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New statistical scission-point model to predict fission fragment observables
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and CEA, DAM, DIF, F-91297, Arpajon, France

Stefano Panebianco and Jean-Luc Sida
CEA Centre de Saclay, Irfu/Service de Physique Nucléaire, F-91191, Gif-sur-Yvette, France
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The development of high performance computing facilities makes possible a massive production of nuclear
data in a full microscopic framework. Taking advantage of the individual potential calculations of more than
7000 nuclei, a new statistical scission-point model, called SPY, has been developed. It gives access to the
absolute available energy at the scission point, which allows the use of a parameter-free microcanonical statistical
description to calculate the distributions and the mean values of all fission observables. SPY uses the richness of
microscopy in a rather simple theoretical framework, without any parameter except the scission-point definition,
to draw clear answers based on perfect knowledge of the ingredients involved in the model, with very limited
computing cost.
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I. INTRODUCTION

“A satisfactory theoretical interpretation of the asymmetric
mass distribution observed in nuclear fission at low excitation
energies has been sought since the discovery of this complex
nuclear reaction.” With this affirmation begins one of the major
reference papers on the interpretation of the fission process,
published in 1976 by Wilkins, Steinberg, and Chasman [1], and
it is still relevant forty years later despite a huge theoretical
and experimental effort. So what makes this physics process
so difficult to describe?

A proper fission reaction description faces all the difficulties
associated with theories describing the atomic nucleus. This
phenomenon only occurs for rather heavy nuclei for which
an exact quantum description of the many-body problem
is out of reach. However, several recent models seek to
provide a detailed description based on mean-field [2] and
macro-microscopic approaches [3–5]. It is not yet possible
to provide an exact description of the system by quantum
thermodynamics given the lack of knowledge on the partition
of numerous degrees of freedom involved during the system
evolution. In addition, they all require significant computing
time.

Together with theoretical developments, many experiments
have been performed since the 1980s to explore new fissioning
systems, from exotic light nuclei within the lead region [6],
up to new superheavy nuclei [7,8]. In addition, a very rich
set of data on the charge yields has been measured from
lead to uranium in inverse kinematics [9]. Taken together,
these data highlight a transition from symmetric fission for
proton-rich nuclei to asymmetric fission for neutron-rich
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nuclei. Understanding the origin of this transition requires
a fission model based on a coherent theoretical framework
applicable to the entire nuclei chart.

A new theoretical approach, based on a statistical modeling
of the scission point, has been developed using a micro-
scopic description of the fragment nuclear structure. These
microscopic ingredients [10] are calculated with the Gogny
interaction [11]. Therefore, this approach is complementary
with the historical mean-fields theories based on the same
interaction [2].

This new model, called SPY (scission-point yield), is
largely inspired by the scission-point model originally devel-
oped by Wilkins et al. However, there are reasons pointing
to a need for a renewal of historical formalism. First, major
theoretical advances in nuclear structure description have been
made since the late 1970s and they have never been included in
an updated version of the Wilkins model. Second, a predictive
and fast model is useful to generate nuclear data to study the
fission process over a large range of nuclei, from light nuclei
such as mercury to heavy ones like fermium. This is why the
SPY model has been developed: it is capable of making reason-
able predictions for every fissionable nucleus, while achieving
very moderate computation cost. This makes it very appealing
for several applications, in particular astrophysics calculations
[12]. Finally, a statistical description of the scission point
that is as complete as possible allows for the estimation of
effects which are not included in the model, especially coming
from the system dynamics, and for an assessment of the
sensitivity to the reaction entrance channel. This model will
favor discussions on experimental results interpretation.

As mentioned by Wilkins, “the principal aim is to inves-
tigate the general validity and applicability of our model and
not to attempt to achieve the optimum fit to the experimental
data for each fissioning system.” The SPY model has been
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developed keeping the same spirit and no adjustments to any
data have been done.

II. THE SPY MODEL

SPY is a renewed version of the well-known scission-point
model developed by Wilkins et al. [1] in the late 1970s. It
is based on the basic assumption that the gross properties of
the fission fragment distributions can be determined from the
available energy of the different configurations at the scission
point. Assuming a thermodynamic equilibrium at scission,
a statistical treatment can be used to calculate the fission
fragments’ distributions. The model is based on two pillars:
the definition of the scission point (Sec. II A), on the one hand,
and the calculation of the absolute available energy for each
configuration (Sec. II B) allowing the statistical description
(Sec. II C), on the other.

