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The magnetic-dipole form factor and the ratios REM and RSM for the γ ∗N → �(1232) 3
2

+
transition are

predicted within the light-front relativistic quark model up to photon virtuality Q2 = 12 GeV2. We also predict
the helicity amplitudes of the γ ∗N → �(1600) 3

2

+
transition assuming that the �(1600) 3

2

+
is the first radial

excitation of the ground state �(1232) 3
2

+
.
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I. INTRODUCTION

One of the longstanding and intriguing problems of hadron
physics is the identification of the states that can be assigned as
the first radial excitations of the nucleon and �(1232) 3

2
+

. It is
well recognized that the crucial role in the identification of the
Roper resonance N (1440) 1

2
+

as a predominantly first radial
excitation of the three-quark (3q) ground state belongs to the
measurements by the CLAS Collaboration [1–6] that resulted
in the determination of the electrocouplings of this resonance
with the proton in a wide range of Q2 = 0.3–4.2 GeV2.
Comparison of the γ ∗p → N (1440) 1

2
+

transition amplitudes
extracted from these data [7,8] with the predictions of
the light-front relativistic quark models (LF RQM) [9,10]
provided strong evidence for the N (1440) 1

2
+

as a member
of the multiplet [56,0+]r , with additional non-three-quark
contributions needed to describe the low-Q2 behavior of the
amplitudes.

Our goal in this paper is computation of the γ ∗N →
�(1600) 3

2
+

transition amplitudes in the LF RQM. Comparison
of the results obtained in the quark model with the amplitudes
that are expected to be extracted from experimental data
will provide an important test for the commonly expected
assignment of the �(1600) 3

2
+

as the first radial excitation of the

�(1232) 3
2

+
. Very recently, the CLAS data on the differential

cross sections of the exclusive process ep → eπ+n were
reported in the range of Q2 = 1.8–4 GeV2 and the invariant
mass range of the π+n final state W = 1.6–2.0 GeV [11].
These data combined with the earlier CLAS data [6] on the
cross sections and longitudinally polarized beam asymmetries
for this reaction in the lower mass range W = 1.15–1.69 GeV
and at close values of Q2 allowed the extraction of the
electroexcitation amplitudes of the resonances N (1675) 5

2

−
,

N (1680) 5
2

+
, and N (1710) 1

2
+

in the third resonance region. The

isotopic pairs of the resonances from this region, �(1600) 3
2

+

and N (1720) 3
2

+
, �(1620) 1

2
−

and N (1650) 1
2

−
, and �(1700) 3

2
−

and N (1700) 3
2

−
, could not be separated from each other

using data from a single isospin channel. Currently new
data are in preparation by the CLAS Collaboration for the
ep → epπ0 process in the same kinematics region as the
data in the ep → enπ+ channel [6,11], as well as at lower
Q2. The two-channel analysis will allow the extraction of the

electroexcitation amplitudes of all resonances from the third
resonance region including the �(1600) 3

2
+

.
The approach we use is based on the LF dynamics and

is formulated in Refs. [12,13]. In numerous applications
(see Refs. [10,14] and references therein), this approach was
utilized for the investigation of nucleon form factors and
electroexcitation of nucleon resonances.

In this work we study the electroexcitation of the
�(1600) 3

2
+

in parallel with that of the �(1232) 3
2

+
, where

we complement the results obtained earlier in Ref. [14] by
computing all three form factors that describe the transition
γ ∗N → �(1232) 3

2
+

. In Refs. [15,16] it was shown that there
are difficulties in the utilization of the LF approaches for
hadrons with spin J � 1. In the approach of Ref. [13],
these difficulties limit the number of transition amplitudes
that can be investigated for the �(1232) 3

2
+

and �(1600) 3
2

+
.

