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Particle-hole configurations in reaction mechanisms for single-particle level densities
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Earlier, single-particle level densities were obtained for a large number of target nuclei from the analysis of
experimental data on a (n,p) reaction at 14.8 MeV neutron energy using the Kalbach model. Recently, we obtained
theoretical values of excitation energy εc for unbound states and Fermi energies (εf ) for bound states for these
single-particle level densities for many target nuclei by using Shlomo’s theory, which leads to a shell structure,
when εc was plotted as a function of the atomic weight A. This indicates support to the concept of multiple
statistical direct (MSD) and multiple statistical compound preequilibrium processes that involves unbound and
bound states. We have now calculated the particle-hole configurations which are dominantly involved in the
reaction mechanism for creating the single-particle level densities for all target nuclei, including “spikes” and
“dips” obtained in the data analysis earlier using the formulation given by Kalbach [Phys. Rev. C 23, 124 (1981)]
and Shlomo [Nucl. Phys. A 539, 17 (1992)]. It seems that h = 2, p = 0 is the dominant configuration for most of
the targets in the preequilibrium process, whereas spikes seem to correspond to the h = 1, p = 1 dominant config-
uration, corresponding to the direct reaction mechanism; and dips seem to belong to the h = 2, p = 0 configuration
and h = 1, p = 1 and h = 0, p = 2 configurations somewhat equally giving compound nucleus formation due
to quantum statistical fluctuations and MSD. The implication of these calculations and results is discussed.
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I. INTRODUCTION

We had analyzed [1] the global data on angle integrated
energy spectra and energy integrated angular distribution of
protons from the (n,p) reaction at 14.8 MeV of neutron
energy for a large number of target nuclei to obtain single-
particle level densities by using the PRECO-D2 computer
program by Kalbach [2] which uses the assumption of the
preequilibrium process as well as the compound nucleus
formation. The target-projectile composite nuclear system is
assumed to reach compound nucleus equilibrium through a
cascade of two-body interactions. Each stage of the cascade
is characterized by the number of excited particles (p) and
holes (h), called excitons. Kalbach uses a semiclassical model
of multiple statistical direct (MSD) and multiple statistical
compound (MSC) processes based on the Feshbach-Kerman-
Koonin [3] quantum-mechanical theory of preequilibrium
reactions which results in the emission of a particle leaving
behind an excited nucleus through the multistep direct (MSD)
process, which decays further through the multistep compound
(MSC) process. The compound state is thus reached through
MSD-MSC transition, which also includes the evaporation
model of Weisskopf and Ewing [4]. The Kalbach model also
includes a direct reaction, not included in MSD. These are
nucleon transfer and nucleon knockout, and they are evaluated
semiempirically [2].

It was interesting [5] to find that the excitation energies εc of
the single-particle level densities calculated by using Shlomo’s
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model [6] of energy dependence of the single-particle level
densities obtained from comparison of experimental data with
the Kalbach model had a shell structure when εc was plotted
against the atomic weight of target nuclei A. The values of
εc for closed shell target nuclei, such as 20Ca40 (n = p = 20)
and 28Ni58 (p = 28) and 39Y89 (n = 50) had low values of εc,
i.e., 47.3, 47.5, and 40 MeV compared to 51–57.0 MeV for
other targets, which had proton and neutron values different
from magic numbers. This showed a certain systemization of
the process of excitation in the preequilibrium model. This is
clearly shown in Fig. 7 of Ref. [5].

It was also seen that the semiempirical values of gT h
c

corresponded to the negative energy of excitation εB , which
when plotted against A (atomic weight) of the target nuclei
had also a shell structure but with a higher value of εB at a
magic number and lower values at nonmagic numbers. This
is, thus complementary to the dependence of εc on A and is
shown in Fig. 6 of Ref. [5].

It seems that the values of εc, which correspond to the
unbound states, represent the MSD process in Fig. 7 of Ref. [5],
and εB , which corresponds to bound states, represents the MSC
process (Fig. 6, Ref. [5]). On the other hand, Fermi energies
εf when plotted against A had no structure. They, in general,
went down with A (Fig. 8, Ref. [5])

It is pertinent to ask if there is any systematics involving
particle-hole configuration in the reaction mechanism of the
multistep processes of MSD, MSC, and Fermi excitation
energies in the involvement of the (p,h) process.

