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Asymmetry of the parallel momentum distribution of ( p, pN) reaction residues
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The parallel momentum distribution (PMD) of the residual nuclei of the 14O(p,pn)13O and 14O(p,2p)13N
reactions at 100 and 200 MeV/nucleon in inverse kinematics is investigated with the framework of the distorted-
wave impulse approximation. The PMD shows an asymmetric shape characterized by a steep falloff on the high
momentum side and a long-ranged tail on the low momentum side. The former is found to be due to the phase
volume effect reflecting the energy and momentum conservation, and the latter is to the momentum shift of the
outgoing two nucleons inside an attractive potential caused by the residual nucleus. Dependence of these effects
on the nucleon separation energy of the projectile and the incident energy is also discussed.
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I. INTRODUCTION

The single-particle (s.p.) nature is one of the most important
properties of nuclei. Since 90’s, triggered by the invention of
radioactive isotope (RI) beam technology, intensive studies on
the s.p. structure of unstable nuclei have been done; see, for
a review, Ref. [1]. Many experiments of one- or two-nucleon
removal processes were performed [2–16] and the parallel
momentum distribution (PMD) of the residual nucleus B
has widely been used to determine the s.p. structure of the
incident particle A, i.e., the orbital angular momentum, the s.p.
energy, and the spectroscopic factor of the nucleon(s) inside
the nucleus A.

The removal reaction does not specify the final state of
the target nucleus T, and it is not trivial to apply a direct
reaction theory to such an inclusive process. The Glauber
model [17–20] is one of the most successful models to study
the nucleon removal process; the eikonal and adiabatic approx-
imations allow one to treat the scattering of each constituent
of A off T separately, and the generalized unitarity of the
scattering-matrix elements of the removed nucleon(s) gives a
simple form of reaction observables for the nucleon removal
process. Recently, the eikonal reaction theory (ERT) [21]
was developed as an extension of the continuum-discretized
coupled-channels method (CDCC) [22–24]. Although ERT
has successfully been applied to one- and two-neutron removal
processes [25], formulation of the PMD and differential cross
sections with the ERT has not been completed.

Despite the great success of the Glauber model in extracting
s.p. information on unstable nuclei from reaction data, the
shape of the PMD calculated with the Glauber model is
restricted to being symmetric. On the other hand, in some cases
the observed PMD shows quite large asymmetry [7,9,11].
Although this does not necessarily cause ambiguity of the
s.p. information extracted by the Glauber model, as discussed
in Ref. [11], it will be interesting and important to clarify
the mechanism of the asymmetry of the PMD. It should
be remarked that recently the transfer to the continuum
(TC) method [26,27] was applied to the one-neutron removal
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process from 14O by 9Be at 53 MeV/nucleon and reproduced
quite well the asymmetric shape of the PMD [28]. At this
moment, the TC method is restricted to neutron removal
processes.

As mentioned, it is difficult to describe an inclusive process,
to which huge numbers of the final states of T contribute.
On the other hand, the description of elastic breakup (EB),
in which T stays in the ground state in the final channel,
is well established. CDCC [22–24], the dynamical eikonal
approximation (DEA) [29,30], the Faddeev–Alt-Grassberger-
Sandhas (Faddeev-AGS) theory [31,32], etc. can be adopted;
CDCC is even applicable to the nuclear and Coulomb breakup
of a three-body projectile by a target nucleus [33–36].

The asymmetry of the PMD, its EB component in particular,
of 14C after the one-neutron removal from 15C by 9Be at
54 MeV/nucleon was discussed in Ref. [37] by means of
CDCC. It was concluded that the accurate treatment of
three-body reaction dynamics was essential to reproduce the
asymmetry of the PMD of 14C. Because of this finding,
sometimes the asymmetry of a PMD is regarded as a result of
higher-order effects. Discussion on the very large asymmetry
found in 9Be(46Ar,45Arx), where x indicates that all other
particles are not detected, at 70 MeV/nucleon [11], however,
has not been done.