Reliable results can be obtained only for two of the three
transition form factors. They are based on the utilization of
longitudinal components of the electromagnetic current J 0,z

em .
For the �(1232) 3

2
+

, the results obtained for two transition
form factors have been presented in Ref. [14]. In the present
work, we complement these results by calculating the third
transition form factor using J x

em + iJ
y
em. As was shown in

Ref. [13], these results are less reliable, as the matrix elements
of transverse components of the electromagnetic current can
contain contributions that violate impulse approximation, i.e.,
contributions of diagrams containing vertices such as γ ∗ →
qq̄. Similar problem exists in the LF RQM of Refs. [9,16],
where the requirement of rotational covariance cannot be
satisfied without introducing two- and three-body current
operators. For this reason, the results for the electroex-
citation amplitudes for the resonances with spins J = 3

2
are presented in Ref. [9] along with curves which show
possible uncertainties that can be caused by the violation
of the rotational covariance. When presenting our results we
also demonstrate the uncertainties that can arise due to the
inclusion of the transverse components of the electromagnetic
current.

An important aspect in the comparison of the transition
amplitudes obtained in theoretical approaches with the am-
plitudes extracted from experimental data is their sign (see,
for example, Ref. [17]). The results on the γ ∗N → N∗
transition amplitudes extracted from experimental data contain

0556-2813/2015/92(3)/035211(6) 035211-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.92.035211


I. G. AZNAURYAN AND V. D. BURKERT PHYSICAL REVIEW C 92, 035211 (2015)

an additional sign related to the vertex of the resonance
coupling to the final state hadrons. In the electroproduction
of pions on nucleons this is the relative sign between the
πNN∗ and πNN vertices. For the Roper resonance, this sign
was found in Refs. [9] and [10] using, respectively, the 3P0

model and the approach based on partial conservation of axial
current (PCAC) in the way suggested in Ref. [18]. The results
obtained in both approaches are consistent with each other. In
Sec. II, we determine the relative signs of the vertices πNN ,
πN�(1232), and πN�(1600) using the approach based on
PCAC.

Our goals, and the ranges of Q2 where we make predictions,
for the resonances �(1232) 3

2
+

and �(1600) 3
2

+
are different.

For the �(1600) 3
2

+
, we make predictions that are of interest

to reveal the nature of this resonance using the existing and
future CLAS data at Q2 < 4 GeV2. For the �(1232) 3

2
+

, our
goal is to make predictions up to 12GeV2. These results will
be important for the interpretation of future data on γ ∗p →
�(1232) 3

2
+

that are expected with the Jefferson Lab 12 GeV
upgrade.

In Sec. II we present the LF RQM formalism to compute
the γ ∗N → � transition amplitudes. The results for both
resonances are presented and discussed in Sec. III and
summarized in Sec. IV.

II. THE γ ∗ N → � TRANSITION AMPLITUDES IN LF RQM

The γ ∗N → �(1232) 3
2

+
and γ ∗N → �(1600) 3

2
+

am-
plitudes have been evaluated within the approach of Ref.
[13] where the LF RQM is formulated in the infinite mo-
mentum frame (IMF). The IMF is chosen in such a way
that the initial hadron moves along the z axis with the
momentum P → ∞, the virtual photon momentum is kμ =
(M2−m2−Q2

⊥
4P

,Q⊥, − M2−m2−Q2
⊥

4P
), the final hadron momentum

is P ′ = P + k, and Q2 ≡ −k2 = Q2
⊥; m and M are masses

of the nucleon and �, respectively. In this frame, the matrix
elements of the electromagnetic current for the γ ∗N → �
transition have the form

〈�,S ′
z|Jμ

em|N,Sz〉|P→∞

= 3eQa

∫
� ′+(p′

a,p
′
b,p

′
c)�μ

a �(pa,pb,pc)d�, (1)

where Sz and S ′
z are the projections of the hadron spins on the

z direction. In Eq. (1), it is supposed that the photon interacts
with quark a (the quarks in hadrons are denoted by a,b,c);
Qa is the charge of this quark in units of e (e2/4π = 1/137);
� and � ′ are wave functions in the vertices N (�) ↔ 3q; pi

and p′
i (i = a,b,c) are the quark momenta in IMF; d� is the

phase space volume; �
μ
a corresponds to the vertex of the quark

interaction with the photon:

xa�
x
a = 2pax + Qx + iQyσ

(a)
z , (2)

xa�
y
a = 2pay + Qy − iQxσ

(a)
z , (3)

�0
a = �z

a = 2P, (4)

where xa is the fraction of the initial hadron momentum carried
by the quark.