We found that Eq. (13) of the Kalbach model can answer
this question if we interpret appropriately the quantities in this
equation with respect to the ones we have used in Ref. [1].
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FIG. 1. The values of a1 = π2gc

6 and a2 = π2gR

6 as a function of atomic weight as derived from the comparison of the experimental data
with the Kalbach model [2]. A corresponds to the smooth part, B corresponds to spikes, and C corresponds to dips.
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where gu(p) = gc(exp) and go = gR(exp) and h = the number
of holes involved in the reaction, p = the number of particles
involved in the reaction, and

n = h + p = 2. (2)

Also E = 〈εc〉, S = (εf ), and
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2

)
. (3)

In this manner we can write Eq. (1) as
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Equation (4) is expected to reproduce the proper values of
particles (p) and holes (h), which are involved in the process,
which gives rise to gc(exp) and gR(exp) in the Kalbach model.
The values of various quantities, i.e., gc(exp), gR(exp), and
〈εc〉, (εf ) used in Eq. (4) have been obtained as a result of
three major operations discussed below:

(i) The experimental data of the energy spectra and the
angular distribution of protons in the (n,p) reaction at

14.8 MeV neutron energy as given in several papers,
published over several years from 1959 to 1988, as
discussed in Ref. [1] is used for comparison with
the Kalbach model using the PRECO-D2 computer
program.

(ii) The evaluation of gc(exp) and gR(exp) is carried out by
fitting the experimental data with the Kalbach model
by a trial and error method.

(iii) The values of gc(exp) and gR(exp) for 23 target
nuclei are fitted to Shlomo’s model of dependence
of the single-particle level densities on the energy of
excitation 〈εc〉.

Now in this paper, we are trying to correlate the reaction
mechanism, i.e., involvement of particles (p) and holes (h)
in the preequilibrium processes in trying to find out the
dominance of any configuration, i.e., (i) h = 2, p = 0, and
n = 2, (ii) h = 1, p = 1, and n = 2, and (iii) h = 0, p = 2,
and n = 2 in a given process.

We have compared the relationship of gc (exp)
gR (exp) with the

values of Eq. (4) using the values of 〈εc〉 and (εf ) of Ref. [6]
for three ranges of nuclei:

(i) First we have examined 23 cases of nuclei for which
the values of gc(exp) and gR(exp) lie on a smooth
curve as shown in Fig. 1. As discussed in Ref. [1],
this region extends over a wide range of nuclei from
A = 19 to A = 115, marked as A in Fig. 1.

(ii) Next we have discussed the range of seven nuclei, i.e.,
46 < A < 63, for which the values of both gc(exp)
and gR(exp) are much higher than required by the
general smooth trend of the relation of g versus A. We
have marked these nuclei as “B” in Fig. 1. The values
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of gc(exp) and gR(exp) in these cases are termed as
spikes.

(iii) Then we found another region of six nuclei on the
higher side of the atomic weight, i.e., 90 < A < 96 for
which both gc(exp) and gR(exp) are quite low. These
are dips. We have marked these nuclei as “C” in Fig. 1.

The characteristics obtained by the use of the relationship
of Eq. (4) are quite different in three cases, which will be
discussed below.

II. RESULTS AND DISCUSSION

We give below the results of our calculations for these three
regions:

A.

For the first category of 23 target nuclei marked as A in
Fig. 1, the values of gc(exp) and gR(exp) are determined by
the procedure laid out in Ref. [1] where the Kalbach model is
used to compare, by a trial and error method, the experimental
result of energy spectra and angular distribution of the world
data of (n,p) reactions at 14.8 MeV neutron energy through
the PRECO-D2 computer code. These values are given in Table I
of Ref. [5] and are given in Table Ia in the present paper.

The values of 〈εc〉 and (εf ), i.e., the excitation energies for
the unbound states and the Fermi energy for the bound states
are, on the other hand, determined by using Shlomo’s model,
following the procedure in Ref. [5] and are given in Tables VI
and VII in that reference. It is interesting to see from Fig. 7 of

Ref. [5] that the values of 〈εc〉 for gc(exp) have a shell structure
when plotted against A.

