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The lowest-order constrained variational approach at finite temperature is extended by adding a semiphe-
nomenological three-body force to its formulation. The equation of state (EOS) of hot asymmetric nuclear
matter is obtained within the framework of the extended model. The density and temperature dependence of the
mentioned three-body force is also discussed. The EOS of the proto-neutron star as well as its mass-radius relation
is studied for several values of constant entropy and lepton fraction. We find that the maximum gravitational
mass of the proto-neutron star is slightly sensitive to the value of the entropy and lepton fraction.
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I. INTRODUCTION

Studying the equation of state (EOS) of asymmetric
nuclear matter at finite temperature plays a crucial role in
understanding the dynamics of hot and dense nuclear systems,
which are available in the laboratory through intermediate- and
high-energy heavy-ion collisions and also in the astrophysical
systems. Remarkable examples of such systems are supernova
explosions and hot and lepton-rich neutron stars [proto-neutron
stars (PNSs)], which are formed in the last stage of a type-II
supernova collapse [1]. There are some significant differences
between the characteristics of proto-neutron stars (0.5–1 s
after core bounce) and those of cold neutron stars (some
minutes after core bounce), which are caused by the effect
of neutrino trapping. A high and almost constant lepton
fraction (Yl = 0.3–0.4) [2–4] and almost constant entropy per
baryon (S/A = 1–2) [2–5], as well as the high temperature
comparable to the Fermi energy of the composition, are among
them. Therefore, in order to study the thermal evolution of a
PNS, an equation of state at finite temperature is required.

The temperature dependence of the EOS of asymmetric
nuclear matter has been investigated within various theoretical
models such as the Brueckner-Hartree-Fock (BHF) approach
[6,7], variational method [8], relativistic mean field theory
(RMFT) [9–11], the theory of Green’s functions [12], and
the lowest-order constrained variational (LOCV) approach
[13–15]. The structure of the proto-neutron stars has been
also studied in the framework of some of the mentioned
theoretical methods such as BHF [7,16] and RMFT [11,17,18].
A complete study of the structure of the neutron stars shortly
after their birth is also presented by Prakash et al. [1] by
applying various nuclear models. In the present work we intend
to study the equilibrium structure of PNSs within the LOCV
approach.

The LOCV model is a fully self-consistent one which was
originally presented to calculate the properties of cold nuclear
matter [19,20] by using Reid-type potentials [21,22]. Later on,
this technique was generalized to finite temperature [13–15]
and also to study the thermodynamic properties of various
nuclear systems such as asymmetric nuclear matter [14,23],
pure neutron matter (PNM) [24], and β-stable matter [25]. This
model is also extended to include relativistic corrections at both

zero [26] and finite temperature [27], and also is adapted to use
more sophisticated potentials such as AV14 [28], AV18 [29],
and UV14 [30] as the bare two-body interaction. One valuable
feature of the LOCV method is that the energy of many-body
systems can be calculated by considering the contribution of
only first and second terms in the cluster expansion of the
energy. This feature comes from the fact that the constraint
imposed on this approach [31,32] keeps the value of the higher
cluster terms small.

It is generally accepted that many-body approaches are
unable to produce the correct empirical saturation properties
of cold symmetric nuclear matter (SNM), i.e., ρ0 = 0.17 ±
1 fm−3 and E0/A = −16 ± 1 MeV (where ρ0 is the baryon
density and E0/A denotes the energy per nucleon of the system
at saturation point) in the case of using only two-nucleon
interactions in the Hamiltonian. Therefore, three-body forces
(TBF) are also required to avoid this deficiency. Beside that,
the role played by the TBF in determining the properties of
high-density nuclear systems is important and must be taken
into account.

Motivated by the mentioned facts, one of the aims of
the present work is to extend the finite-temperature LOCV
approach by adding a three-body force to its procedure. To
do this task, a semiphenomenological Urbana-type three-
body force (UIX) [33,34] is used which has two adjustable
parameters determined so that the saturation point of cold
symmetric nuclear matter can be produced correctly.

In order to consider the TBF in the zero-temperature
calculations, an effective two-body interaction is produced by
averaging over the third particle coordinates and is added to
the bare nucleon-nucleon potential. A detailed description of
this procedure can be found in our previous work [35]. In the
case of finite temperature, the effect of the TBF is included in
the self-consistent LOCV procedure along a similar way. The
AV18 potential is also used as the bare two-body interaction.
The resulting EOS of hot asymmetric nuclear matter is then
used as an input to investigate the equilibrium structure of
the proto-neutron stars. The core of the PNS is supposed to
be composed of an uncharged mixture of neutrons, protons,
electrons, muons, and electron neutrinos as well as muon
antineutrinos, which are in β equilibrium during the lifetime
of the PNS. Three different values of entropy per baryon are
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considered for determining the properties of the proto-neutron
star. For the sake of comparison, calculations are done by
using two different values for lepton fraction since different
evolution calculations show different lepton numbers [2–4].

The article is organized as follows. In Sec. II we review
briefly the LOCV many-body theory at finite temperature.
The procedure of obtaining a temperature-dependent effective
two-body force is also discussed in this section. Section III
is devoted to the study of the hot and neutrino-trapped
stellar matter at constant entropy. Results and discussion are
presented in Sec. IV. Finally the conclusion is given in Sec. V.

II. THE LOCV FORMALISM AT FINITE TEMPERATURE

A brief review of extracting the EOS of hot asymmetric nu-
clear matter in the framework of the lowest-order constrained
variational method is given in the following. The procedure of
adding the TBF to the LOCV formalism at finite temperature
is also discussed later in this section.