Let qi (i = a,b,c) be the three-momenta of initial quarks in
their center-of-mass system (c.m.s.): qa + qb + qc = 0. The
sets of the quark three-momenta in the IMF and in the c.m.s.
of the quarks are related as follows:

pi = xiP + qi⊥,
∑

i

xi = 1. (5)

According to results of Ref. [13], the wave function � is
related to the wave function in the c.m.s. of quarks through
Melosh matrices [19]:

� = U+(pa)U+(pb)U+(pc)�f ss�(qa,qb,qc). (6)

Here we have separated the flavor-spin-space (�f ss) and
spatial (�) parts of the c.m.s. wave function. The Melosh
matrices are

U (pi) = mq + M0xi + iεlmσlqim√
(mq + M0xi)2 + q2

i⊥
, (7)

where mq is the quark mass and M0 is the invariant mass of
the system of initial quarks:

M2
0 =

(∑
i

pi

)2

=
∑

i

q2
i⊥ + m2

q

xi

. (8)

In the c.m.s. of quarks,

M0 =
∑

i

ωi, ωi =
√

m2
q + q2

i , qiz + ωi = M0xi. (9)

For the final state quarks, the quantities defined by
Eqs. (5)–(9) are expressed through p′

i , q′
i , and M ′

0. The phase
space volume in Eq. (1) has the form

d� = (2π )−6 dqb⊥dqc⊥dxbdxc

4xaxbxc

. (10)

To study sensitivity to the form of the quark wave function,
we employed two forms of the spatial wave function:

�
(1)
N(�) = N

(1)
N(�) exp

(−M2
0 /6α2

1

)
, (11)

�
(1)
�r

= N
(1)
�r

(
β2

1 − M2
0

)
exp

(−M2
0

/
6α2

1

)
(12)

and

�
(2)
N(�) = N

(2)
N(�) exp

[−(
q2

a + q2
b + q2

c

)/
2α2

2

]
, (13)

�
(2)
�r

= N
(2)
�r

[
β2

2 − (
q2

a + q2
b + q2

c

)]
× exp

[−(
q2

a + q2
b + q2

c

)/
2α2

2

]
(14)

that were used, respectively, in Refs. [12,13] and [9]. The
parameters N and β are determined by the conditions∫

�2
N(�,�r )d� = 1,

∫
�N(�)��r

d� = 0. (15)

To distinguish between ground state �(1232) and the
�(1600), considered to be a member of the multiplet [56,0+]r ,
we have used in Eqs. (11)–(15) notations � and �r .

Other parameters of the model, namely, the quark mass mq

and the oscillator parameter α, were found in Ref. [14] from
the description of nucleon form factors up to Q2 = 16 GeV2.
For the spatial wave functions (11) and (13), they have,
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respectively, the following form:

α1 = 0.37 GeV, m(1)
q (Q2) = 0.22 GeV

1 + Q2/56 GeV2 , (16)

α2 = 0.41 GeV, m(2)
q (Q2) = 0.22 GeV

1 + Q2/18 GeV2 . (17)

For both resonances, the results for the transition amplitudes
obtained with the wave functions (11,12) and (13,14) and
corresponding parameters (16) and (17) turned out to be very
close to each other.

Electroexcitation of the states with JP = 3
2

+
on the nucleon

is described by three form factors G1(Q2), G2(Q2), and
G3(Q2), which we define according to Refs. [17,20] in the
following way:

〈
�,JP = 3

2
+∣∣Jμ

em

∣∣N 〉 ≡ eūν(P ′)γ5�
νμu(P ), (18)

�νμ(Q2) = G1Hνμ
1 + G2Hνμ

2 + G3Hνμ
3 , (19)

Hνμ
1 = k/gνμ − kνγ μ, (20)

Hνμ
2 = kνP ′μ − (kP ′)gνμ, (21)

Hνμ
3 = kνkμ − k2gνμ, (22)

where u(P ) and uν(P ′) are, respectively, the Dirac and
Rarita-Schwinger spinors. These form factors have been found
through the matrix elements (1) using the relations

1

2P

〈
�,

3

2

∣∣∣∣J 0,z
em

∣∣∣∣N,
1

2

〉∣∣∣∣
P→∞

= − Q√
2

[
G1(Q2) + M − m

2
G2(Q2)

]
, (23)

1

2P

〈
�,

3

2

∣∣∣∣J 0,z
em

∣∣∣∣N, − 1

2

〉∣∣∣∣
P→∞

= Q2

2
√

2
G2(Q2), (24)

〈
�,

3

2

∣∣∣∣J x
em + iJ y

em

∣∣∣∣N, − 1

2

〉∣∣∣∣
P→∞

= Q3

√
2
G3(Q2). (25)

The relations between form factors G1(Q2), G2(Q2), and
G3(Q2) and the γ ∗N → �( 3

2
+

) helicity amplitudes and the
Jones-Scadron form factors GM (Q2), GE(Q2), and GC(Q2)
[21] are given in the Appendix.