In the present study, we focus on one-nucleon knockout
processes by a hydrogen target, i.e., (p,pN ) reactions in
inverse kinematics, in which only the EB process occurs.
(p,pN ) reactions have been used to determine the s.p. structure
of nuclei; for reviews, see Refs. [38–40]. An important feature
of (p,pN ) reactions is that the energy and momentum transfer
(ω-q) as well as the angular momentum transfer �l is large
in general. This makes the reaction mechanism rather simple,
and the distorted-wave impulse approximation (DWIA) has
been successful in describing (p,pN ) reaction observables.
Recently, a comparison between the DWIA and the Faddeev-
AGS theory was done for 11Be(p,pn)10Be and 12C(p,pn)11B,
and the results of the two methods were shown to agree
very well with each other at proton energies above 100 MeV
[41,42]. It should be noted that the Glauber model [17–20],
which relies on the adiabatic approximation, assumes small
ω-q and is thus not suitable for describing (p,pN ) reactions.
CDCC does not use the adiabatic approximation and is

0556-2813/2015/92(3)/034616(8) 034616-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.92.034616


KAZUYUKI OGATA, KAZUKI YOSHIDA, AND KOSHO MINOMO PHYSICAL REVIEW C 92, 034616 (2015)

applicable to (p,pN ) reactions [43–45]. However, the model
space of CDCC required to describe (p,pN ) reactions is large
mainly because of the large value of �l. Furthermore, for a
knockout process of a tightly bound nucleon, ω-q and �l are
even larger, which will make CDCC unpractical.

In this paper we investigate the asymmetry of the PMD
of 14O(p,pN ) reactions in inverse kinematics at 100 and
200 MeV/nucleon. 14O has the neutron and proton separation
energies of 23.2 and 4.63 MeV, respectively, and their large
difference is expected to give a quite different shape to the
PMD of the reaction residues, i.e., 13O and 13N. The main
purpose of the present study is to understand the mechanism
that gives the asymmetric shape of the PMD. We adopt the
DWIA with the eikonal approximation, the accuracy of which
is judged by comparison with the experimental data of the
triple differential cross section (TDX) of 12C(p,pN )11B at
392 MeV [46]. Roles of the phase volume, which guarantees
the energy and momentum conservation, and the distortion
of the outgoing two nucleons by the residual nucleus are
investigated separately. Quite recently, in Ref. [47] an eikonal
DWIA model was developed for describing the momentum
distribution (MD) of (p,pN ) reaction resides. The authors
focused on reactions at around 500 MeV/nucleon, and the
asymmetry of the PMD, which is expected to appear at lower
energies, has not been discussed.

The construction of this paper is as follows. In Sec. II
formulation of the TDX and PMD with the eikonal DWIA is
given. In Sec. III first we show the accuracy of the eikonal
DWIA by comparing the result of the TDX of 12C(p,pN )11B
at 392 MeV with experimental data. We then show the PMD
of the 14O(p,pN ) reaction residues at 100 MeV/nucleon.
The phase volume effect on the high momentum side and
the distortion effect on the low momentum side are discussed
in detail. Results at 200 MeV/nucleon are also investigated.
Finally, we give a summary in Sec. IV.

II. FORMALISM

We consider A(p,2p)B and A(p,pn)B reactions in inverse
or normal kinematics. We adopt the framework of the DWIA
to calculate the TDX and the PMD. Both observables are
evaluated in the frame in which A is at rest, i.e., the A-rest
frame. We refer to the proton in the initial channel as particle
0, and the outgoing two nucleons to as particles 1 and 2.
The momentum (in the unit of �) and the total energy of
particle i (= 0, 1, 2, or B) are denoted by K i and Ei ,
respectively; Ti represents the kinetic part of Ei and �i is
the solid angle of K i . These quantities with and without
the superscript A mean that they are evaluated in the A-rest
frame and the p-A center-of-mass (c.m.) frame, respectively.
In the following equations, we adopt the relativistic kinematics

for each particle, i.e., EA
i =

√
(mic2)2 + (�cKA

i )2 and Ei =√
(mic2)2 + (�cKi)2, with mi the rest mass of particle i, are

used. The Lorentz transformation is adopted to relate the
four-dimensional momenta (�K A

i ,EA
i /c) and (�K i ,Ei/c).