A. The scission-point definition

During the fission process, the system evolves from a
quasispherical or slightly deformed compound nucleus to
two fragments flying away from one another due to their
Coulomb repulsion. The dynamical evolution of the system
presents two characteristic points: the outer saddle point and
the scission point. The first is defined as the configuration
where the fission of the system is inevitable and it is clearly
defined by a topological criterion on the potential energy
surface of the fissioning system. After the saddle point the
system continues to deform; a neck appears and becomes more
and more thin until breaking, giving rise to two fragments.
The scission point, somewhere between the saddle point and
the two separated fragments far apart, is difficult to define
unambiguously. At scission, the nuclear density in the neck
region between the nascent fragments may be considered as
vanishing, and the wave function of any nucleon spreads over
each of the fragments. In this configuration, all fragments
properties (mass, charge, and deformation) can therefore be
considered as fixed. Nevertheless, the scission configuration
presents an ambiguous topological definition, and different
criteria have been used for its identification. In particular,
in several microscopic approaches (see for example [2,13])
the scission configuration is identified by energy criteria,
i.e., the sudden drop of the total binding energy, or according
to the ratio between the nuclear interaction and the Coulomb
repulsion between fragments [14]. In all cases, the scission
configuration topology depends on the chosen criteria, and,
contrary to what Wilkins et al. stated, scission can hardly
be defined by the sole distance between the two fragments.
Nevertheless, the potential energy surface (PES) of the system,
calculated through a self-consistent Hartree-Fock-Bogoliubov
(HFB) formalism, is rather smooth between the saddle point
and the scission point, at least for major actinides, and the
nuclear matter density extracted near the scission line gives a
scission distance ranging from 3 to 7 fm [2,15].

Therefore, as in Wilkins’s work, the system at scission
is modeled by two coaxial nuclei separated by a fixed
distance, and the fragment shape is described by quadrupole
deformations. This simple but realistic first-order description

of the nuclear deformation of the fragments allows for reliable
calculations of the energy of the system, and more importantly
can be unambiguously connected to the HFB potential energies
of the nuclei. Given this definition of the scission configuration,
each nucleus is characterized by its neutron and proton
numbers (N,Z) and its deformation parameter (q̃).

A fixed scission distance of 5 fm is used in all calculations
presented in this work. It ensures that the quadrupole shape
family used for the scission description is relevant and
somehow corresponds to a first-order optimum as discussed
in [16]. The chosen value is different from the initial choice
of Wilkins who considered a distance of 1.4 fm, based on the
range of the strong interaction. The influence of this choice on
the energy balance at scission has already been discussed in
[16] and will be further discussed in this work.

B. The energy balance at scission

Once a system configuration at scission is defined, the
first stage of the SPY model consists of achieving detailed
energy balance for all possible fragmentations (around 1000
for actinide fission) as a function of the deformation parameter
of the two fragments. The available energy (EA) is calculated
as the difference between the scission potential energy of the
system composed by the two nascent fragments in interaction
and the excited compound nucleus energy (ECN ):

EA = Eind(Z1,N1,q̃1) + Eind(Z2,N2,q̃2)

+Ecoul(Z1,N1,q̃1,Z2,N2,q̃2,d)

+Enucl(Z1,N1,q̃1,Z2,N2,q̃2)

−ECN. (1)

The scission potential energy is obtained as the sum of

(i) The individual energy for each of the two fragments
(Eind), which is a function of their deformation.

(ii) The interaction energy between the fragments, de-
scribed as the sum of a Coulomb repulsion term (Ecoul)
and a nuclear interaction term (Enucl). The interaction
energy depends on the deformation parameters of the
fission fragments and on their distance.

As a consequence, a given configuration is energetically
reachable only if the available energy of the system at scission
is lower than the total energy of the compound nucleus. In other
words, a scission configuration is possible only if EA < 0. By
convenience, the absolute value of the available energy will
be used thereafter and only energetically reachable scission
configurations will be taken into account.

A prescission kinetic energy could be taken into account
and would modify this equation. Since there is no proper well-
defined formalism to introduce it and it depends on the scission
point definition, this energy is not taken into account.

The axial symmetry of the compound nucleus is sup-
posed to be conserved in the system formed by the two
fragments. Moreover, the scission potential energy depends
rather weakly on high-order deformations, typically higher
than the quadrupole momentum. Therefore, the deformation
parameter used in the SPY model only accounts for quadrupole
deformation, i.e., elongation. The compound nucleus energy
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FIG. 1. (Color online) Liquid drop (orange dotted line), HFB (green dashed line), and shifted HFB (blue solid line) potential energy as a
function of deformation for 132Sn (a), 104Mo (b), and 118Pd (c). Liquid drop ground state energy is shifted to HFB ground state energy.

ECN is defined as the sum of the ground state energy of the
fissioning nucleus and its excitation energy. The excitation
energy depends on the involved reaction (neutron-, proton-,
photo-induced or spontaneous fission) and is distributed
among all degrees of freedom. The ground state energy of
the compound nucleus is taken as its experimental mass
(when available) or as a theoretical prediction calculated on
the basis of mass systematic [17]. The mass, charge, and
excitation energy of the compound nucleus are the only inputs
of the model since they totally define the initial condition
of the fission reaction. At this stage, SPY does not include
any deformation-dependent nuclear structure property or
angular momentum of the compound nucleus nor its possible
deexcitation prior to fission. This latter constraint restricts the
possible comparison with data only to low-energy induced
fission.