A. Asymmetric matter

The starting point of the calculations in the LOCV approach
is to produce a trial wave function for many-body interacting
systems at finite temperature T , which is defined as follows
[15]:

�T (1 . . . A) = FT (1 . . . A)�T (1 . . . A), (1)

where �T represents the uncorrelated ground-state wave
function of A independent nucleons at temperature T and
FT is an A-body correlation operator, which is usually written
as the symmetrized product of two-body correlation function
operators at finite temperature, i.e.,

F = S
∏
i>j

fT (ij ), (2)

where S is the symmetrizing operator. fT (ij ) is written as

fT (ij ) =
3∑

α,p=1

f p
α (ij ; T )Op

α (ij ), (3)

where α = {J,L,S,T ,Tz} and p = 2, 3 for triplet channels
with J = L ± 1. Otherwise, p is set to unity. The operators
O

p
α (ij ) are written in the following form:

Op=1−3
α = 1,

(
2
3 + 1

6S12
)
,
(

1
3 − 1

6S12
)
, (4)

where S12 = 3(σ1 · r̂)(σ2 · r̂) − σ1 · σ2 is the usual tensor
operator. The nuclear Hamiltonian can be written in the general
form of

H =
∑

i

p2
i

2mi

+
∑
i<j

V (ij ), (5)

where V (ij ) is a two-nucleon potential. The energy of the
many-body system can be calculated by cluster expanding
the expectation value of the nuclear Hamiltonian. In the
LOCV method, one keeps only the first two terms of the
cluster expansion series [36] and the small contribution of
higher terms is neglected. Therefore, the energy functional is

written as

EB[f ] = 1

A

〈�|H |�〉
〈� | �〉 = E1 + EMB

∼= E1 + E2, (6)

where A is the total number of particles. The one-body term
E1 which is independent of fT (ij ), is the Fermi-gas kinetic
energy for asymmetrical nuclear matter,

E1 =
∑
i=n,p

�
2

2miρBπ2

∫ ∞

0
k4ni(k)dk. (7)

n and p labels indicate neutrons and protons, respectively, and
ρB = ρn + ρp. ρi is the number density of each individual
particle and is written as

ρi = Ni

	
= ν

2π2

∫ ∞

0
k2ni(k)dk, (8)

where ν stands for the degeneracy of the particle and ni(k) is
the Fermi-Dirac distribution function, which is defined as the
following (the Boltzmann constant KB is set to unity):

ni(k) = 1

exp{[εi(k) − μ(ρi,T )]/T } , (9)

with εi(k) = �
2k2

2m∗
i

, where m∗
i (ρi,T ) is the effective mass and

is considered as a variational parameter which minimizes
the free energy of the system. μ(ρi,T ) denotes the auxiliary
chemical potential of particles and can be calculated by using
the particle conservation relation, i.e., Eq. (8). We mention
that the so-called true chemical potential is computed from the
thermodynamic relation of μi = ( ∂f

∂ρi
)|T ,V , where f is the free

energy density.
The two-body energy in Eq. (6) is defined as

E2 = 1

2A

∑
ij

〈ij |WT (12)|ij − ji〉, (10)

with

WT (12) = − �
2

2m

[
fT (12),

[∇2
12,fT (12)

]]
+ fT (12)V (12)fT (12). (11)

This expression is now minimized with respect to the channel
correlation functions but subject to the normalization con-
straint, which is considered as [15,37]

1

A

∑
ij

〈ij |f 2
p (12) − f 2

T (12)|ij − ji〉 = 0, (12)

where fp is the modified Pauli function which has the
following form:

fp(r) =
[

1 − 1

ν

(
γi(r)

ρB

)2
]− 1

2

, Tz = ±1,

= 1, Tz = 0, (13)

with

γi(r) = 2ν

(2π )2

∫ ∞

0
ni(k)J0(kr)k2dk, (14)
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where JL(x) is the spherical Bessel function of order L. The
correlation functions are determined by solving the Euler-
Lagrange differential equations which result from minimizing
the two-body cluster energy. The reader is referred to the
mentioned references for more detail.

The Helmholtz free energy per particle of baryons can now
be extracted using the following relation:

FB(ρB,X,T ,m∗) = EB(ρB,X,T ,m∗) − T SB(ρB,X,T ,m∗),

(15)

where X = ρn−ρp

ρB
is the isospin asymmetry parameter and SB

denotes the entropy per particle of baryons, which is written
as [38]

SB(ρB,X,T ,m∗) = − KB

	ρB

∑
k,i

[(1 − ni(k))ln(1 − ni(k))

+ ni(k)ln(ni(k))]. (16)

At this stage Eq. (15) is minimized with respect to m∗
i (ρi,T )

and the resulting FB(ρB,X,T ) is then used for determining
various thermodynamic quantities of interest.

B. Three-body force

It is well known that the contribution of three-body forces
in the energy of nuclear systems at supernormal densities
is quite important and must be taken into account. On the
other hand, these forces have a crucial role in reproducing
the correct saturation point of cold symmetric nuclear matter.
Motivated by these facts, in our previous work [35] the UIX
[33,34] three-body force was adapted to the LOCV formalism
at zero temperature. In the present work we intend to extend
this procedure to finite temperature in a similar way as the
zero-temperature case by producing an effective two-body
potential. The general form of the semiphenomenological
UIX interaction, which is a meson-exchange-based theory, is
written as

V123 = V 2π
123 + V R

123, (17)

where

V 2π
123 = A

∑
cyc

({X12,X23}{τ1 · τ2,τ2 · τ3}

+ 1

4
[X12,X23][τ1 · τ2,τ2 · τ3]) (18)

and

V R
123 = U

∑
cyc

T (mπr12)2T (mπr23)2 (19)

are the two-pion exchange contribution and the shorter-
range phenomenological part, respectively [33]. The one-pion
exchange operator X12 in Eq. (18) is defined as

X12 = Y (mπr12)σ1 · σ2 + T (mπr12)S12. (20)

Numerals 1, 2, and 3 indicate three different interacting
nucleons with the Pauli spin and isospin of σ and τ ,
respectively. Y (mπr) and T (mπr) are the Yukawa and tensor
functions. A and U are two adjustable parameters, which are

determined in such a way that the EOS extracted from the
LOCV method will be able to reproduce the correct saturation
properties of symmetric nuclear matter at zero temperature.