The antisymmetrization between particles 1 and 2 is
understood to be taken into account in the nucleon-nucleon
(NN ) transition matrix tNN , which is treated approximately

by using

(mN/2)2

(2π�2)2
|tNN |2 ≈ σ̄NN . (1)

The nucleon mass is denoted by mN and σ̄NN is the NN elastic
differential cross section averaged over incident energies and
scattering angles relevant to the knockout process considered.
Equation (1) is in fact based on the following three approx-
imations. First, tNN is evaluated with the NN asymptotic
kinematics [48]. Second, the off-the-energy-shell tNN in the
nuclear medium is approximated by a on-shell matrix element
in free space. Then one can evaluate |tNN |2 by the NN
differential cross section multiplied by a kinetic constant.
Third, we take an average of the NN differential cross section
to have a one number σ̄NN to be used in the calculation of
the knockout process. Note that σ̄NN depends on the reaction
type, i.e., (p,2p) or (p,pn), and the incident energy of the
knockout processes. These rather drastic approximations to
tNN are examined by comparing the calculated TDX with
experimental data in Sec. III B.

We make the eikonal approximation to the distorted waves
of particles 0, 1, and 2, as in Ref. [47]; we further approx-
imate the eikonal wave function with the forward scattering
assumption; see Eqs. (8) and (9) below.

The TDX is then given by

d3σ

dEA
1 d�A

1 d�A
2

= FkinC0

∑
m

σ̄NN (2π )2
∣∣T̄ nljm

KN ,K0K1K2

∣∣2
, (2)

where

Fkin ≡ JA
K1K2E1E2

�4c4

[
1 + E2

EB
+ E2

EB

K 1 · K 2

K2
2

]−1

(3)

with JA the Jacobian for the transformation from the p-A c.m.
frame to the A-rest frame, and

C0 = EA
0

(�c)2KA
0

1

(2l + 1)

4�
4

(2π )3m2
N

. (4)

The reduced transition amplitude is given by

T̄
nljm
KN ,K0K1K2

=
∫

db bJm(KNbb) dz e−iKNzz

×FK0K1K2 (b,z)ϕnlj (R)P̄lm(cos θR), (5)

where n, l, and j are, respectively, the principal quantum
number, the orbital angular momentum, and the total spin of
the s.p. orbit of the nucleon in A; m is the third component of
j . ϕnlj is the radial part of the s.p. wave function, and P̄lm is
defined through the spherical harmonics Ylm by

P̄lm(cos θR) = Ylm(R̂)e−imφR , (6)

where R̂, θR , and φR are the solid, polar, and azimuthal angles
of R, respectively. The z axis is taken to be the direction of the
incident particle, i.e., p (A) in normal (inverse) kinematics,
and b is the length of the projected vector b of R on the plane
perpendicular to the z axis. Jm is the Bessel function of the
first kind.
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The missing momentum KN that plays a central role in
(p,pN ) reactions is defined by

KN = K 1 + K 2 − A − 1

A
K 0 = −K B − A − 1

A
K 0

≡ KNzez + KNbeb, (7)

where A is the mass number of A and ez (eb) is the unit
vector for the direction of z (b). It should be noted that with
high accuracy one can find KN ≈ −K A

B. If B is assumed to
be a spectator in the (p,pN ) process, KN can therefore be
interpreted as the momentum of the struck nucleon in the
A-rest frame before the NN collision.

In the present eikonal DWIA, the distortion effects for
particles 0, 1, and 2 are aggregated into the so-called distorted-
wave factor FK0K1K2 given by

FK0K1K2 (b,z) = exp

[
1

i�v0

∫ z

−∞
U0(b,z′)dz′

]

× exp

[
1

i�v1

∫ ∞

z

U1(b,z′)dz′
]

× exp

[
1

i�v2

∫ ∞

z

U2(b,z′)dz′
]

(8)

in normal kinematics and by

FK0K1K2 (b,z) = exp

[
1

i�v0

∫ ∞

z

U0(b,z′)dz′
]

× exp

[
1

i�v1

∫ z

−∞
U1(b,z′)dz′

]

× exp

[
1

i�v2

∫ z

−∞
U2(b,z′)dz′

]
(9)

in inverse kinematics. Ui (i = 0,1,2) is the distorting potential
for particle i and vi is its velocity.