We are now giving, for 23 target nuclei, in Table Ia of this
paper, the values of 〈εc〉,(εf ), gc(exp) = gu(p), gR(exp) = go

and Rexp = gu(p)
g0

= gc(exp)
gR(exp) , and the values of the ratio RT h as

given on the right side of Eq. (4) for three conditions of the
particle hole (p,h) configuration, i.e., for: (i) h = 2, p = 0, (ii)
h = 1, p = 1, and (iii) h = 0, p = 2 for n = 2 as calculated
from the Kalbach model and Shlomo’s model.

In Table Ib, we have given values of fi = RT h

Rexp
, �i

Rexp
= 1−fi

Rexp
,

and (�1
�i

)2 in three columns for i = 1, i = 2, and i = 3 for a
set of eight target nuclei, which have even-even structure. In
Tables Ic and Id, we have given these values for the rest of the
15 nuclei, which are even-odd, odd-odd, and even-even.

It is interesting to observe that the values of (�1
�i

)2 for eight

even-even target nuclei as given in Table Ib, i.e., 12Mg24,

14Si28, 20Ca40, 22Ti50, 26Fe56, 30Zn64, and 30Zn66 for i = 2
and i = 3 are quite small when we take the value of (�1

�i
)2

for i = 1 as 1.00. They range from 0.09 to 0.19 for i = 2
which corresponds to the h = 1, p = 1 configuration and
range from 0.014 to 0.068 for i = 3, which corresponds to
the h = 0, p = 2, configuration. This shows that i = 1 which
corresponds to the h = 2, p = 0 configuration is the most
dominant configuration. We have taken i = 1 as the reference
value because it corresponds to the smallest set of values of
�i

Rexp
, the average value of which is 0.005 for i = 1, compared

to 0.17 for i = 2 and 0.32 for i = 3. We have further given
in Tables Ic and Id, the values of (�1

�i
)2 for i = 2 and i = 3

TABLE Ia. The values of 〈εc〉 = E, (εf ) = S, 〈V0〉, gc(exp) = gu(p), gR(exp) = go, gc (exp)
gR (exp) = R(exp), and R(T h) [as given in Eq. (4)]

for all the target nuclei.

No. Nucleus 〈εc〉 = E 〈εf 〉 = S 〈V0〉 gc(exp) = gu(p) gR(exp) = g0
gc (exp)
gR (exp) = R(exp) RT h(p,h) configuration

h = 2 p = 0 h = 1 p = 1 h = 0 p = 2

1 9F19 48.6 34.54 43.45 2.49 1.5 1.6 1.153 1.06 0.85
2 12Mg24 51.6 32.96 43.30 2.78 2.01 1.38 1.31 1.1 0.88
3 13Al27 52.9 34.02 42.6 2.87 2.37 1.21 1.32 1.1 0.88
4 14Si28 57.3 32.05 42.5 2.49 1.52 1.63 1.85 1.36 0.84
5 15P31 57.6 34.14 42.8 2.89 2.49 1.15 1.34 1.1 0.86
6 16S32 57.05 33.18 42.2 2.49 2.43 1.025 1.47 1.16 0.85
7 20Ca40 47.3 33.14 41.8 4.5 2.98 1.49 1.49 1.23 0.97
8 22Ti47 50.4 33.22 41.6 4.5 2.01 2.2 1.2 1.09 0.90
9 22Ti48 56.00 31.99 41.2 4.07 2.01 2.2 1.3 1.13 0.85

10 22Ti50 56.50 32.28 41.0 4.07 2.98 1.48 1.45 1.17 0.85
11 26Fe56 51.00 32.23 41.8 5.47 4.01 1.3 1.3 1.1 0.89
12 27Co59 56.2 33.32 41.2 4.99 4.01 1.24 1.36 1.11 0.91
13 28Ni58 47.50 32.25 41.0 6.02 4.50 1.33 1.33 1.1 0.90
14 29Cu65 55.8 33.78 41.0 5.47 2.98 1.83 1.32 1.10 0.88
15 30Zn64 55.7 33.12 40.9 4.99 2.98 1.64 1.47 1.0 0.85
16 30Zn66 57.7 33.02 42.59 5.47 4.01 1.33 1.37 1.11 0.85
17 39Y89 40.2 32.97 40.2 9.00 6.50 1.37 1.12 1.04 0.97
18 45Rh103 39.80 32.86 39.7 10.3 7.54 1.36 1.13 1.04 0.95
19 46Pd106 39.71 31.96 39.7 11.00 7.53 1.45 1.2 1.04 0.96
20 46Pd108 43.40 31.81 39.6 10.40 7.54 1.31 1.11 1.07 0.93
21 47Ag107 43.40 32.77 39.6 10.09 7.93 1.4 1.36 1.12 0.88
22 47Ag109 43.7 32.66 39.6 10.52 7.56 1.39 1.16 1.06 0.96
23 49In115 43.4 32.36 39.9 11.00 7.93 1.38 1.23 1.11 0.99
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TABLE Ib. The values of fi = RT H

Rexp
, �i

Rexp
= 1−f1

Rexp
, and ( �1

�i
)2 for three configurations i = 1, i = 2, and i = 3 for eight even-even nuclei.