In order to avoid the full three-body problem, a density-
dependent effective two-body interaction at finite temperature,
V̄12(r,T ), is produced by averaging over the third particle co-
ordinates and is weighted by the LOCV two-body correlation
functions at temperature T , i.e., fT (r), at each given baryon
density ρB ,

V̄12(r,T ) = ρB

∫
d3r3

∑
σ3,τ3

f 2
T (r13)f 2

T (r23)V123, (21)

where V123 is given by Eq. (17). In order to use this interaction
in the nuclear Hamiltonian, it is more convenient to rewrite
Eq. (21) in an operator structure form. After doing some
algebra, one can get the desired expression, which has the
following form:

V̄12(r,T ) = (τ1 · τ2)(σ1 · σ2)V 2π
στ (r,T )

+ S12(r̂)(τ1 · τ2)V 2π
t (r,T ) + V R

c (r,T ), (22)

with

V 2π
στ (r,T ) = 2π

r
ρB

∫ ∞

0
xdx

∫ |r+x|

|r−x|
ydyf 2

T (x)f 2
T (y)

×
∑
cyc

∑
σ3τ3

4A × [Y (mπx)Y (mπy)

+ 2P2(cos θ )T (mπx)T (mπy)], (23a)

V 2π
t (r,T ) = 2π

r
ρB

∫ ∞

0
xdx

∫ |r+x|

|r−x|
ydyf 2

T (x)f 2
T (y)

×
∑
cyc

∑
σ3τ3

4A × [Y (mπx)T (mπy)P2(cos θx)

+ T (mπx)Y (mπy)P2(cos θy)

+ T (mπx)T (mπy)P ], (23b)

V R
c (r,T ) = 2π

r
ρB

∫ ∞

0
xdx

∫ |r+x|

|r−x|
ydyf 2

T (x)f 2
T (y)

×
∑
cyc

∑
σ3τ3

U × [T (mπx)T (mπy)]2, (23c)

in the notation of Ref. [35]. Once these three components of
the effective two-body interaction are determined for a given
density and temperature, Eq. (22) can be added to the bare NN
potential and calculations are performed in the way discussed
earlier in this section.

III. COMPOSITION OF THE PROTO-NEUTRON STARS

In order to determine the properties of a PNS, an EOS
of hot and dense stellar matter, which is a charge-neutral
neutrino-trapped matter in β equilibrium, is required. In the
absence of the hyperonic degrees of freedom, such matter
is primarily composed of neutrons n, protons p, relativistic
electrons e and muons μ, electron neutrinos νe, and muon
antineutrinos ν̄μ. The charge-neutrality condition requires the
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following equality:

qpxp +
∑
l=e,μ

qlxl = 0, (24)

where xi = ρi

ρB
is the relative population of particle i and qi

represents the electric charge. The β-equilibrium conditions
explicitly read

μn − μp = μe − μνe
= μμ + μν̄μ

, (25)

where μi indicates the chemical potential of each particle.
Because of the extremely small population of positrons and
electron antineutrinos ( xe+

xe−
< 10−6 and xν̄e

xνe
< 10−5 [39]), the

contributions of these particles are neglected in the present
calculation. Since the core of the PNS is opaque with respect
to neutrinos, the electron and muon lepton family number,
which is defined as

Yl = xl − xl̄ + xνl
− xν̄l

, (26)

must be conserved. The values of Ye and Yμ can be estimated
by the gravitational collapse calculation of the white dwarfs at
the onset of neutrino trapping. Such calculation has indicated
that the following constraint on Ye can be imposed [1]:

Ye = xe + xνe
≈ 0.4. (27)

Moreover, since no muons are present when neutrinos become
trapped, the following relation must hold [1]:

Yμ = xμ − xν̄μ
= 0. (28)

Therefore, we fix the Yl at those values. For the sake of
comparison, the value of Ye = 0.3 is also considered in the
present work. The chemical potential of leptons and their
neutrinos at a given temperature can be calculated by using
Eqs. (8) and (9) with

εi(k) =
√

(�kic)2 + m2
i c

4, i = e,μ, (29)

and

εi(k) = �kic, i = νe,νμ, (30)

where εi(k) is the single-particle energy of the species i.
Since the relation of μν̄ = −μν is held between the chemical
potential of particles and their antiparticles, the chemical
potential of muon antineutrino can also be determined. By
solving Eqs. (24) and (25) together with Eqs. (27) and (28)
self-consistently at a given temperature and baryon density,
the energy per baryon of each lepton is determined by using
the general equation of

EL
i = 1

π2ρB

∫ ∞

0
εi(k)ni(k)k2dk, i = e,μ,νe,ν̄μ. (31)

The entropy per baryon of leptons is also written as

SL = − KB

	ρB

∑
k,i

[(1 − ni(k))ln(1 − ni(k)) + ni(k)ln(ni(k))].

(32)

Therefore, the Helmholtz free energy per baryon of leptons
can be calculated by using the following equation:

FL =
∑

i

EL
i − T SL. (33)

At this stage the free energy per baryon of the PNS matter
denoted by F/A, which is defined as

F/A = FB + FL, (34)

can be determined at a given temperature and baryon density.
In order to study the structure of the PNS, the isentropic

description of hot stellar matter is required. Having the free
energy per particle at a given density for several values of
temperature, the entropy per baryon can be calculated from
the following relation:

S

A
= −

(
∂F/A

∂T

)
ρB

. (35)

By inserting the above relation in the equation

E

A
(ρB,X,S) = F

A
(ρB,X,S) + S

A
T (ρB,X), (36)

one can calculate the total energy per baryon E/A of the
system. The EOS is then given by the thermodynamic relation
of

P = ρ2
B

(
∂E/A

∂ρB

)
S

. (37)

Now by assuming the PNS as a spherically symmetric body of
isotropic material which is in static gravitational equilibrium,
its structure can be obtained from the hydrostatic equilibrium
equations, namely the Tolman-Openheimer-Volkoff (TOV)
equations [40] for the enclosed mass m and pressure P ,

dP (r)

dr
= −GM(r)ε(r)

c2r2

(
1 + P (r)

ε(r)

)(
1 + 4πr3P (r)

M(r)c2

)

×
(

1 − 2GM(r)

rc2

)−1

, (38)

dM(r)

dr
= 4πε(r)r2

c2
, (39)

where ε(r) is the total energy density and G denotes the
gravitational constant. By numerically integrating Eqs. (38)
and (39), the mass-radius relation of the PNS for a given
central energy density can be obtained. In the next section
we provide our results regarding the temperature dependence
of the TBF as well as the structure of the PNS.

