momentum regions. With regard to this point, it
has been noted that, if a unitary transformation is applied to
both wave functions and operators, one regains the invariance
of the cross section, as one should [13], thus attaining a
consistent description of short- and long-range physics. This
has been addressed recently by Neff et al., who show how the
short-range information can be recovered by transforming the
density operators [14].

On the other hand, chiral potentials such as those developed
in Refs. [15–17] are not low-momentum interactions in the
sense of a Vlow-k. In this paper, I examine those from the
point of view of SRC. To broaden the discussion, I start with
an analysis of SRC and conventional (that is, nonchiral) NN
potentials, including high-precision potentials from the 1990s
as well as a phenomenological one. I then move to a similar
analysis with chiral interactions.

The deuteron is taken as a sample system. It is useful
to recall that the high-momentum part of the momentum
distribution shows similar features in nuclei with A = 2 to
40 [18]. Thus, the deuteron offers representative features.
Furthermore, deuteron SRC probabilities are a crucial element
in the estimation of SRC probabilities in heavier nuclei as
obtained in Ref. [4].

The central point of this paper are the momentum dis-
tribution and the probability of SRC calculated up to fifth
order of chiral effective theory. Working with the A = 2
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system, one can go to any order of chiral EFT where NN
potentials are available, without the need to worry about
the corresponding three-nucleon forces (3NF). Although 3NF
at N3LO and N4LO have been worked out [19–21], their
application in few- and many-body systems still presents
considerable challenges and requires unavoidable omissions
and/or approximations. Calculations in the deuteron are free
of those and thus well controlled. Cutoff dependence and
order-by-order convergence from lowest to fifth order of the
chiral expansion is examined.

Some of the questions to be addressed are the following: To
which extent are modern, nonphenomenological interactions
(chiral or not) consistent with the information as extracted
from A(e,e′)X measurements? What does one learn, on
fundamental grounds, from the answer to this question? Are
there characteristic differences among particular families of
potentials from which one can obtain physical insight (beyond
phenomenological observations)?

Results and conclusions are summarized in Sec. III.

II. HIGH-MOMENTUM DISTRIBUTION IN THE
DEUTERON

A. Meson theory and phenomenology

This section begins with a step back into the 1990s by
considering three members of the “high-precision” family
of NN potentials, namely CD-Bonn [22], Nijmegen II [23],
and AV18 [24]. The respective momentum distributions in
the deuteron, with focus on high-momentum components,
are shown in Fig. 1. ρ(k) is the Fourier transform squared
of the coordinate space wave function. There are noticeable
differences between the (softer) predictions from CD-Bonn
and those from the other two potentials, which are essentially
indistinguishable.
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FIG. 1. (Color online) High momentum distributions in the
deuteron as predicted by CD-Bonn (solid red), Nijmegen II (dotted
blue), and AV18 (dashed green).

TABLE I. Probabilities of SRC and D-state probabilities for the
potentials considered in Fig. 1.

Model a2N (d) PD

CD-Bonn 0.032 0.0485
AV18 0.042 0.0578
Nijmegen II 0.041 0.0565

To see how these differences carry into the probability
of SRC, following Ref. [18] the probability of SRC in the
deuteron is defined as

a2N (d) = 4π

∫ ∞

kmin

ρ(k)k2dk, (1)

where kmin is taken to be 1.4 fm−1 (276 MeV). This definition
was adopted in Ref. [4], where the choice of the lower
integration limit is suggested by the onset of scaling of the
cross section, which should signal the dominance of scattering
from a strongly correlated nucleon. In Ref. [4], the ratio of the
per-nucleon probability of two nucleon (2N) SRC in a nucleus
relative to 3He is argued to be equal to the ratio of the inclusive
electron scattering cross sections in the appropriate scaling
region. The absolute per-nucleon probability in a nucleus can
then be deduced if the absolute per-nucleon probability in
3He is known. The latter is the product of the absolute per-
nucleon probability in the deuteron, stated as 0.041 ± 0.008 in
Ref. [25], and the relative probability of 2N SRC in 3He
relative to the deuteron. Namely,

a2N (A) = a2N (A/3He)a2N (3He), and

a2N (3He) = a2N (3He/d)a2N (d).
(2)

It can be seen that the values for the deuteron and the ratio
of 3He to deuteron contain some model dependence from
theoretical calculations (see Ref. [4] and Refs. [2,6,15,16]
therein), likely to propagate in the predictions for heavier
nuclei.

In Table I, I show the probability as defined in
Eq. (1) for the interactions used in Fig. 1. As an additional,
related information, I also show the corresponding D-state
probabilities. As expected in light of Fig. 1, there is a
significant difference between CD-Bonn and the other two
cases, with the AV18 and Nijmegen II predictions closer to the
value used in the analysis from Ref. [25].

The differences noted above are due to the non-local nature
of CD-Bonn, which adopts fully relativistic momentum-space
expressions for the one-pion-exchange. More precisely, the
off-shell nature of CD-Bonn is based upon the relativistic
Feynman amplitudes for meson exchange. This determines
well-founded nonlocalities in the tensor force, whereas Ni-
jmegen II and AV18 make use of the nonrelativistic, static
one-pion-exchange which generates a local tensor force. The
characteristically softer nature of a relativistic momentum-
space potential reflected in Table I is a desirable feature for the
purpose of applications in nuclear structure.

This point will be revisited for a more complete discussion
after the next section.
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FIG. 2. Momentum distributions in the deuteron predicted with
chiral potentials at LO (dotted), NLO (dash–double dot), N2LO (dash-
dot), N3LO (dash), and N4LO (solid). The cutoff is fixed at 500 MeV.