In the approach based on PCAC, the relative signs of the
πNN , πN�(1232), and πN�(1600) vertices are determined
according to Refs. [10,15] by the relative signs of the
expressions

INA ≡
∫

(mq + M0xa)2 − q2
a⊥

(mq + M0xa)2 + q2
a⊥

�N

(
M2

0

)
�A

(
M2

0

)
d�, (26)

where A denotes the states N , �(1232), and �(1600).
Numerical calculation of INN , IN�(1232), and IN�(1600) with
the wave functions (11)–(14) gives positive relative signs for
the πNN , πN�(1232), and πN�(1600) vertices.

0
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FIG. 1. The form factor GM,Ash(Q2) for the γ ∗p → �(1232) 3
2

+

transition relative to 3GD: GD(Q2) = 1/(1 + Q2

0.71 GeV2 ). The full
boxes are the CLAS data extracted in the analysis of Ref. [8]; the
open boxes correspond to the data from Ref. [23]. The bands show
the model uncertainties of these data [8,17]. The thin solid curve is the
result of the global analysis of the Mainz group [24]. The results from
other experiments are open triangles [25–27], open cross [28–30],
open rhombuses [31], and open circle [32,33]. The thick solid curve
presents our results. The dashed curves demonstrate the sensitivity
of these results to the form factor G3(Q2) (25); they correspond to
G3(Q2) taken with ±50% deviation from the values obtained using
the relation (25). The dotted curves show the uncertainty of our results
(given by the solid curve) that is caused by the uncertainty of c�

(31). The dashed-dotted curve is the meson-baryon contribution from
Refs. [34,35].

III. RESULTS

A. The �(1232) 3
2

+
resonance

We present the results for the �(1232) 3
2

+
in terms

of the γ ∗p → �(1232) 3
2

+
magnetic-dipole transition form

factor in the Ash convention [22] (Fig. 1) and the ra-
tios REM ≡ Im E

3/2
1+ / Im M

3/2
1+ and RSM ≡ Im S

3/2
1+ / Im M

3/2
1+

(Fig. 2). These observables are commonly used to present
the results on the �(1232) 3

2
+

extracted from experimental
data on the electroproduction of pions on nucleons. The
γ ∗p → �(1232) 3

2
+

magnetic-dipole form factor in the Ash
convention is related to the Jones-Scadron form factor defined
in the Appendix as follows:

GM,Ash(Q2) = GM (Q2)√
1 + Q2

(M+m)2

. (27)

The ratios REM and RSM are related to the Jones-Scadron
form factors by

REM = − GE

GM

, RSM = − GC

GM

K

2m
, (28)
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FIG. 2. The ratios REM and RSM for the γ ∗p → �(1232) 3
2

+

transition. The legend for experimental data and thick solid and
dashed curves is as for Fig. 1.

where K is the virtual photon three-momentum in the c.m.s.
of the reaction γ ∗N → πN :

K ≡
√

Q+Q−
2M

, Q± ≡ (M ± m)2 + Q2. (29)

As mentioned in the Introduction, in the approach that we
utilize [13], the results that are reliable are obtained through
longitudinal components of the electromagnetic current J 0,z

em ,
i.e., the results for the form factors G1(Q2) and G2(Q2) [(23)
and (24)]. These results have been presented and discussed
in Ref. [14]. In this paper, we complement the results for
G1(Q2) and G2(Q2) by calculating the third transition form
factor G3(Q2) using J x

em + iJ
y
em (25). This allows us to present

the predictions in a more convenient way in terms of GM,Ash

and REM and RSM . In order to demonstrate the sensitivity
of GM,Ash, REM , and RSM to the inclusion of the transverse
components of the electromagnetic current, we also present in
Figs. 1 and 2 results that correspond to the values of G3(Q2)
taken with ±50% deviation from the values obtained using the
relation (25).