IV. RESULTS AND DISCUSSION

We first discuss the effect of increasing the temperature
from zero to a finite one on the two-body correlation function
fT (r) and the corresponding effective two-body interaction
V̄12(r,T ). In the LOCV approach, two-body correlation func-
tions can be extracted for each two-body channel. It is shown
in our previous work [35] that the 1S0 channel two-body
correlation function has the most important contribution in
calculating the effective two-body interaction. Therefore, all
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FIG. 1. The temperature dependence of fT (r) at ρB = 0.17 fm−3

for SNM.

of the following results are obtained by using the mentioned
two-body correlation function in Eq. (21). The AV18 potential
is also used as the bare two-body interaction. As is mentioned
earlier, two parameters A and U of the UIX three-body force
are adjusted in order to obtain a correct saturation point of
cold SNM in the LOCV method. We use the values A =
−0.041 MeV and U = 0.000523 MeV, yielding a saturation
point at ρ0 = 0.1748 fm−3 and E0 = −15.58 MeV.

In order to study the temperature dependence of the
two-body correlation function, fT (r) is plotted in Fig. 1 for
several values of temperature at ρB = 0.17 fm−3 for SNM. As
it expected, it is seen that at a fix relative distance between two
particles, the correlation function is decreased by increasing
the temperature.

The effect of increasing the baryon density at a fix
temperature, namely T = 10 MeV, on fT (r) for symmetric
nuclear matter is shown in Fig. 2(a). It is seen that fT (r) slightly
decreases by increasing ρB , particularly after healing distance.
There is no significant difference between the values of fT (r)
at short distances and also after the effective potential range.

FIG. 2. (a) The density dependence of fT (r) at T = 10 MeV for
SNM. (b) Same as panel (a) but for V̄12(r,T ).

FIG. 3. The temperature dependence of the V 2π
στ component of

the effective two-body interaction at ρB = 0.17 fm−3 for SNM.

Figure 2(b) shows three components of the corresponding
effective two-body potential, namely Eqs. (23a) to (23c). It can
be seen that increasing the baryon density results in increasing
the absolute value of all three components of the effective
two-body potentials, as is expected, since the UIX three-body
force is a density-dependent one. Therefore, one can predict
that the repulsive effect of the TBF on the EOS will be stronger
by increasing the baryon density.

The effect of increasing the temperature on different
components of the effective two-body potential, i.e., V 2π

στ , V 2π
t ,

and V R
c for SNM at ρB = 0.17 fm−3 is shown in Figs. 3, 4,

and 5, respectively, for several values of temperature between
0 to 40 MeV. It can be concluded from these figures that the
absolute value of all components of V̄12(r,T ) decreases slightly
with temperature, as is expected since the two-body correlation
function which is used for obtaining V̄12(r,T ) shows the same
behavior (see Fig. 1).

In Fig. 6 the density and temperature dependence of
the Helmholtz free energy obtained following the procedure
discussed in Sec. II is shown for both SNM [Fig. 6(a)]

FIG. 4. Same as Fig. 3 but for the V 2π
t component.
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FIG. 5. Same as Fig. 3 but for the V R
c component.

and PNM [Fig. 6(b)]. The effect of adding the TBF to the
nuclear Hamiltonian on the free energy at different values
of temperature is also shown in this figure. It is seen that
because of the repulsive nature of the TBF, adding this force
to the Hamiltonian makes the free energy of both SNM and
PNM much stiffer at a given temperature compared to that
obtained by using only AV18 potential and also shifts the
saturation density toward lower densities in the case of SNM at
zero temperature. Moreover, because of the density-dependent
nature of the UIX three-body force, the repulsion from this
interaction becomes stronger at each given temperature by
increasing the baryon density, as is already concluded from
Fig. 2(b). Mentioned results are in general agreement with
those obtained within the BHF method [7].

As is mentioned in the text, in order to study the structure
of the PNS, it is more convenient to switch from an isothermal
to an isentropic description of hot and neutrino-trapped stellar
matter. The starting point of obtaining the isentropic EOS
of such matter is to find how the temperature changes as a

FIG. 6. (a) Free energy per baryon of the symmetric nuclear
matter as a function of density for different values of temperature
with and without the TBF. (b) Same as panel (a) but for the pure
neutron matter.

FIG. 7. (a) The temperature of the PNS matter as a function of
baryon density for different values of entropy per baryon obtained
with and without the TBF for Ye = 0.3. (b) Same as panel (a) but for
Ye = 0.4.

function of baryon density ρB , as is shown in Fig. 7. For the
sake of comparison, calculations are done for three different
values of entropy per baryon, S/A = 1,1.5,2 MeV, and two
values of lepton fraction, Yl = 0.3,0.4 [Figs. 7(a) and 7(b),
respectively], in both cases of using and not using the TBF. It
is seen that in general the temperature is an increasing function
of density. Moreover, higher values of temperature can be
reached at systems which have larger values of the entropy.
On the other hand, it is seen that the TBF dose not have a
significant effect on the behavior of temperature as a function
of density, particularly at the low-density region. However, the
role of the TBF becomes clearer in a system with lower value
of Ye [Fig. 7(a)], since such system contains a larger number of
neutrons and the TBF effects are stronger in such systems [see
Fig. 6(b)]. By comparing Figs. 7(a) and 7(b) one can notice
the effect of increasing the electron lepton family number Ye

on the relation between temperature and density of the PNS
matter at a fixed entropy. It can be concluded that as the relative

FIG. 8. (a) Relative population of the constituents of the PNS core
calculated by using AV18 potential and for Ye = 0.3 and S/A = 1.
(b) Same as panel (a) but for S/A = 2.
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FIG. 9. (a) Relative population of the constituents of the PNS core
calculated by using AV18 potential and for Ye = 0.4 and S/A = 1.
(b) Same as panel (a) but for S/A = 2.

population of electrons and electron neutrinos increases, the
temperature of the system decreases slightly at a given density
for a fixed entropy.