No. Nucleus fi = RT h

Rexp

�i

Rexp
= 1−fi

Rexp
( �1

�i
)2

i = 1 i = 2 i = 3 i = 1 i = 2 i = 3 i = 1 i = 2 i = 3

1 12Mg24 0.95 0.83 0.58 0.036 0.12 0.305 1.00 0.090 0.014
2 14Si28 1.1 0.77 0.53 0.061 0.14 0.28 1.00 0.190 0.040
3 20Ca40 1.00 0.81 0.50 0.00 0.22 0.31 1.00 0.000 0.000
4 22Ti50 0.86 0.88 0.50 0.071 0.22 0.31 1.00 0.090 0.050
5 26Fe56 1.00 0.83 0.74 0.00 0.13 0.20 1.00 0.000 0.000
6 28Ni58 1.00 0.68 0.66 0.00 0.13 0.22 1.00 0.000 0.000
7 30Zn64 0.87 0.66 0.50 −0.09 0.19 0.34 1.00 0.190 0.068
8 30Zn66 1.05 0.83 0.69 −0.037 0.12 0.26 1.00 0.110 0.019

Averages 0.96 0.78 0.59 0.005 0.17 0.32 1.00 0.020 0.024

for nuclei, which are odd-even, odd-odd, and even-even, along
with values for ( �1

�i
)2 for i = 1. It is interesting to find that

the values of (�1
�i

)2 for these cases are much larger than for
the eight even-even nuclei for i = 2 and i = 3. They range
from 0.24 to 0.82 for i = 2 and from 0.16 to 0.64 for i = 3
compared to 0.09 to 0.19 for i = 2 and 0.014 to 0.068 for i = 3
for the eight even-even target nuclei, but they are still less than
1 for the nuclei in Table Ic. The values of (�1

�i
)2 for the nuclei

in Table Id do not seem to fit in any systematics given above,
perhaps due to some nuclear structure effects.

All these results, put together, show very clearly that for
nuclei, involving the preequilibrium process on the main curve
A, the dominant configuration of the reaction is h = 2, p = 0
(i = 1).

We have plotted in Fig. 2, the values of �i

Rexp
as a function

of atomic weight A for the three possible configurations of
particle-hole (p,h) in the process of the nuclear reaction for 23
targets designated under category A of Fig. 1, i.e., for:

(i) h = 2, p = 0, and n = 2;
(ii) h = 1, p = 1, and n = 2, and
(iii) h = 0, p = 2, and n = 2.

It is quite apparent from Fig. 2 that the values �i

Rexp
have the least

spread in Fig. 2(a) with the h = 2, p = 0, configuration for the
eight even-even nuclei. It shows that this configuration is most
probable in the reaction mechanism. It is quite interesting to
see that for nuclei with magic proton or neutron numbers, this
value is “zero,” e.g., for 20Ca40

20 and 28Ni58
30. For many other

near magic nuclei, such as 12Mg24, 14Si28, 22Ti50, 26Fe56,
30Zn64, and 30Zn66 the values of �i

Rexp
are quite near to zero.