B. Interactions based on chiral EFT

In spite of the good theoretical foundation behind meson-
exchange Feynman amplitudes, meson theory does not provide
a systematic approach to constructing nuclear forces. As men-
tioned in the Introduction, chiral EFT presents the opportunity
for such systematic development.

Crucial for a nuclear EFT are the processes of regularization
and renormalization. Concerning the former, all chiral inter-
actions are multiplied by a regulator function which typically
has the form

f (p′,p) = exp[−(p′/�)2n − (p/�)2n], (3)

where � is known as the cutoff parameter.
Nucleon-nucleon potentials have been developed at differ-

ent orders and cutoff values [16,17]. Chiral EFT predictions
allow for the quantification of uncertainties that stem from the
truncation error and cutoff variations (as well as additional
sources of errors).

Consistent with that philosophy, in Fig. 2 I show the
momentum distribution in the deuteron, including five orders
of the chiral expansion. The potential at N4LO is a preliminary
version of a high-precision nucleon-nucleon potential at fifth
order [26]. (Some wavy structures noticeable in the figure
are most likely due to the polynomial nature of the EFT
contacts.) Huge variations can be seen at the lowest orders,
particularly from LO to NLO, and a clear convergence pattern
with increasing order.

Table II shows the integrated probabilities corresponding to
Fig. 2. At the higher, converging orders, the SRC probabilities
are not very different from the one predicted by CD-Bonn. That
is, chiral potentials with suitable cutoff can be constructed with
excellent fit to the NN data and off-shell nature similar to the
highest-quality nonlocal meson-exchange forces.

TABLE II. Probabilities of SRC and D-state probabilities for the
chiral interactions considered in Fig. 2.

Model a2N (d) PD

LO 0.047 0.0757
NLO 0.015 0.0313
N2LO 0.022 0.0417
N3LO 0.030 0.0451
N4LO 0.026 0.0414

The truncation error at order n is defined as the difference
between the predictions at orders n + 1 and n. Thus, the error
of a2N (d) at N3LO is ±0.004. I have also considered variations
of the cutoff parameter between 500 and 600 MeV. At N3LO,
the value of a2N (d) with cutoff of 600 MeV was found to be
nearly the same as with 500 MeV. Therefore, cutoff uncertainty
is below the truncation error, and the final result at N3LO
can be stated as 0.030 ± 0.004. Concerning the uncertainty
of the N4LO result, the prediction for the next higher order
is unknown. Therefore, assuming (pessimistically) the same
truncation error as at N3LO, the prediction at N4LO can be
stated as 0.026 ± 0.004.

C. Discussion

The deuteron is the simplest system where off-shell behav-
ior can be explored. Characteristic differences exist between
meson-theoretic potentials using fully relativistic one-pion
exchange amplitudes (that is, nonlocal tensor forces) and
those which use static one-pion exchange. Off-shell behavior
is not observable and thus cannot be uniquely determined
by measurements. The best one can do is to have a good
theoretical foundation for it. In meson theory, this is provided
by relativistic meson-exchange amplitudes.

In Sec. II A it was shown that the SRC probability
predicted with CD-Bonn is roughly 25% below the value
of a2N (d) cited in Ref. [4] and used to evaluate absolute
probabilities in heavier nuclei. A discrepancy of qualitatively
similar nature exists for the wound integral in nuclear matter.
More precisely, conventional nonlocal potentials are known
to predict about 10–15% for the wound integral (at normal
density) [7], whereas a value of about 25% is cited from
extrapolation to nuclear matter of the empirical information
[27]. In fact, the ratio of the probability for nucleus A to the
deuteron, extrapolated to infinite symmetric matter, is given
to be 6.5 ± 1.0 [27]. With the absolute probability for the
deuteron taken equal to 0.04, the value cited above is obtained.
However, when the a2N (d) = 0.032 value from CD-Bonn is
used, one obtains 20%, and with a2N (d) = 0.026 as from
the converged chiral results, a value of 17% is obtained for
empirical short-range correlations in nuclear matter, which is
getting closer to the predicted wound integrals.

In summary, the question of consistency between descrip-
tion of short- and long-range physics seems to go beyond
the (intrinsically) “low-momentum” nature of some potentials.
Instead, it points to nonlocality in the tensor force, a feature
which has been long known to be very attractive in nuclear
structure. So, this is an issue which has resurfaced and
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is being revisited in the light of new experiments. It is
important to take a broad view of it, combining our former
and present understanding of microscopic nuclear forces and
their development. Former studies of the differences among
predictions of the deuteron and the two-nucleon correlation
function from phase-equivalent NN potentials and the effect
of localizing the one-pion exchange contribution can be found,
for instance, in Refs. [28,29].

III. CONCLUSIONS AND OUTLOOK

The deuteron is a beautifully simple benchmark for theories
of nuclear forces. From this study, one may conclude that
predictions of high-momentum distributions in the deuteron
with high-quality nonlocal meson-exchange forces or state-
of-the-art chiral forces are systematically lower than what is
used to extract empirical information for heavier nuclei. Taking
those results into account leads to a better agreement between
SRC in nuclear matter and theoretical predictions. However,

the above statement assumes that the ratio of inclusive cross
sections is indeed equal to the ratio of SRC probabilities. One
must keep in mind, though, that cross section ratios may be
sensitive to other mechanisms (such as, for instance, final-state
interaction), and may not be identified with the ratio of SRC
probabilities in a quantitative way. In fact, such quantitative
association should be taken with care.

I plan to extend this microscopic analysis to the A = 3
system using a broad spectrum of interactions as in the present
study. I hope this will shed more light on how to reconcile
theory and empirical analyses.

Finally, some caution should be exercised in the interpre-
tation of the empirical information discussed above as an
experimental constraint on the off-shell behavior.
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