Another important quantity regarding the hot and trapped
stellar matter is the relative population xi of the particles. In
Figs. 8 to 11 the relative population of the constituents of
the PNS matter is plotted as a function of baryon density for
two values of S/A as well as two values of Ye. The results
obtained in the case of not using the TBF are plotted in Figs. 8
and 9. By comparing panels (a) and (b) of Figs. 8 and 9, It
can be concluded that at a fixed Ye, increasing the entropy
mostly affects the relative population of muons, results in
increasing the value of xμ, and also makes the muons appear at
lower densities. The same result is also reported in Ref. [16].
Moreover, it is seen that by increasing Ye, the relative fraction
of electron neutrinos increases correspondingly for all fixed
entropies, as is expected. The same behavior can be seen in
the case of using the TBF, i.e., Figs. 10 and 11. By comparing
Figs. 8 and 9 with Figs. 10 and 11, one can conclude that at a

FIG. 10. Relative population of the constituents of the PNS core
calculated by using AV18 + TBF potential and for Ye = 0.3 and
S/A = 1. (b) Same as panel (a) but for S/A = 2.

FIG. 11. Relative population of the constituents of the PNS core
calculated by using AV18 + TBF potential and for Ye = 0.4 and
S/A = 1. (b) Same as panel (a) but for S/A = 2.

fixed entropy and a fixed Ye, using the TBF shifts the relative
fraction of protons to larger values and correspondingly results
in smaller values of xνe

. The TBF also makes the muons appear
at lower densities compared to the case where the TBF is not
used. We also remark the large value of proton fraction in the
PNS which is in stark contrast to that of cold neutron stars.
The value of this quantity turns out to be almost independent
of entropy, particularly at high densities. An analysis of the
cause of large value of xp is given in Ref. [41].

In Figs. 12(a) and 12(b) the pressure of the PNS matter
obtained from Eq. (37) is plotted against the baryon density
for Ye = 0.3 [Fig. 12(a)] and Ye = 0.4 [Fig. 12(b)] at three
fixed entropies and also for two cases of using and not using
the TBF. It is seen that the EOS is not remarkably dependent
on the entropy and the lepton fraction. In contrast, the TBF
has a significant effect on the EOS of stellar matter because of
its repulsive contribution to the free energy.

FIG. 12. (a) The EOS of the proto-neutron star with Ye = 0.3
calculated with and without the TBF for some fixed values of the
entropy per baryon. (b) Same as panel (a) but for Ye = 0.4.
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FIG. 13. (a) The mass-radius relation of the proto-neutron star
with Ye = 0.3 calculated with and without the TBF for some fixed
values of the entropy per baryon. (b) Same as panel (a) but for
Ye = 0.4.

Let us now present our results regarding the PNS equi-
librium structure. The core of the hot and neutrino-trapped
PNS is described by the EOS presented above. A cold crust
is also considered for the PNS by joining this EOS with the
ones describe the medium- and low-density regimes obtained
by Negele and Vautherin [42] (0.001 < ρ < 0.08 fm−3 and
Baym et al. [43] (ρ < 0.001 fm−3), respectively. By choosing
an specific central energy density εc, the numerical integration
of Eqs. (38) and (39) is done until the zero pressure is reached
(the PNS surface). The resulting mass-radius relations for the
PNS are plotted in Fig. 13 for cases of both using and not
using the TBF and also for two different values of Ye. The
exact values of the maximum gravitational mass (in units of
the solar mass) and the corresponding radii are reported in
Table I together with those obtained within other methods
for comparison. It can be concluded that for a fixed value of
Ye the maximum mass does not strongly depend on entropy,
in contrast with the radius. However, since increasing the
entropy results in increasing the number of protons of the
system and correspondingly in softening the EOS, the value
of the maximum mass slightly decreases with increasing the
value of S/A. The same behavior is also seen in the results
presented in Ref. [7], as is reported in Table I. On the other
hand, as the value of Ye increases the relative population of
protons increases according to the charge neutrality condition
(as can be seen in Figs. 10 and 11) and the EOS of baryonic
part becomes softer. Therefore, a system with larger value
of Ye provides a smaller maximum mass compared to one
with smaller value of Ye with the same entropy. The effect
of using the TBF on the mass-radius relation of the PNS is
also shown in Fig.13. In general, as one can conclude from
Fig. 12, the EOSs calculated by using the TBF produce larger

TABLE I. The maximum mass and the corresponding radius
of the PNS obtained within the LOCV method as well as other
approaches for some values of entropy and lepton fraction.

Method Ye S/A R (km) M/M	

LOCV(2BF) 0.3 1 8.5 1.63
LOCV(2BF) 0.3 1.5 8.6 1.63
LOCV(2BF) 0.3 2 8.8 1.62
LOCV(2BF) 0.4 1 8.5 1.61
LOCV(2BF) 0.4 1.5 8.6 1.60
LOCV(2BF) 0.4 2 8.9 1.59
LOCV(2BF + TBF) 0.3 1 11.1 2.29
LOCV(2BF + TBF) 0.3 1.5 11.2 2.29
LOCV(2BF + TBF) 0.3 2 11.2 2.27
LOCV(2BF + TBF) 0.4 1 11.1 2.24
BHF(2BF + TBF) [7] 0.4 1 10.2 1.95
LOCV(2BF + TBF) 0.4 1.5 11.3 2.24
LOCV(2BF + TBF) 0.4 2 11.5 2.23
BHF(2BF + TBF) [7] 0.4 2 10.7 1.95
Effective field theory [18] 0.4 2 13.2 1.76

gravitational masses compared to those obtained by using only
two-body forces. More precisely, as can be seen in Figs. 13(a)
and 13(b), calculations based on only two-body interaction
result in maximum masses below 1.7 M	, while the models
containing TBF have maximum masses above 2M	, which is
in agreement with the values that has been recently reported
[44] for the mass of the neutron stars.

V. CONCLUSION

The LOCV formalism at finite temperature is extended
by introducing an effective two-body force. It turns out
that the absolute value of the mentioned force decreases
by temperature. By studying the relative population of the
constituents of the hot neutrion-trapped stellar matter, we
notice that the large values of proton fraction are available
in the PNS. Those values of proton fraction are found to be
almost independent of the entropy. It is also concluded that
the onset of muons is strongly sensitive to the entropy and
electron fraction as well as the TBF. In contrast, the maximum
gravitational mass of the PNS turns out to depend weakly on
the mentioned quantities. However, a slight decrease in the
value of the maximum mass by increasing the entropy and
electron fraction is observed. Finally, it is shown that the TBF
is required in the Hamiltonian in order to theoretically predict
a PNS with maximum masses above 2M	.