1. The individual energy

The individual energy (Eind) of each nucleus is derived from
an up-to-date microscopic description of its nuclear structure.
This potential energy is calculated within the framework of a
self-consistent HFB formalism using the Gogny D1S nucleon-
nucleon interaction [11]. The HFB equations are solved
iteratively by expanding the quasiparticle wave functions in a
truncated harmonic oscillator basis under the axial hypothesis
where the quadrupole momentum operator is projected into
a fixed value (and triaxiality is neglected). The so-called
reduced quadrupole momentum (q̃) is linked to the quadrupole
momentum (q20) by the relation

q̃ = q20

AR2
0

(2)

where A is the nuclear mass and R0 its radius (R0 = r0A
1/3).

The individual energies used in SPY are compiled within
the AMEDEE database [10,18] which contains the nucleus’
potential energy as a function of its deformation parameter over
a large range of deformations, from very oblate (q̃ = −0.45)

to very prolate shapes (q̃ = 1.14), and for all the nuclei of the
whole nuclear chart (see for example Fig. 1).

The ground state energy calculated within the HFB for-
malism is known to differ from the experimental mass. This
is mainly due to the mean field approximation and the use
of a finite basis in the HFB states expansion [10,19,20].
The difference between the measured mass and the HFB
ground state energy can be several MeV, especially in the
case of “soft” nuclei where shape coexistence is involved or
neutron-rich nuclei. Nevertheless, the predictive power of the
microscopic calculations mostly concerns the description of
the nuclear structure as a function of the deformation, instead
of the absolute value of the potential energy. Therefore, to
achieve precise energy balance, the whole HFB potential
energy surface (EHFB) is globally shifted so that the ground
state energy fits the experimental masses or a theoretical value
calculated on the basis of mass systematics (for instance [17]).

The shifted energy, which keeps all relevant microscopic
information on the structure evolution with the deformation,
is used to perform the energy balance defined in (1). The three
examples presented in Fig. 1 show the typical shape of the
HFB energy of a nucleus as a function of its deformation. The
shift to the actual mass varies from a few keV for magic nuclei
up to 10 MeV for midshell nuclei.

The importance of a microscopic description is visible when
comparing the HFB energy with a liquid drop potential energy
[21,22]. The richness brought by microscopy lies in the natural
appearance of shell effects, which will finally influence the
available energy for the different fragmentations at scission.

During the descent from saddle to scission, the system could
dynamically increase in temperature. At scission, a potential
energy calculated in a finite-temperature HFB framework
would thus be better adapted. The main impact of the
temperature on the potential energy would be a decrease in the
nuclear shell and pairing effects. This effect, taken into account
by Wilkins et al. by an intrinsic temperature-dependent shell
correction term, is not taken into account due to the lack of a
proper modeling of dissipation from saddle to scission and to to
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the absence of temperature-dependant microscopic individual
energy. Moreover, the statistical description of a system with a
potential energy calculated in a finite-temperature framework
must be properly handled in order to avoid double counting of
temperature-dependent effects (shell and pairing effects).

The influence of pairing energy on the available energy
at scission can be rather large since it is around 2 MeV
between an even-even and an odd-odd fission fragment in the
case of actinides. This difference is generally quite significant
with respect to the energy variation between two successive
even nuclei due to shell effects. Therefore, the impact of
pairing on fission observables is too strong and, as a first
step, it is suppressed by washing the pairing effect on the
nuclear masses. In the case of an odd-odd nucleus, its mass
is interpolated between the four neighboring even nuclei (the
two adjacent proton-even and the two adjacent neutron-even).

2. The interaction energy

The fission fragments at scission are separated by a few
fm and are submitted to the nuclear interaction and to the
Coulomb repulsion.

The nuclear interaction is determined from the Blocki
prescription [23], which mainly depends on the distance
between fragment surfaces, the isospin asymmetry of the
fissioning nucleus and the fragments curvature along the
scission axis. However, since the scission distance of 5 fm
is greater than the mean range of nuclear interaction, this term
is always below 1 MeV and can be neglected compared to the
Coulomb energy that is of the order of 200 MeV. Nevertheless,
the nuclear interaction is always included in the calculation for
completeness.

The fission fragments are rather close at scission and induce
a high Coulomb interaction. Therefore, a proper calculation
requires a detailed description of their charge distributions
since they cannot be considered as point-like. The charge
distribution of a given fragment depends on its proton and mass
numbers and on its deformation. In the present version of the
SPY model, the fragments are considered as uniformly charged
without diffusivity. The nuclear shape is fully described by
the quadrupole deformation of an axially symmetric nucleus
to ensure the best coherence with respect to the individual
HFB energy, which is calculated imposing a constraint (via a
Lagrange parameter) on a quadrupolar momentum operator.
The nuclear shape is described by a parametrization defined
as R(θ,ϕ,α20), where α20 is the quadrupole component of the
nuclear shape, expanded over a Legendre polynomial basis:

R(θ,ϕ,α20) = R0λ(α20)−1

(
1 + α20

√
5

4π

3 cos(θ )2 − 1

2

)
.

(3)

The coefficient λ(α20) ensures volume conservation accord-
ing to the deformation

λ(α20) =
(

1 + 3

4π
α20

2 + 2

35

(
5

4π

)3/2

α20
3

)1/3

. (4)

FIG. 2. (Color online) Integration mesh for 132Sn with
quadrupole deformation q̃ = 0.4. The points and the dotted lines
represent vertices and edges of the elementary volumes.