It is known that, at relatively small Q2, nearly mass-
less pions generate pion-loop contributions that significantly
alter the three-quark contribution to γ ∗p → �(1232) 3

2
+

.
It is expected that the corresponding hadronic component,
including contributions from other mesons, will be rapidly
losing strength with increasing Q2. From the description
of the data on pion electroproduction on protons within
the dynamical reaction model [34,35], it follows that the
contribution associated with the meson-baryon contribution
to γ ∗p → �(1232) 3

2
+

(dashed-dotted curve in Fig. 1) can be
neglected above Q2 = 4 GeV2. Therefore, the weight of the
3q contribution to the �(1232) 3

2
+

,

|�(1232)〉 = c�|3q〉 + · · · , (30)

was found in Ref. [14] from the description of the form factors
G1(Q2) and G2(Q2) at Q2 > 4 GeV2:

c� = 0.53 ± 0.04. (31)

The uncertainty of c� is caused mainly by the systematic
uncertainties of the data on GM,Ash(Q2) at these Q2. We have
used the value of c� from Eq. (31) to find the three-quark
contributions to GM,Ash(Q2) and REM and RSM , which are
presented in Figs. 1 and 2.

From the discussion above, it follows that, at Q2 < 4 GeV2,
meson-baryon contributions alter the three-quark contribution
to γ ∗p → �(1232) 3

2
+

. With this, for the magnetic-dipole form
factor, these contributions definitely result in better agreement
with experiment [34–38]. Above 4–5 GeV2, we expect that the
γ ∗p → �(1232) 3

2
+

transition will be determined by the three-
quark contribution only. Therefore, we consider our results at
these Q2 as predictions for the γ ∗p → �(1232) 3

2
+

transition
amplitudes obtained within the nonperturbative approach.

For the form factor GM,Ash(Q2), the sensitivity of our pre-
dictions to the possible uncertainties of the form factor G3(Q2)
seems insignificant. According to our results, we expect that
above 5 GeV2 the behavior of the ratio GM,Ash(Q2)/GD(Q2)
will become more flat in comparison with that at lower Q2.
A similar Q2 dependence is observed for the proton magnetic
form factor [39]. For the Jones-Scadron magnetic-dipole form
factor GM (Q2) and the proton magnetic form factor GM,p(Q2),
the Q2 dependences at Q2 = 5–12 GeV2 practically coincide.

For the ratios REM and RSM , the sensitivity of predictions
to G3(Q2) is more significant. Nevertheless, for the ratio RSM

one can conclude that it will continue to grow and within
the Q2 = 12 GeV2 limit will not reach the value predicted in
pQCD, i.e., RSM → const with undefined sign and magnitude.
On the other hand, in holographic QCD in the large-Nc limit
the RSM ratio is predicted at the specific asymptotic value
RSM → −100% [40]. The data show the correct trend, but are
projected to reach only 40% to 50% of that value at Q2 �
12 GeV2.

B. The �(1600) 3
2

+
resonance

The results for the resonance �(1600) 3
2

+
, considered to

be the first radial excitation of the ground state �(1232) 3
2

+
,

are presented in Fig. 3 in terms of the γ ∗p → �(1600) 3
2

+

helicity amplitudes. The predictions of the LF RQM approach
from Ref. [9] are also shown. The common sign of the
amplitudes has been found in our approach and in Ref. [9]
due to additional computation of the relative signs of the
πNN , πN�(1232), and πN�(1600) vertices using different
approaches. Both approaches predict specific behavior of the
transverse amplitudes: being large and negative at Q2 = 0,
they change signs at Q2 = 0.2–0.3 GeV2 and become quite
large and positive.