ACKNOWLEDGMENT

We thank the Research Council of University of Tehran for
the grants.

[1] M. Prakash, I. Bombaci, M. Prakash, P. J. Ellis, J. M. Lattimer,
and R. Knorren, Phys. Rep. 280, 1 (1997); H. A. Bethe, Rev.
Mod. Phys. 62, 801 (1990); K. Strobel, C. Sohaab, and M. K.

Weigel, Astron. Astrophys. 350, 497 (1999); G. F. Marranghello,
C. A. Z. Vasconcellos, and M. Dilling, Int. J. Mod. Phys. E 11,
83 (2002).

035806-8

http://dx.doi.org/10.1016/S0370-1573(96)00023-3
http://dx.doi.org/10.1016/S0370-1573(96)00023-3
http://dx.doi.org/10.1016/S0370-1573(96)00023-3
http://dx.doi.org/10.1016/S0370-1573(96)00023-3
http://dx.doi.org/10.1103/RevModPhys.62.801
http://dx.doi.org/10.1103/RevModPhys.62.801
http://dx.doi.org/10.1103/RevModPhys.62.801
http://dx.doi.org/10.1103/RevModPhys.62.801
http://dx.doi.org/10.1142/S0218301302000727
http://dx.doi.org/10.1142/S0218301302000727
http://dx.doi.org/10.1142/S0218301302000727
http://dx.doi.org/10.1142/S0218301302000727


PROTO-NEUTRON STAR STRUCTURE WITHIN AN . . . PHYSICAL REVIEW C 92, 035806 (2015)

[2] A. Burrows and J. M. Lattimer, Astrophys. J. 307, 178 (1986).
[3] W. Keil and H.-Th. Janka, Astron. Astrophys. 296, 145 (1995).
[4] J. A. Pons, S. Reddy, M. Prakash, J. M. Lattimer, and J. A.

Miralles, Astrophys. J. 513, 780 (1999).
[5] K. Sumiyoshi, H. Suzuki, and H. Toki, Astron. Astrophys. 303,

475 (1995).
[6] W. Zuo, Z. H. Li, A. Li, and G. C. Lu, Phys. Rev. C 69, 064001

(2004).
[7] M. Baldo and L. S. Ferreira, Phys. Rev. C 59, 682 (1999); G. F.

Burgio and H.-J. Schulze, Astron. Astrophys. 518, A17 (2010).
[8] B. Friedman and V. R. Pandharipande, Nucl. Phys. A 361, 502

(1981).
[9] J. D. Walecka, Ann. Phys. (NY) 83, 491 (1974).

[10] N. K. Glendenning, Nucl. Phys. A 469, 600 (1987); H. Muller
and B. D. Serot, Phys. Rev. C 52, 2072 (1995).

[11] G. Mahajan and S. K. Dhiman, Phys. Rev. C 84, 045804
(2011).

[12] T. Frick, H. Muther, A. Rios, A. Polls, and A. Ramos, Phys.
Rev. C 71, 014313 (2005).

[13] H. R. Moshfegh and M. Modarres, Nucl. Phys. A 749, 130
(2005).

[14] H. R. Moshfegh and M. Modarres, Nucl. Phys. A 792, 201
(2007).

[15] H. R. Moshfegh and M. Modarres, Nucl. Phys. A 759, 79 (2005).
[16] G. F. Burgio and H.-J. Schulze, Phys. At. Nucl. 72, 1197 (2009).
[17] G. Shen, arXiv:1202.5791v1 [astro-ph.HE].
[18] I. Bednarek and R. Manka, Phys. Rev. C 73, 045804 (2006).
[19] J. C. Owen, R. F. Bishop, and J. M. Irvine, Phys. Lett. B 59, 1

(1975).
[20] M. Modarres and J. M. Irvine, J. Phys. G: Nucl. Phys. 5, 511

(1979).
[21] R. V. Reid, Ann. Phys. (NY) 50, 411 (1968).
[22] A. M. Green, J. A. Niskanen, and M. E. Sainio, J. Phys. G: Nucl.

Part. Phys. 4, 1055 (1978).
[23] M. Modarres, J. Phys. G: Nucl. Part. Phys. 19, 1349 (1993).
[24] M. Modarres, J. Phys. G: Nucl. Part. Phys. 21, 351 (1995).
[25] M. Modarres and H. R. Moshfegh, Phys. Rev. C 62, 044308

(2000); ,Prog. Theor. Phys. 107, 139 (2002).

[26] S. Zaryouni and H. R. Moshfegh, Eur. Phys. J. A 45, 69
(2010).

[27] S. Zaryouni, M. Hassani, and H. R. Moshfegh, Phys. Rev. C 89,
014332 (2014).

[28] R. B. Wiringa, R. A. Smith, and T. L. Ainsworth, Phys. Rev. C
29, 1207 (1984).

[29] R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C
51, 38 (1995).

[30] I. E. Lagaris and V. R. Pandharipande, Nucl. Phys. A 359, 331
(1981).

[31] M. Modarres, A. Rajabi, and H. R. Moshfegh, Phys. Rev. C 76,
064311 (2007).

[32] M. Modarres, H. R. Moshfegh, and K. Fallahi, Eur. Phys. J. B
36, 485 (2003).

[33] B. S. Pudliner, V. R. Pandharipande, J. Carlson, and R. B.
Wiringa, Phys. Rev. Lett. 74, 4396 (1995); B. S. Pudliner, V. R.
Pandharipande, J. Carlson, S. C. Pieper, and R. B. Wiringa,
Phys. Rev. C 56, 1720 (1997).

[34] S. C. Pieper, V. R. Pandharipande, R. B. Wiringa, and J. Carlson,
Phys. Rev. C 64, 014001 (2001).

[35] S. Goudarzi and H. R. Moshfegh, Phys. Rev. C 91, 054320
(2015).