The MD of B is defined by

dσ

d K A
B

= C0

∫
d K A

1 d K A
2 ηA

Mφlδ
(
EA

f − EA
i

)
δ
(
K A

f − K A
i

)

×σ̄NN

∑
m

(2π )2
∣∣T̄ nljm

KN ,K0K1K2

∣∣2
, (10)

where

ηA
Mφl = E1E2EB

EA
1 EA

2 EA
B

. (11)

The total energy (momentum) of the reaction system in the
A-rest frame in the initial and final channels is denoted by EA

i

(K A
i ) and EA

f (K A
f ), respectively. Equation (10) can be reduced

to

dσ

d K A
B

= C0
1

(�c)2QA

∫
dKA

1 KA
1 EA

2 dϕA
1Q ηA

Mφl

×σ̄NN

∑
m

(2π )2
∣∣T̄ nljm

KN ,K0K1K2

∣∣2
, (12)

where K A
2 is understood to be fixed at K A

0 − K A
1 − K A

B by
the momentum conservation. We measure the solid angle of

particle 1 with respect to QA ≡ K A
0 − K A

B as

d K A
1 = (

KA
1

)2
dK1d

(
cos θA

1Q

)
dϕA

1Q. (13)

In Eq. (12) cos θA
1Q has been fixed at a value that satisfies

the energy conservation; this value as well as the lower and
upper limits of KA

1 is given analytically. The PMD is given by
integrating the MD over the absolute value of the b component
of K A

B:

dσ

dKA
Bz

=
∫

dKA
Bb KA

Bb

dσ

d K A
B

. (14)

When the theory is compared with PMD data integrated over
the azimuthal angle of K A

B, Eq. (14) must be multiplied by
2π . For reactions in inverse kinematics, the A-rest frame is
different from the laboratory frame (L frame). Then

dσ

d K L
B

= EA
B

EL
B

dσ

d K A
B

(15)

can be used for comparison with experimental data, if
necessary. The superscript L indicates the L frame.

If plane wave impulse approximation (PWIA) is adopted,
further simplification of Eq. (12) can be done:

dσ PW

d K A
B

= ρ̄K A
B
FK A

B
, (16)

where the phase volume ρ̄K A
B

is given by

ρ̄K A
B

= 1

(�c)2QA

∫
dKA

1 KA
1 EA

2 dϕA
1Q ηA

Mφl, (17)

and the effective s.p. MD is defined by

FK A
B

= C0σ̄NN

∑
m

|φ̃nljm(KN )|2, (18)

with

φ̃nljm(KN ) =
∫

d R e−i KN ·Rϕnlj (R)Ylm(R̂). (19)

Thus ρ̄K A
B

and FK A
B

are factorized. Equations (16)–(19) are used
in Sec. III C to see the phase volume effect on the PMD.

In the actual calculation Eq. (17) is used, i.e., the energy and
momentum conservation based on the relativistic kinematics
is taken into account. For an interpretation of the numerical
result, however, the following nonrelativistic expression of
ρ̄K A

B
will be helpful:

ρ̄NR
K A

B
≡= πmN

�2

√(
K A

0 + K A
B

)2 − 2A

A − 1

(
KA

B

)2 − S̄N , (20)

where S̄N ≡ 4mNSN/�
2 with SN the nucleon separation

energy of A. Although it is rather trivial, the argument of the
square root in Eq. (20) is understood to be not negative; this
condition determines, within the nonrelativistic kinematics,
the allowed region of K A

B for satisfying the energy and
momentum conservation. A similar discussion can be done
in the relativistic kinematics. However, the functional form of
ρ̄K A

B
is much more complicated than Eq. (20).
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FIG. 1. (Color online) Triple differential cross section for the
12C(p,2p)11B reaction at 392 MeV in normal kinematics. The
definition of the horizontal axis and detailed kinematical conditions
for the outgoing protons are given in the text. The experimental data
are taken from Ref. [46].

III. RESULTS AND DISCUSSION

A. Numerical inputs

We use the s.p. potential of Bohr and Mottelson [49] for
the nucleon inside the nucleus. The depth of its central part
is changed so as to reproduce SN . For the nucleon distorting
potential below (above) 200 MeV, we adopt the parameter set
of Koning and Delaroche [50] (Dirac phenomenology [51]);
its energy dependence is explicitly taken into account. We
multiply each of the distorted waves by the Perey factor [52]
FPer(R) = [1 − μβ2/(2�

2)U (R)]−1/2, where μ is the reduced
mass between the scattering two particles, to include the effect
of the nonlocality of the distorting potential; the range β
of nonlocality is chosen to be 0.85 fm. The parametrization
of Franey and Love [53] for tNN is used.