The dimensionless reduced quadrupole momentum, used
throughout this work, is defined as

q̃ = 2

AR0
2

∫
r2ρ(�r)

3 cos(θ )2 − 1

2
d�r

=
√

9

5π
λ(α20)−5

(
α20 + 4

7
α20

2

(
5

4π

)1/2

+ 6

7
α20

3 5

4π

+ 20

77
α20

4

(
5

4π

)3/2

+ 53

1001
α20

5

(
5

4π

)2
)

. (5)

At the first order in α20, q̃ =
√

9
5π

α20 + o(α20). The Coulomb
interaction energy is then calculated explicitly through nu-
meric integration over the two fragment volume with uniform
charge densities ρ1 = Z1

V1
and ρ2 = Z2

V2
:

Ecoul =
∫

V1

∫
V2

ρ1ρ2

‖�r1 − �r2‖d�r1d�r2 (6)

For the integration, the volume of each fragment is
determined by its shape, itself parametrized by its deformation
α20. To calculate the Coulomb interaction, an integration
mesh needs to be defined for each fragment. Since spherical
coordinates (r,θ,ϕ) are used to define the shape of each
fragment, the mesh is also defined in spherical coordinates
to avoid numerical errors due to nonconservation of the
fragment volume. However, with constant steps in r , θ , and ϕ,
elementary volumes close to the fragment surface are bigger
than the inner ones. In order to optimize the computation time,
a special mesh is needed. This mesh is conceived to minimize
the approximation error by considering elementary cells of
similar volumes. The fragment volume is divided into imax

shells of equal thickness and each shell is divided according
to θ coordinate. The θ step depends on the shell location and
decreases with the shell number. The ϕ step depends on shell
location and θ (see Fig. 2).

For a fixed distance between the surfaces of the two nuclei,
the Coulomb energy decreases rapidly while the deformation
increases from oblate to prolate shapes (Fig. 3) due to the
increasing distance between the two centers of mass.

3. The available energy at scission

The energy balance at scission is calculated from Eq. (1)
for all possible fragmentations (around 1000). To reduce
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FIG. 3. (Color online) Coulomb energy between two fragments
(fragment 1: 132Sn; fragment 2: 104Mo) as a function of their
quadrupole deformation.

computational cost, the individual energies are tabulated, lead-
ing to a rather small computing time for exploring all possible
fragmentations of a fissioning nucleus. As an example, we
present the results of the energy balance performed for the
thermal neutron-induced fission of 235U. In this case, the ex-
citation energy of the compound nucleus (236U∗) is 6.54 MeV.
The calculation of the energy balance for all configurations on
a single core computer takes around 10 minutes.

Before discussing the potential energy surface of a given
fragmentation, we shall outline one preliminary feature. Two
opposite effects occur in the available energy balance. On
the one hand, the interaction energy decreases regularly from
oblate to prolate shapes. On the other hand, the individual
energy increases significantly with the fragment deformation
far from the ground state. Therefore, two antagonistic effects
act as the main drivers of the available energy: the individual
energy, which favors ground state deformations, and the
interaction energy, which favors prolate shapes.

On the basis of this general trend, the available energy for
a given fragmentation reflects the composition of the nuclear
structure for each of the two fragments. The available energy
of the symmetric splitting (118Pd + 118Pd) is displayed in
Fig. 4 and that of the asymmetric splitting (132Sn + 104Mo)
is displayed in Fig. 5.

For both fragmentations, the available energy profile is very
structured, reflecting the intrinsic energy variations of each
nucleus. The available energy maximum for the asymmetric
fragmentation (36.5 MeV) is steep, and is found for a spherical
(q̃ = 0) 132Sn and a largely deformed (q̃ = 0.45) 104Mo. In
contrast, the corresponding maximum of 28.6 MeV in the
symmetric fragmentation is found for a smaller deformation
(q̃ = 0.2) of 118Pd. The steepness of the energy maximum in
the asymmetric fragmentation is due to the doubly magic 132Sn.
Therefore, the most energetically favorable fragmentation in
thermal neutron-induced fission of 235U is asymmetric due to
the nuclear structure of nuclei around 132Sn, compared to the
moderated shell effects of soft nuclei around 118Pd.

FIG. 4. (Color online) Available energy as a function of the
fragments deformation calculated for symmetric (118Pd + 118Pd)
fragmentation in the 235U(nth,f ) reaction.

The role of shell effects as the main origin of the mass
asymmetry is confirmed when looking at the maximum
available energy for all possible fragmentations (Fig. 6). The
configurations characterized by the largest available energy
are favored since, within a statistical interpretation, they give
access to the largest phase space. In the case of the thermal
neutron-induced fission of 235U, the well-known double-
humped structure already appears clearly on the maximum
available energy distribution over all fragmentations.

C. A statistical description of scission

In low-energy fission, we assume as Wilkins that a thermal
equilibrium is reached at scission. Therefore, the system can
be treated as a microcanonical ensemble where all available
states of the system are equiprobable.