[36] J. W. Clark, Prog. Part. Nucl. Phys. 2, 89 (1979).
[37] G. H. Bordbar and M. Modarres, Phys. Rev. C 57, 714 (1998).
[38] A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Body

System (McGraw-Hill, New York, 1971).
[39] T. Takatsuka, S. Nishizaki, and J. Hiura, Prog. Theor. Phys. 92,

779 (1994).
[40] J. Oppenheimer and G. Volkoff, Phys. Rev. 55, 374 (1939).
[41] T. Takatsuka, S. Nishizaki, and J. Hiura, Prog. Theor. Phys. 89,

551 (1993).
[42] J. W. Negele and D. Vautherin, Nucl. Phys. A 207, 298

(1973).
[43] G. Baym, C. Pethick, and D. Sutherland, Astrophys. J. 170, 299

(1971).
[44] P. B. Demorest, T. Pennucci, S. M. Ransom, M. S. E. Roberts,

and J. W. T. Hessels, Nature (London) 467, 1081 (2010);
J. Antoniadis et al., Science 340, 6131 (2013).

035806-9

http://dx.doi.org/10.1086/164405
http://dx.doi.org/10.1086/164405
http://dx.doi.org/10.1086/164405
http://dx.doi.org/10.1086/164405
http://dx.doi.org/10.1086/306889
http://dx.doi.org/10.1086/306889
http://dx.doi.org/10.1086/306889
http://dx.doi.org/10.1086/306889
http://dx.doi.org/10.1103/PhysRevC.69.064001
http://dx.doi.org/10.1103/PhysRevC.69.064001
http://dx.doi.org/10.1103/PhysRevC.69.064001
http://dx.doi.org/10.1103/PhysRevC.69.064001
http://dx.doi.org/10.1103/PhysRevC.59.682
http://dx.doi.org/10.1103/PhysRevC.59.682
http://dx.doi.org/10.1103/PhysRevC.59.682
http://dx.doi.org/10.1103/PhysRevC.59.682
http://dx.doi.org/10.1051/0004-6361/201014308
http://dx.doi.org/10.1051/0004-6361/201014308
http://dx.doi.org/10.1051/0004-6361/201014308
http://dx.doi.org/10.1051/0004-6361/201014308
http://dx.doi.org/10.1016/0375-9474(81)90649-7
http://dx.doi.org/10.1016/0375-9474(81)90649-7
http://dx.doi.org/10.1016/0375-9474(81)90649-7
http://dx.doi.org/10.1016/0375-9474(81)90649-7
http://dx.doi.org/10.1016/0003-4916(74)90208-5
http://dx.doi.org/10.1016/0003-4916(74)90208-5
http://dx.doi.org/10.1016/0003-4916(74)90208-5
http://dx.doi.org/10.1016/0003-4916(74)90208-5
http://dx.doi.org/10.1016/0375-9474(87)90015-7
http://dx.doi.org/10.1016/0375-9474(87)90015-7
http://dx.doi.org/10.1016/0375-9474(87)90015-7
http://dx.doi.org/10.1016/0375-9474(87)90015-7
http://dx.doi.org/10.1103/PhysRevC.52.2072
http://dx.doi.org/10.1103/PhysRevC.52.2072
http://dx.doi.org/10.1103/PhysRevC.52.2072
http://dx.doi.org/10.1103/PhysRevC.52.2072
http://dx.doi.org/10.1103/PhysRevC.84.045804
http://dx.doi.org/10.1103/PhysRevC.84.045804
http://dx.doi.org/10.1103/PhysRevC.84.045804
http://dx.doi.org/10.1103/PhysRevC.84.045804
http://dx.doi.org/10.1103/PhysRevC.71.014313
http://dx.doi.org/10.1103/PhysRevC.71.014313
http://dx.doi.org/10.1103/PhysRevC.71.014313
http://dx.doi.org/10.1103/PhysRevC.71.014313
http://dx.doi.org/10.1016/j.nuclphysa.2004.12.021
http://dx.doi.org/10.1016/j.nuclphysa.2004.12.021
http://dx.doi.org/10.1016/j.nuclphysa.2004.12.021
http://dx.doi.org/10.1016/j.nuclphysa.2004.12.021
http://dx.doi.org/10.1016/j.nuclphysa.2007.04.013
http://dx.doi.org/10.1016/j.nuclphysa.2007.04.013
http://dx.doi.org/10.1016/j.nuclphysa.2007.04.013
http://dx.doi.org/10.1016/j.nuclphysa.2007.04.013
http://dx.doi.org/10.1016/j.nuclphysa.2005.04.021
http://dx.doi.org/10.1016/j.nuclphysa.2005.04.021
http://dx.doi.org/10.1016/j.nuclphysa.2005.04.021
http://dx.doi.org/10.1016/j.nuclphysa.2005.04.021
http://dx.doi.org/10.1134/S1063778809070126
http://dx.doi.org/10.1134/S1063778809070126
http://dx.doi.org/10.1134/S1063778809070126
http://dx.doi.org/10.1134/S1063778809070126
http://arxiv.org/abs/arXiv:1202.5791v1
http://dx.doi.org/10.1103/PhysRevC.73.045804
http://dx.doi.org/10.1103/PhysRevC.73.045804
http://dx.doi.org/10.1103/PhysRevC.73.045804
http://dx.doi.org/10.1103/PhysRevC.73.045804
http://dx.doi.org/10.1016/0370-2693(75)90139-2
http://dx.doi.org/10.1016/0370-2693(75)90139-2
http://dx.doi.org/10.1016/0370-2693(75)90139-2
http://dx.doi.org/10.1016/0370-2693(75)90139-2
http://dx.doi.org/10.1088/0305-4616/5/4/016
http://dx.doi.org/10.1088/0305-4616/5/4/016
http://dx.doi.org/10.1088/0305-4616/5/4/016
http://dx.doi.org/10.1088/0305-4616/5/4/016
http://dx.doi.org/10.1016/0003-4916(68)90126-7
http://dx.doi.org/10.1016/0003-4916(68)90126-7
http://dx.doi.org/10.1016/0003-4916(68)90126-7
http://dx.doi.org/10.1016/0003-4916(68)90126-7
http://dx.doi.org/10.1088/0305-4616/4/7/013