B. TDX and PMD calculated with eikonal DWIA

First we test the accuracy of the eikonal DWIA model de-
scribed in Sec. II. We calculate the TDX for the 12C(p,2p)11B
reaction at 392 MeV in normal kinematics with Eq. (2). We
follow the Madison convention and the kinematics of the
outgoing two protons is fixed as T1 = 250 MeV, θ1 = 32.5◦,
φ1 = 0◦, and φ2 = 180◦; this means that the energy transfer
�ω is 142 MeV and the momentum transfer q is 2.59 fm−1. We
assume that the 0p3/2 proton in 12C is knocked out. In Fig. 1
we show the result of the TDX and the experimental data [46].
We use the spectroscopic factor S = 1.72 determined by the
(e,e′p) experiment [54]. The horizontal axis is defined by

PR = �KA
B

KA
Bz∣∣KA
Bz

∣∣ . (21)

One sees the calculation reproduces the data very well, which
suggests the success of the present reaction model, i.e., the
eikonal DWIA with the forward scattering assumption and
the use of the averaged NN cross section in free space. It
should be noted that the undershooting at around PR = 0,

FIG. 2. (Color online) Parallel momentum distribution of the
14O(p,pn)13O (solid line) and 14O(p,2p)13N (dashed line) reaction
residues at 100 MeV/nucleon in inverse kinematics.

which corresponds to the so-called quasifree condition (QFC),
is mainly because the experimental data have been integrated
over d�A

1 and d�A
2 in the range of the resolution of the

detectors [46]. The calculated TDX reproduces the data up to
|PR| ∼ 200 MeV/c, i.e., well away from the QFC point. This
will be due in part to the kinematical condition corresponding
to large ω-q.

Next we show in Fig. 2 the PMD of the residual nuclei
of the 14O(p,pn) (solid line) and 14O(p,2p) (dashed line)
reactions at 100 MeV/nucleon, as a function of P A

Bz = �KA
Bz.

For the former (latter) the 0p3/2 neutron (0p1/2 proton) with
SN = 23.2 MeV (4.63 MeV) is assumed to be knocked out
by the target proton; from now on we always use S = 1. In
both reactions the PMD shows clear asymmetry. For more
quantitative discussion, we divide the FWHM � into two parts
corresponding to the low (�L) and high (�H) momentum sides
with respect to the peak position Pcen:

� = �L + �H. (22)

The asymmetry A� is defined by �L/�H. The values of Pcen,
�, �L, �H, and A� are listed in Table I. One sees that the shift
of the peak position from the origin, |Pcen|, of 13O is three
times as large as that of 13N. Another finding is that the two
residues have similar values of �H, whereas �L of them are
quite different from each other. In Secs. III C and III D we
investigate these features of the PMD in more detail.

C. Phase volume effect on the high momentum side

It is quite well known that the PMD on the high momentum
side is affected by the energy conservation, the effect of which
on the PMD is expressed by the phase volume ρ̄K A

B
. We use

TABLE I. Pcen, �, �L, �H, and A� for the 14O(p,pN ) reaction
residues at 100 MeV/nucleon.

Nucleus Pcen (MeV/c) � (MeV/c) �L (MeV/c) �H (MeV/c) A�

13O −92 266 182 84 2.17
13N −31 178 104 74 1.41

034616-4



ASYMMETRY OF THE PARALLEL MOMENTUM . . . PHYSICAL REVIEW C 92, 034616 (2015)

FIG. 3. (Color online) Parallel momentum distribution of the
14O(p,pn)13O reaction residue at 100 MeV/nucleon in inverse
kinematics. The solid (dashed) line shows the result of the PWIA
without (with) taking into account the phase volume. The dotted line
is the same as the dashed line but an averaged phase volume is used
(see the text for detail).

the PWIA, Eq. (16), to see the role of ρ̄K A
B

clearly. The solid
line in Fig. 3 shows the result of the PWIA without including
the phase volume. More precisely, in this calculation ρ̄K A

B
in

Eq. (16) is replaced with

ρ̄0 ≡
∫

ρ̄K A
B
d K A

B∫
ρ̄KA

B
�=0 d K A

B

. (23)

Then dσ PW/d K A
B is just proportional to the effective s.p.