FIG. 5. (Color online) Available energy as a function of the
fragments deformation calculated for asymmetric (132Sn + 104Mo)
fragmentation in the 235U(nth,f ) reaction.
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FIG. 6. (Color online) Maximum available energy as a function
of the fragment proton and neutron numbers in the 235U(nth,f )
reaction.

1. The microcanonical description

In this framework, the fission fragment yields can be
simply calculated by counting the number of available states
at scission for all the different fragmentations. Since the
probability for a given fragmentation is related to the available
phase space, the knowledge of all exact states is not necessary
and only their number for a given configuration is needed.
Moreover, each configuration is fully defined by the intrinsic
excitation of the two-fragment system as a function of
the fragments’ deformation. Therefore, only two inputs are
required to perform a statistical description of the scission
point: the available energy and the state density for each
configuration.

The number of available states at scission for a given
configuration (π ) is assumed to be the product of the state
densities of the two isolated fragments (ρ1 and ρ2) where a
fraction x of the available energy is transferred to fragment 1
while the fraction (1 − x) goes to fragment 2:

π (Z1,N1,Z2,N2,q̃1,q̃2,x)

= ρ1(xEavail)ρ2((1 − x)Eavail)δE2. (7)

Therefore, the probability of a given fragmentation at a given
deformation is proportional to π . Finally, the total probability
P to obtain a fragmentation is obtained by integrating the
number of states π over the two deformation parameters and
all energy partitions:

P (Z1,N1,Z2,N2) =
∫ 1.14

−0.45

∫ 1.14

−0.45

∫ 1

0
π dx dq̃1dq̃2. (8)

This probability, normalized to 200%, is the production yield
of each fission fragment.

Presently, the calculation of the state density of fission
fragments is performed in the framework of a Fermi gas
description where the nucleons of a nucleus are considered
as a gas of fermions confined in a box. Therefore the state
density of a nucleus with intrinsic excitation energy ε is given

by [24]

ρ(ε) =
√

π

12

e2
√

aε

a1/4ε5/4
(9)

This state density is independent of the fragment deformation
and only depends on the level density parameter a. In the
framework of a Fermi gas model, where only single-particle
states are considered, the value a ≈ A/13, where A is the
nuclear mass, is usually taken [25]. However, the comparison
with experimental data shows that a level density parameter
closer to A/8 is better adapted [25]. This difference comes
from the presence of collective states that are not counted in a
Fermi gas model. Therefore, this latter value has been chosen
as a basis for the SPY model. However, It is worth mentioning
that using A/13 instand of A/8 has minor impact on the results.

Since statistical treatment using a Fermi gas state density
does not introduce any structure effect, the most probable
fragmentation will be mainly defined by the highest energy
available for the system. Given this statistical description, the
mean value of all relevant observables can be calculated. For
a given observable X, its mean value 〈X〉 is obtained as

〈X〉 =
∫

Xπ dx dq̃1dq̃2 (10)

The three main fission fragment observables that will be
studied in this work are the production yields, the kinetic
energy, and the excitation energy, this last observable leading
to the number of evaporated neutrons. On this topic, the results
will be presented and discussed for the thermal fission of 235U.
Then these results will be generalized in Sec. III to many other
fissioning systems.

2. Yields

The fragment mass and charge yields in the thermal
neutron-induced fission of 235U calculated with SPY are
presented in Fig. 7. The SPY model does not include any
parameter or any adjustment. Since this model is focused
on the scission-point description, the neutron evaporation of
the fission fragments is not taken into account in the yield
distributions.

The calculated yields present a double-humped distribution
peaked around mass 132 and 104 and around corresponding
charges 50 and 42. This result reflects the predominant effect
of the double magic spherical 132Sn whose high steep potential

FIG. 7. (Color online) Fragment mass (a) and charge (b) yields
in the 235U(nth,f ) reaction calculated with SPY (in red) compared
to evaluated data (post neutron evaporation) from the ENDF/B-VII.1
data library (in black) [26].
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FIG. 8. (Color online) Mean fragment deformation in the
235U(nth,f ) reaction.

provides a very large available energy. Moreover, the soft
nucleus 104Mo is very deformed due to Coulomb repulsion,
which favors prolate shape. This effect is observed in Fig. 8
where the mean deformation of each fragment is represented.
The quadrupole moment varies from 0 (spherical nuclei) up
to 0.55 (very prolate nuclei). As expected, oblate shapes are
not favored in fission. The symmetric splitting, corresponding
to Z = 46 and N = 72, is disfavored in comparison to
configurations involving strong shell effects around 132Sn and
its strongly deformed (q̃ > 0.3) partner.

Coming back to the fission fragment yields (Fig. 7), the
mass and charge yields calculated with SPY are compared to
the evaluated data from the ENDF/B-VII.1 library [26]. The
experimental distributions are wider than the SPY predictions
and span over larger mass and charge ranges. This difference,
already observed and discussed by Wilkins et al., is due to two
main effects: first, the overestimated impact of shell effects
makes double magic nuclei largely favored since they act as an
“attractor” for most fragmentations. Second, the use of a Fermi
gas state density amplifies this effect due to its exponential
behavior with excitation energy.