We want to emphasize that our predictions are related to
the |3q〉 content of the �(1600) 3

2
+

. In a relation similar to
Eq. (30) for this resonance, the coefficient c�r

as well the
meson-baryon contributions are unknown, and only an analysis
of the experimental transition amplitudes can determine
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FIG. 3. Helicity amplitudes for the γ ∗p → �(1600) 3
2

+
transition. The full triangles at Q2 = 0 are the Review of Particle Physics (RPP)

estimates [41]. The thick solid curve presents our LF RQM predictions. The legend for dashed curves is as for Fig. 1. The dashed-dotted curves
present the predictions from Ref. [9].

the relative strength of the three-quark and meson-baryon
contributions. We remark that a similar situation occurred
with the transition γ ∗p → N (1440) 1

2
+

, where the LF RQM
approaches [9,10] predicted a very rapid sign change of the
transverse amplitude near Q2 = 0.2 GeV2 to large positive
value with a relatively slow fall-off above Q2 > 1.5 GeV2.
The data showed a larger amplitude at the photon point and
a significant shift of the zero-crossing to higher Q2, which
could be attributed to meson-baryon contributions. The sign
change of this amplitude and its high Q2 behavior allowed
then the identification of the |3q〉 content of the state as a
radial excitation of the proton [7,8]. For the �(1600) 3

2
+

we
may expect a similar situation.

We mention that the LF RQM predictions for transverse
amplitudes at Q2 = 0 are in good agreement with experimental
data. However, the coefficient c�r

is unknown yet. Therefore,
we may not conclude that meson-baryon contributions are
small. A crucial test will be the behavior at low Q2, namely
the position of the zero-crossing, and also the behavior at Q2 =
2–4 GeV2, where we expect that the meson-baryon contribu-
tions can be neglected. Experimental data at Q2 = 2–4 GeV2

will allow us to find the coefficient c�r
. Then the real compari-

son of the quark model predictions for the γ ∗p → �(1600) 3
2

+

amplitudes with experimental data can be made with subse-
quent conclusions on the meson-baryon contributions.

IV. SUMMARY

We have employed the LF RQM to evaluate the quark
core contribution to the transition γ ∗N → �(1232) 3

2
+

and to

predict the γ ∗N → �(1600) 3
2

+
helicity amplitudes assuming

that the �(1600) 3
2

+
is the first radial excitation of the ground

state �(1232) 3
2

+
. Our previous evaluation of the three-quark

core contribution to the �(1232) 3
2

+
based on the γ ∗N →

�(1232) 3
2

+
data up to Q2 = 7.5 GeV2 allowed us to make

projections into unmeasured territory of Q2 � 12 GeV2. This
region may be covered in upcoming measurements with
CLAS12 at the Jefferson Lab 12 GeV upgrade. The projections
are made for the magnetic-dipole form factor and electric
and scalar quadrupole ratios REM (Q2) and RSM (Q2). For

the �(1600) 3
2

+
, the predictions are made in the range Q2 �

5 GeV2. The predicted very rapid transition from large negative
values at the real photon point to large positive values with
maxima near Q2 = 1–2 GeV2 for the two transverse ampli-
tudes should be readily accessible to experimental exploration.
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APPENDIX A: THE RELATIONS BETWEEN
THE γ ∗ N → �( 3

2
+

) FORM FACTORS
AND HELICITY AMPLITUDES

The relations between the form factors G1(Q2), G2(Q2),
and G3(Q2) defined by Eqs. (18)–(22) and the γ ∗N → �( 3

2
+

)
helicity amplitudes are [17,20]

A1/2 = h3X, A3/2 =
√

3h2X, S1/2 = h1
K√
2M

X, (A1)

where

h1(Q2) = 4MG1(Q2) + 4M2G2(Q2)

+ 2(M2 − m2 − Q2)G3(Q2), (A2)

h2(Q2) = −2(M + m)G1(Q2) − (M2 − m2 − Q2)G2(Q2)

+ 2Q2G3(Q2), (A3)

h3(Q2) = − 2

M
[Q2 + m(M + m)]G1(Q2)

+ (M2 − m2 − Q2)G2(Q2) − 2Q2G3(Q2),

(A4)

X ≡ e

√
Q−

48m(M2 − m2)
. (A5)
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The Jones-Scadron form factors GM (Q2), GE(Q2), and
GC(Q2) [21] are defined by

GM (Q2) = −Y (
√

3A3/2 + A1/2), (A6)

GE(Q2) = −Y (A3/2/
√

3 − A1/2), (A7)

GC(Q2) = 2
√

2
M

K
YS1/2, (A8)

Y ≡ m

e(M + m)

√
2m(M2 − m2)

Q−
. (A9)
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