MD of 14O. As a result, the solid line in Fig. 3 has a
purely symmetric shape with respect to its centroid momentum
located at P A

Bz = 0. If the phase volume ρ̄K A
B

is taken into
account as in Eq. (16), the dashed line is obtained. One sees
that ρ̄K A

B
gives a quite sharp cut of the PMD on the high

momentum side. This results in the quite drastic shortening
of the FWHM �, which is used as a measure of l. The result
shown in Fig. 3 suggests that inclusion of ρ̄K A

B
, i.e., energy and

momentum conservation, is necessary to relate the PMD and
l properly. On the other hand, the peak height of the solid line
is almost the same as that of the dashed line. The dotted line
shows the result using

ρ̄av
KA

Bz
≡

∫
ρ̄K A

B
KA

BbdKA
Bb∫

ρ̄KA
B
�=0 KA

BbdKA
Bb

(24)

instead of ρ̄K A
B

in Eq. (16). Although the shape of the dotted
line is quite similar to that of the dashed line, the former
undershoots the latter at and below the centroid momentum
(∼−80 MeV/c). Thus, accurate treatment of ρ̄K A

B
is found to

be important.
The role of ρ̄K A

B
is seen more clearly in Fig. 4. The MD

dσ PW/d K A
B is shown in Fig. 4(a) and decomposed into the

phase volume ρ̄K A
B

[Fig. 4(b)] and the effective s.p. MD
FK A

B
[Fig. 4(c)]. In each panel the solid, dashed, dotted,

and dash-dotted lines correspond to KA
Bb = 0.0, 0.5, 1.0, and

1.5 fm−1, respectively. As shown in Fig. 4(b), ρ̄K A
B

shows clear
asymmetry with respect to KA

Bz = 0. This behavior can easily

FIG. 4. (Color online) (a) Momentum distribution calculated
with the PWIA, dσ PW/d K A

B, (b) phase volume ρ̄K A
B

, and (c) effective

s.p. momentum distribution FK A
B

, for the 14O(p,pn)13O reaction
residue at 100 MeV/nucleon in inverse kinematics. The solid, dashed,
dotted, and dash-dotted lines in each panel correspond to KA

Bb = 0.0,
0.5, 1.0, and 1.5 fm−1, respectively. The dash-dot-dotted line in (b)
shows the averaged phase volume ρ̄av

KA
Bz

.

be understood by its nonrelativistic expression. When A 	 1,
one finds from Eq. (20) that (i) ρ̄NR

K A
B

has a maximum at KA
Bz =

−KA
0 and (ii) ρ̄NR

K A
B

= 0 at KA
Bz = −KA

0 ± [2(KA
0 )2 − (KA

Bb)2 −
S̄N ]1/2. The phase volume ρ̄K A

B
plotted in Fig. 4(b), i.e., calcu-

lated with the relativistic kinematics, has the same features.
The effective s.p. MD at KA

Bb = 0 shown by the solid line
in Fig. 4(c) has a two peak structure and distributes up to
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|KA
Bz| ∼ 2.0 fm−1, reflecting the MD of the 0p3/2 neutron

inside 14O. Since FK A
B

is in fact independent of the direction

of K A
B, the behavior of the other lines in Fig. 4(c) can be

understood by that of the solid line. The MD of B is obtained by
taking the product of ρ̄K A

B
and FK A

B
, which strongly suppresses

the high momentum side, as shown in Fig. 4(a). One can find
that the shape of the PMD (the dashed line in Fig. 3) is similar
to the MD at KA

Bb = 0.5 fm−1 [the dashed line in Fig. 4(a)].
This is because the MD at around this value of KA

Bb has the
main contribution to the PMD. It should be noted that the
averaged phase volume ρ̄av

KA
Bz

shown by the dash-dot-dotted line

in Fig. 4(b) quite well agrees with the dashed line for KA
Bz � 0,

whereas the former undershoots the latter for KA
Bz � 0. This

explains the reason for the difference between the dashed and
dotted lines in Fig. 3.

More intuitive interpretation of the role of ρ̄K A
B

can be given

as follows. Let us consider two cases: (1) K A
B = KA

B ez and
(2)K A

B = −KA
B ez. Since B has the same energy in the two

cases, EA
1 + EA

2 is fixed at a same value because of the energy
conservation. In a more rough estimation, the kinetic energy
of B, TB, is considered to be negligibly small. Then one finds

T A
1 + T A

2 ≈ T A
0 − SN. (25)

On the other hand, the momentum conservation restricts the
sum of KA

1z and KA
2z to be −KA

0 − KA
B in case (1) and −KA

0 +
KA

B in case (2); note that K A
0 = −KA

0 ez in the A-rest frame.
|KA

1z + KA
2z| in the former is much larger than in the latter.