3. Mean kinetic energy

The kinetic energy of fission fragments is essentially
provided by the Coulomb repulsive interaction between the
two charged nuclei. Therefore, the importance of a detailed
prediction of the fragment deformation at scission is funda-
mental in order to provide reasonable predictions on the kinetic
energy. The SPY results are presented in Fig. 9, together with
the experimental data from [27]. The general trend is correctly
reproduced since it is mainly driven by the product Z1 × Z2.
However, the structures seen in experimental data, which are
related to strong structure effects, are strongly attenuated in
the SPY results. While structure effects are dominant in the
yield distributions, they are nearly absent in the kinetic energy
distributions. Although the deformation of fragments is taken
into account, its impact on kinetic energy distributions is weak.

4. Mean deformations and neutron evaporation

An experimental observable of great importance in thermal
fission is the number of evaporated neutrons for each fragment.

FIG. 9. (Color online) Fission fragment kinetic energy in the
235U(nth,f ) reaction calculated with SPY (red line) compared to
experimental data from Baba [27] (black line).

As already observed by Wilkins et al., the average fragment
deformations and evaporated neutrons [28] display similar
behavior as can be seen in Fig. 10.

However, the average number of evaporated neutrons is
not only due to fragment deformation. Compared to the
conclusions reached by Wilkins et al., the SPY model allows
for further investigation into the excitation energy in each
fragment and, consequently, into the number of evaporated
neutrons. This excitation energy has two components. First,
each fragment carries a fraction of the available energy at
scission under an intrinsic excitation form. Second, since each
fragment could undergo deformation at scission, they have
a deformation energy defined as the difference between the
potential energy at that given deformation and the energy of
the ground state. Indeed, the expected saw-tooth form should
emerge from the combination of the intrinsic excitation energy
and the deformation energy.

FIG. 10. (Color online) Mean fragment deformation calculated
with SPY (red, right scale) in the 235U(nth,f ) reaction, compared to
the experimental mean number of evaporated neutrons ν (black, left
scale) from Vorobyev [28].
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A neutron evaporation model could then be used to calculate
the number of evaporated neutrons. Since the SPY model only
concentrates on the scission phase, the coupling to such a
model has not been performed yet. However, as long as the
process is energetically possible, we consider that the fission
fragments are sequentially deexcited by neutron evaporation.
The kinetic energy of evaporated neutrons is randomly
taken from theoretical neutron energy spectra (Eq. (7) from
[29]) where the temperature of energy spectra depends on
excitation energy of fragment (Eq. (5) from [29]). Although the
deexcitation cascade of each fragment is not modeled, a mean
number of evaporated neutrons could be calculated within
this simplified approach and compared to experimental data.
The mean number of evaporated neutrons by one fragment
in the thermal fission of 235U is estimated at ν = 2.07 whereas
the experimental total ν = 2.4 [30].

D. Impact of different parameters and theoretical choices

Although the SPY model has only one parameter associated
with the definition of the scission point, multiple choices on
the model ingredients have been made within its development.
First, the impact of the scission-point definition will be
discussed. Then, the effect of the major choices made within
the development of SPY will be presented.

1. On the choice of the scission-point distance

The value of the scission-point distance used in the
calculation has a direct and rather trivial first impact on the
available energy. The Coulomb energy increases inversely with
the distance; i.e. a shorter distance reduces the available energy
and increases the kinetic energy of the fragments (Figs. 11 and
12).

However, the scission distance has a lower impact on
the fission yields since it only modifies the peak-to-valley
ratio without significantly changing the peak position or the
maximum yield.

Moreover, second-order effects are more subtle and rather
unpredictable because they depend on the sensitivity to the
nuclear structure.

FIG. 11. (Color online) Mean available energy as a function of
the fragment mass for different scission distances in the 235U(nth,f )
reaction.

FIG. 12. (Color online) Fragment kinetic energy for different
scission distances in the 235U(nth,f ) reaction calculated with SPY,
compared to experimental data from Baba [27] (black line).

Finally, an increase in sensitivity to the kinetic energy can
be observed at short distances by the appearance of small
structure effects (Fig. 12). In particular, at a distance of 3 fm,
a bump appears in the region of 100–140 mass, similar to
that observed experimentally. Moreover, the same tendency is
obtained for the number of evaporated neutrons. A decrease in
distance leads to lower excitation energy and, consequently, to
increased sensitivity to the structure of the fragments.

2. On the statistical ensemble description

The SPY model is based on an absolute energy balance
at scission, thus allowing a microcanonical description where
the Wilkins model and its relative approach are limited to a
canonical one. The results of the two approaches have been
compared (Fig. 13).