http://dx.doi.org/10.1088/0305-4616/4/7/013
http://dx.doi.org/10.1088/0305-4616/4/7/013
http://dx.doi.org/10.1088/0305-4616/4/7/013
http://dx.doi.org/10.1088/0954-3899/19/9/013
http://dx.doi.org/10.1088/0954-3899/19/9/013
http://dx.doi.org/10.1088/0954-3899/19/9/013
http://dx.doi.org/10.1088/0954-3899/19/9/013
http://dx.doi.org/10.1088/0954-3899/21/3/010
http://dx.doi.org/10.1088/0954-3899/21/3/010
http://dx.doi.org/10.1088/0954-3899/21/3/010
http://dx.doi.org/10.1088/0954-3899/21/3/010
http://dx.doi.org/10.1103/PhysRevC.62.044308
http://dx.doi.org/10.1103/PhysRevC.62.044308
http://dx.doi.org/10.1103/PhysRevC.62.044308
http://dx.doi.org/10.1103/PhysRevC.62.044308
http://dx.doi.org/10.1143/PTP.107.139
http://dx.doi.org/10.1143/PTP.107.139
http://dx.doi.org/10.1143/PTP.107.139
http://dx.doi.org/10.1143/PTP.107.139
http://dx.doi.org/10.1140/epja/i2010-10983-1
http://dx.doi.org/10.1140/epja/i2010-10983-1
http://dx.doi.org/10.1140/epja/i2010-10983-1
http://dx.doi.org/10.1140/epja/i2010-10983-1
http://dx.doi.org/10.1103/PhysRevC.89.014332
http://dx.doi.org/10.1103/PhysRevC.89.014332
http://dx.doi.org/10.1103/PhysRevC.89.014332
http://dx.doi.org/10.1103/PhysRevC.89.014332
http://dx.doi.org/10.1103/PhysRevC.29.1207
http://dx.doi.org/10.1103/PhysRevC.29.1207
http://dx.doi.org/10.1103/PhysRevC.29.1207
http://dx.doi.org/10.1103/PhysRevC.29.1207
http://dx.doi.org/10.1103/PhysRevC.51.38
http://dx.doi.org/10.1103/PhysRevC.51.38
http://dx.doi.org/10.1103/PhysRevC.51.38
http://dx.doi.org/10.1103/PhysRevC.51.38
http://dx.doi.org/10.1016/0375-9474(81)90240-2
http://dx.doi.org/10.1016/0375-9474(81)90240-2
http://dx.doi.org/10.1016/0375-9474(81)90240-2
http://dx.doi.org/10.1016/0375-9474(81)90240-2
http://dx.doi.org/10.1103/PhysRevC.76.064311
http://dx.doi.org/10.1103/PhysRevC.76.064311
http://dx.doi.org/10.1103/PhysRevC.76.064311
http://dx.doi.org/10.1103/PhysRevC.76.064311
http://dx.doi.org/10.1140/epjb/e2004-00004-6
http://dx.doi.org/10.1140/epjb/e2004-00004-6
http://dx.doi.org/10.1140/epjb/e2004-00004-6
http://dx.doi.org/10.1140/epjb/e2004-00004-6
http://dx.doi.org/10.1103/PhysRevLett.74.4396
http://dx.doi.org/10.1103/PhysRevLett.74.4396
http://dx.doi.org/10.1103/PhysRevLett.74.4396
http://dx.doi.org/10.1103/PhysRevLett.74.4396
http://dx.doi.org/10.1103/PhysRevC.56.1720
http://dx.doi.org/10.1103/PhysRevC.56.1720
http://dx.doi.org/10.1103/PhysRevC.56.1720
http://dx.doi.org/10.1103/PhysRevC.56.1720
http://dx.doi.org/10.1103/PhysRevC.64.014001
http://dx.doi.org/10.1103/PhysRevC.64.014001
http://dx.doi.org/10.1103/PhysRevC.64.014001
http://dx.doi.org/10.1103/PhysRevC.64.014001
http://dx.doi.org/10.1103/PhysRevC.91.054320
http://dx.doi.org/10.1103/PhysRevC.91.054320
http://dx.doi.org/10.1103/PhysRevC.91.054320
http://dx.doi.org/10.1103/PhysRevC.91.054320
http://dx.doi.org/10.1016/0146-6410(79)90004-8
http://dx.doi.org/10.1016/0146-6410(79)90004-8
http://dx.doi.org/10.1016/0146-6410(79)90004-8
http://dx.doi.org/10.1016/0146-6410(79)90004-8
http://dx.doi.org/10.1103/PhysRevC.57.714
http://dx.doi.org/10.1103/PhysRevC.57.714
http://dx.doi.org/10.1103/PhysRevC.57.714
http://dx.doi.org/10.1103/PhysRevC.57.714
http://dx.doi.org/10.1143/ptp/92.4.779
http://dx.doi.org/10.1143/ptp/92.4.779
http://dx.doi.org/10.1143/ptp/92.4.779
http://dx.doi.org/10.1143/ptp/92.4.779
http://dx.doi.org/10.1103/PhysRev.55.374
http://dx.doi.org/10.1103/PhysRev.55.374
http://dx.doi.org/10.1103/PhysRev.55.374
http://dx.doi.org/10.1103/PhysRev.55.374
http://dx.doi.org/10.1143/ptp/89.2.551
http://dx.doi.org/10.1143/ptp/89.2.551
http://dx.doi.org/10.1143/ptp/89.2.551
http://dx.doi.org/10.1143/ptp/89.2.551
http://dx.doi.org/10.1016/0375-9474(73)90349-7
http://dx.doi.org/10.1016/0375-9474(73)90349-7
http://dx.doi.org/10.1016/0375-9474(73)90349-7
http://dx.doi.org/10.1016/0375-9474(73)90349-7
http://dx.doi.org/10.1086/151216
http://dx.doi.org/10.1086/151216
http://dx.doi.org/10.1086/151216
http://dx.doi.org/10.1086/151216
http://dx.doi.org/10.1038/nature09466
http://dx.doi.org/10.1038/nature09466
http://dx.doi.org/10.1038/nature09466
http://dx.doi.org/10.1038/nature09466
http://dx.doi.org/10.1126/science.1233232
http://dx.doi.org/10.1126/science.1233232
http://dx.doi.org/10.1126/science.1233232
http://dx.doi.org/10.1126/science.1233232