Under the condition of Eq. (25), it is difficult to satisfy the
momentum conservation in case (1).

When SN is small, the cutoff momentum for ρ̄K A
B

becomes
larger. In addition to that, the effective s.p. MD becomes
narrower. These two make the effect of ρ̄K A

B
on the MD smaller.

This is the reason for the difference in the PMD of 13O (solid
line) and 13N (dashed line) on the high momentum side shown
in Fig. 2. One can also expect a smaller effect of ρ̄K A

B
at higher

incident energy. We will return to this point in Sec. III E.

D. Distortion effect on the low momentum side

One sees by comparing the solid line in Fig. 2 and the dashed
line in Fig. 3 that the distortion generates a well-developed
low momentum tail in the PMD. In the present eikonal DWIA
model, as mentioned, the effect of distortion is aggregated
into the distorted-wave factor FK0K1K2 ; its form in inverse
kinematics is given in Eq. (9). One sees from Eq. (9) that the
imaginary part Wi of each optical potential gives a reduction of
the amplitude of FK0K1K2 , i.e., absorption. On the other hand,
the real part Vi generates an effective momentum �K i for
each particle; �K 0 is antiparallel with the z axis, and �K 1

and �K 2 are parallel with the z axis. One may interpret �K i as
the momentum shift of a nucleon inside an attractive potential
due to the local energy conservation.

Thus, the exponent −iKNzz in Eq. (5) is effectively changed
as

− iKNzz → −iKNzz + i(−�K0 + �K1 + �K2)z

≈ i
(
KA

Bz − �K0 + �K1 + �K2
)
z, (26)

FIG. 5. (Color online) Parallel momentum distribution of 13O for
14O(p,pn)13O at 100 MeV/nucleon in inverse kinematics. The solid
line is the DWIA result, whereas the dashed (dotted) line represents
the result calculated with Vi = 0 (Wi = 0) for particles 1 and 2.

where use has been made of KN ≈ −K A
B. It is found that �K0

is quite small because the kinetic energy of particle 0 is fixed
at 100 MeV. On the other hand, particles 1 and 2 are allowed
to have quite lower energies, for which the distortion effect is
larger. Then KA

Bz is effectively shifted toward the +z direction
by V1 and V2. In other words, the PMD dσ/dKA

Bz probes
the nucleon inside the nucleus A that has the longitudinal
momentum around |KA

Bz + �K1 + �K2|.
To see this, we show in Fig. 5 the PMD of 13O for

14O(p,pn)13O at 100 MeV/nucleon in inverse kinematics,
calculated with the DWIA putting Vi = 0 (dashed line) and
Wi = 0 (dotted line) for particles 1 and 2. For comparison we
show by the solid line the DWIA result, which is the same
as in Fig. 2. As clearly shown, V1 and V2 generate the low
momentum tail. It should be remarked that the shift of the
PMD towards the low momentum side by V1 and V2 affects
also the height of the peak of the PMD. On the other hand, V1

and V2 change the integrated cross section by only about 5%.
In the actual calculation, as mentioned, the energy depen-

dence of U1 and U2 is explicitly taken into account. It is found
that the qualitative feature of the result shown in Fig. 5 does
not change even if U1 and U2 are evaluated at a fixed energy,
Efix. Quantitatively, however, this treatment affects the result.
The height of the peak changes by about 60%, depending on
the value of Efix.

It is found that the momentum shift appears also in
14O(p,2p)13N but the effect is quite small. This can be
understood by the difference in SN . Equation (25) shows that
the kinetic energies of particles 1 and 2 are more severely
restricted when SN is large. Then the distortion effects due to
V1 and V2 become more important.

E. Results at 200 MeV/nucleon

Both the phase volume effect and the distortion effect
discussed above will become less important as the incident
energy increases. We show in Fig. 6 the PMD of the
14O(p,pN )13O at 200 MeV/nucleon. The meaning of the lines
is the same as in Fig. 2. The two lines agree with each other
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FIG. 6. (Color online) Same as Fig. 2 but at 200 MeV/nucleon.

around the tail on the high momentum side. This suggests that
the phase volume effect becomes small, though not negligible.
On the other hand, both results still show somewhat large
asymmetry, i.e., A� , indicating the importance of the distortion
for particles 1 and 2 at this incident energy. The features of the
results are summarized in Table II .