FIG. 13. (Color online) Fragment mass yields in the 235U(nth,f )
reaction calculated within the canonical framework at different
temperatures and compared to the microcanonical description.
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In the canonical description, the probability of a given frag-
mentation is proportional to the Boltzmann factor e−EA/kBT ,
where T is the temperature of the system. By changing
this temperature in the canonical approach, the mass yield
distribution could shift from asymmetric at low temperature to
symmetric at T = 5 MeV (cyan with diamonds curve). SPY
predictions based on a microcanonical description are in very
good agreement with the canonical description at T = 1 MeV,
the temperature chosen by Wilkins et al. A temperature slightly
different of T = 1.5 MeV has been chosen in the canonical
scission-point model of Ivanyuk et al. [31].

E. Evolutions in SPY compared to the Wilkins model

Just like the Wilkins model, SPY is based on the calculation
of the energy balance at scission. The use of microscopical
potentials is a major improvement in the description of the
characteristics of fission fragments up to very exotic nuclei.
With the use of a precise double-folding calculation for the
Coulomb interaction between the two interacting nuclei, SPY
gives access to an absolute value for the available energy at
scission with well-defined deformation parameters.

Furthermore, the scission-point starts to have a better
definition as we capitalize on advances in theoretical fission
modeling and choose it to be within the range conforming to
recent microscopic results [2,15].

The access to the absolute available energy allows changing
the thermodynamical description and avoiding the inclusion
of any temperature parameter. Indeed, Wilkins introduces
two temperatures: an intrinsic one to partially wash out the
nuclear structure effects and a collective one for the canonical
description. We chose to avoid any parameter in order to draw
clear answers based on perfect knowledge of the ingredients
involved in the model. Furthermore, the microcanonical statis-
tical description allows for the calculation of the distributions
and the mean values for all observables.

These improvements were made without loss of computa-
tional speed. The calculation of a fissioning system takes a
few minutes on a quad-core CPU and a systematic on 3000
fissioning systems takes around one day on a supercomputer
using a few tens of CPUs.

III. DISCUSSION ON SEVERAL SPY PREDICTIONS

The model was presented, followed by discussion of the
results on the thermal fission of 235U. SPY can now be
applied and tested on other fissioning systems. We begin with
experimentally known systematics such as the thermal fission
of actinides, and then extend the calculations to increasingly
exotic systems, up to predictions concerning many nuclei from
ytterbium (Z = 70) to meitnerium (Z = 109), from the proton
to the neutron drip line.

A. Fission systematics

After the comparison of the SPY results with experimental
data for the thermal fission of uranium, we can generalize
to other actinides (Fig. 14). One important feature one can
observe is the experimental mass stability of the heavy
peak around 140 that is a strong argument for considering

FIG. 14. (Color online) Mass yields in the thermal neutron-
induced fission of different actinides calculated with SPY (in red)
and compared to evaluated data from the ENDF/B-VII.1 data library
[26].

the scission point as a key point for the mass and energy
distributions due to the high sensitivity to the structure of the
nascent fragments.

The SPY model results present a stability for the heavy peak
of the mass distribution around A = 132 due to the spherical
shell closure. Also, the drawbacks observed and discussed for
uraniumare still present for the others actinides: the theoretical
heavy peak remains different from the experimental one
located at 140, and the width of the theoretical distribution
is much narrower. The nuclear structure sensitivity of the SPY
model and of the scission-point model in general is too high in
the present formalism. To partially solve this problem, Wilkins
et al. changed the shell correction for 132Sn, introducing
a temperature dependence to partially wash out too strong
microscopic effects.

Another transition from asymmetric to symmetric charge
distributions has been observed for light actinides in Coulomb-
induced fission [9] (Fig. 15). SPY globally reproduces this
transition, even though it is again shifted by one or two
charge units. Beyond a satisfactory qualitative reproduction
of existing data, SPY is likely to make predictions when
the daughter nuclei exist and are available in the AMEDEE
database.

As mentioned, throughout the mass-distribution systematic,
the widths are much too narrow by a factor of around 2. Where
is the hidden part of the widths? The introduction of a more
sophisticated state density could improve the reproduction
and, at the same time, reduce the sensitivity to the structure
of the fragments included in the HFB individual potentials.
Moreover, the absence of dynamic treatment of the fission
process can have an impact on the distribution widths.

The width anomaly has a limited impact on energy distribu-
tions. The mean total kinetic energy is calculated for all known
fissioning systems (red) and compared to the experimental

034617-9
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FIG. 15. (Color online) Charge yields for the fission of light actinides region calculated with SPY (in red) compared to data from Schmidt
[9] (in black).

results (black) (Fig. 16). A reasonable agreement is achieved
for nuclei that present an asymmetric mass-distribution. The
results are also compared to the Viola formula [32]. The spread
of the experimental points is of the same order of magnitude as
the SPY ones. The anomaly on the total kinetic energy (TKE)
around 235 MeV for two fermium isotopes and a mendelevium
isotope, well above the systematic, is correlated to the preferred
formation of two spherical fragments of the same mass. The
effect is predicted by SPY but with much weaker amplitude.

FIG. 16. (Color online) Mean kinetic energy as a function of the
compound nucleus fissility calculated with SPY (in red) compared to
experimental data [33] (in black) and to the Viola formula [32] (black
line).