When SN is even smaller, the PMD becomes almost
symmetric, as shown in Fig. 7, in which the PMD of 30Ne for
31Ne(p,pn)30Ne at 200 MeV/nucleon in inverse kinematics
is plotted. We assume that the 1p3/2 neutron with SN =
0.15 MeV is knocked out. The most important feature of this
reaction is that the 1p3/2 neutron has a very narrow s.p. MD
because of its small SN . Within the range corresponding to
the s.p. MD, KA

Bz essentially gives no effect on the kinematics
of the three-body system. In addition to that, since the 1p3/2
neutron forms a halo, the main contribution to the reduced
transition amplitude Eq. (5) comes from the surface region
of the nucleus, which significantly suppresses the distortion
effect. It should be noted that this is the case with only a
very weakly bound nucleus; for the 14O(p,2p)13O process
corresponding to a quite small value of SN (4.63 MeV), the
distortion effect still exists as shown in Fig. 6. The PMD for
a knockout process of a very weakly bound nucleon at around
200 MeV/nucleon shows, therefore, a symmetric shape rather
exceptionally.

IV. SUMMARY

We have investigated the PMD of the residual nuclei of
the 14O(p,pn)13O and 14O(p,2p)13N reactions at 100 and
200 MeV/nucleon in inverse kinematics. An eikonal DWIA
model was adopted, which was shown to reproduce the
TDX data of the 12C(p,2p)11B at 392 MeV very well. The

TABLE II. Same as Table I but at 200 MeV/nucleon; the result
for 31Ne(p,pn)30Ne is also shown.

Nucleus Pcen (MeV/c) � (MeV/c) �L (MeV/c) �H (MeV/c) A�

13O −53 278 168 110 1.53
13N −20 191 113 78 1.45
30Ne −0.7 52 32 30 1.08

FIG. 7. (Color online) Same as Fig. 6 but for 31Ne(p,pn)30Ne.

PMD of both 13O and 13N have an asymmetric shape at
100 MeV/nucleon. The high momentum side steeply falls,
whereas a well-developed tail exists on the low momentum
side.

The former is found to be due to the phase volume effect
reflecting the energy and momentum conservation. We have
clarified how the phase volume affects the s.p. MD of the
nucleon inside 14O in detail by using PWIA. The width � of
the PMD is much smaller than that of the s.p. MD by the phase
volume effect. This should be remarked because � is used as a
measure of the s.p. orbital angular momentum l. On the other
hand, the phase volume does not change the peak height of the
PMD. The phase volume effect becomes less important when
SN is small because (1) the cutoff momentum of the phase
volume on the high momentum side is large and (2) the width
of the s.p. MD is small.

The latter, the tail of the PMD on the low momentum side,
is found to be due to the momentum shift of the outgoing two
nucleons inside an attractive potential caused by the residual
nucleus. Consequently, the PMD dσ/dKA

Bz probes the nucleon
inside the nucleus A having the longitudinal momentum
|KA

Bz + �Keff|, where �Keff (>0) is the effective momentum
due to the distortion effect. It should be noted that �Keff gives
a somewhat large reduction of the peak height of the PMD,
which is a key quantity to determine the spectroscopic factor
S. The momentum shift has a quite small effect (∼5%) on the
integrated cross section.

We found that at 200 MeV/nucleon the phase volume effect
becomes less important, whereas the distortion effect still
exists. For the 31Ne(p,pn)30Ne reaction at 200 MeV/nucleon,
exceptionally, the PMD has an almost symmetric shape. This
is because of the very small value (0.15 MeV) of SN in this
case. It should be remarked that the small distortion effect
is due to the halo structure of 31Ne; the contribution of the
nuclear interior region, where distorting potentials are large,
to the (p,pN ) transition amplitude is almost negligible.

For a quantitative comparison with experimental data of a
PMD, on the low momentum side in particular, use of non-
eikonal scattering wave functions will be necessary. Extension
of the present DWIA framework to knockout reactions by a
nucleus will also be important for discussing various experi-
mental data of nucleon removal processes measured so far.
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