The SPY model presents satisfactory results to estimate
the main variables linked to the last stage of the fission
process, without any adjustable parameter. It allows us to find
all the major trends of the low-energy fission observables.
Therefore, with good confidence, it can be used in areas of the
nuclear chart for which there is no experimental result, at least
from a qualitative point of view, in particular with respect to
the asymmetric or symmetric feature of the fission fragment
distributions.

B. Up to exotic nuclei

This study has been generalized to all known and unknown
nuclei from ytterbium to superheavy elements (Fig. 17). A
peak analysis has been performed for each mass distribution
in order to extract the peak multiplicity. This simple procedure
allows identifying the zone of transition between symmetric
distributions with one peak (yellow), asymmetric ones with
two peaks (green) and some exotic distributions with three

FIG. 17. (Color online) Peak multiplicity in the mass yields as a
function of the compound nucleus for an excitation energy of 8 MeV.
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FIG. 18. (Color online) Estimated mean prompt neutron multi-
plicity per fragment as a function of the compound nucleus for an
excitation energy of 8 MeV.

peaks (red), resulting from a symmetric-asymmetric competi-
tion, or even four peaks (blue), due to the competition between
two asymmetric modes.

The large structures in the peak multiplicity mainly depend
on the compound nucleus neutron number inducing mostly
vertical structures in Fig. 17. This proves the predominance
of the neutron shell closures in the structure of the fission
fragment distributions. However, for light nuclei with less
than 130 neutrons, the spherical closed neutron shell N = 50
does not drive the fission mode as in the fission of 180Hg
[16]. In this region, the fission modes are instead driven by
deformed shell effects.

The blue area with multiplicity 4 is notable. This doubly
asymmetric mode for very neutron-rich nuclei could be the
source of the rare-earth production in collapsing neutron stars
[12].

The systematic of the total kinetic energy presents a
dominant evolution with the proton number of the compound
nuclei due to the proton-number dependence of the Coulomb
interaction.

The predictions on the excitation energy provided by SPY
allows for the systematic calculation of the mean number of
evaporated neutrons for each system in the gross approxima-
tion explained in Sec. II C 4 (Fig. 18). There are two general
dependences. The first one lies in the increasing number of
evaporated neutrons for the very neutron-rich nuclei. It has
to be correlated with the decreasing separation energy for
neutron-rich fragments produced by these nuclei. The second
one lies in the general increase in this number with the mass
of the compound nuclei. It is simply due to an increase in
available energy with the nucleon number of the compound
nucleus. This gross evaluation of the number of evaporated
neutrons for all existing nuclei has already been used in [12].

IV. CONCLUSIONS AND PERSPECTIVES

Taking advantage of massive calculations to generate a
nuclear database including the individual potential of more
than 7000 nuclei determined by HFB calculations with the
Gogny force, a new statistical scission-point model, called

SPY, has been developed. SPY uses the richness and high
predictive power of microscopy in a rather simple theoretical
framework, leading to the prediction of the most important
fission fragment properties, over a huge range of fissioning
systems with a very limited computing cost. The model has
been presented starting with the careful absolute calculation
of the energy available at scission followed by the statistical
description used to calculate the major observables associated
with the fission fragments.

The SPY results have been compared to the observables
measured in the thermal fission of 235U. Since SPY is based on
an absolute calculation of the energy available at the scission
point, a rather satisfactory reproduction of the evolution of
the total kinetic energy is obtained. The absolute available
energies are used in a microcanonical description to determine
the probability of all possible fragmentations. The general
trend of the yield and the mean number of evaporated neutrons
are qualitatively reproduced taking into account the absence of
any adjustment in the modelization of such a complex process.

The model has been compared with various experimental
systematics. In particular, SPY is able to reproduce the general
trend of the mass and charge yields transition from asymmetry
to symmetry and explains the stability of the heavy peak in the
asymmetric regions. Moreover, the model allows for rather
satisfactory reproduction of the experimental total kinetic
energies. Finally, the model has also been used with success
to interpret the fission of exotic mercury isotopes [16] and to
predict fission yields for nuclei involved in the coalescence of
neutron stars [12].

The model could be enriched in order to study its limits.
The width of the mass distribution is too narrow and a shift of
a few masses is present between the observed and predicted
peak positions. The actual definition of the scission point is
proven to be very efficient in performing the calculations but
may be criticized due to its simplicity. However, we now have
access to full microscopic calculations close to scission, which
are actually generalized to all nuclei. They could lead to a
better definition of the scission point. In particular, the actual
statistical description is based on the basic assumption that
the system state density at scission is the product of the state
densities of the two nuclei. It has to be verified in the specific
microscopical study of the scission point.

Furthermore, the Fermi gas state density is a poor approx-
imation of the real nuclear one. It should be replaced by a
microscopic state density calculated in the same framework
as the individual potentials. The microscopical effects induced
by realistic nuclear densities, will partially counterbalance the
structural effects (shell closure and pairing effects) induced
by the individual potential. This development of state density
calculations for all nuclear deformations and over the whole
nuclear chart is a major challenge that will specifically
interest the nuclear reaction community, no matter how time-
consuming this may seem [34].
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