For these eight even-even nuclei, the average value of �i

Rexp

in the h = 2, p = 0 (i = 1) configuration is 0.005 as shown in
Fig. 2(a) and Table Ib, compared to 0.13 for the 11 even-odd
target nuclei in Fig. 2(b) and Table Ic. On the other hand for
i = 2 the average value of �i

Rexp
is 0.17, and for i = 3 it is 0.32

as shown in Table Ib for 8 even-even nuclei whereas it is 0.18
for i = 2 and 0.23 for i = 3 for the case for the 11 even-odd
target nuclei shown in Table Ic. The four nuclei in Table Id, i.e.,
13Al27, 15P31, 16S32, and 27Co59 seem to represent the effect
of nuclear structure on the values of �i

Rexp
= 1−fi

Rexp
. Whereas in

Table Ic, the values of �i

Rexp
for i = 1 represent minimum values

compared to i = 2 and i = 3, but the nuclei shown in Table Id
seem to show this minimum for i = 2. This ends up giving
(�1

�i
)2 no systematics when we take ( �1

�i
)2 = 1 for i = 1, but

TABLE Ic. The values of fi = RT h

Rexp
, �i

Rexp
= 1−f1

Rexp
, and ( �1

�i
)2 for the group of target nuclei (even-odd, odd-odd, and even-even).

No. Nucleus fi = RT h

Rexp

�i

Rexp
= 1−fi

Rexp
( �1

�i
)2

i = 1 i = 2 i = 3 i = 1 i = 2 i = 3 i = 1 i = 2 i = 3

1 9F19 0.71 0.66 0.53 0.18 0.21 0.33 1.00 0.73 0.30
2 22Ti47 0.51 0.49 0.43 0.21 0.23 0.25 1.00 0.80 0.64
3 22Ti48 0.65 0.58 0.42 0.17 0.20 0.28 1.00 0.64 0.36
4 29Cu65 0.77 0.66 0.50 0.12 0.18 0.27 1.00 0.43 0.30
5 39Y89 0.89 0.77 0.71 0.12 0.17 0.21 1.00 0.57 0.36
6 45Rh103 0.83 0.77 0.73 0.13 0.17 0.20 1.00 0.56 0.42
7 46Pd106 0.77 0.71 0.66 0.16 0.20 0.23 1.00 0.52 0.47
8 46Pd108 0.85 0.81 0.71 0.11 0.12 0.21 1.00 0.82 0.27
9 47Ag107 0.87 0.73 0.71 0.093 0.19 0.21 1.00 0.24 0.19

10 47Ag109 0.83 0.73 0.71 0.12 0.20 0.21 1.00 0.36 0.30
11 49In115 0.90 0.81 0.77 0.076 0.14 0.17 1.00 0.29 0.16

Averages 0.78 0.70 0.62 0.13 0.18 0.23 1.00 0.54 0.34
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TABLE Id. The values of fi = RT h

Rexp
, �i

Rexp
= 1−f1

Rexp
, ( �1

�i
)2, and ( �2

�i
)2 for i = 1, i = 2, and i = 3 for four odd-odd and even-even nuclei, which

are somewhat away from the general trend due to nuclear structural effects.

No. Nucleus fi = RT h

Rexp

�i

Rexp
= 1−f1

Rexp
( �1

�i
)2 ( �2

�i
)2

i = 1 i = 2 i = 3 i = 1 i = 2 i = 3 i = 1 i = 2 i = 3 i = 1 i = 2 i = 3

1 13Al27 1.09 0.91 0.73 −0.071 +0.074 0.22 1.00 1.00 0.04 1.08 1.00 11.6
2 15P31 1.20 0.99 0.76 −0.17 0.009 0.21 1.00 343 0.64 0.0028 1.00 0.0018
3 16S32 1.40 1.10 0.85 −0.38 −0.097 0.14 1.00 444 0.73 0.067 1.00 0.47
4 27Co59 1.09 0.91 0.71 − 0.071 0.062 0.22 1.00 1.44 0.14 0.75 1.00 0.078

there is some systematics when we take ( �2
�i

)2 = 1 for i = 2. It
seems to resemble the behavior of direct reaction as shown in
Table IIc. These four cases therefore do not seem to represent
the MSD reaction mechanism but the direct reaction.

This seems to indicate that for the eight even-even nuclei as
shown in Table Ib, the incident particle creates two hole (h = 2,
p = 0) configurations in the tightly bound ground levels of
these even-even nuclei, whereas for some odd-even, odd-odd,
and even-even target nuclei as given in Table Ic perhaps it
involves other levels near the ground level of the target nuclei
for the preequilibrium process, corresponding to h = 1, p = 1
and h = 0, p = 2, besides the dominant configuration h = 2,
p = 0.

B.

We have calculated earlier [5] the values of gT h
c (εc) as a

function of (εc) by calculating gT h
cn (εcn) for the excitation of

neutrons and gcp
T h(εcp) for the excitation of protons, giving

gT h
c (εc) = gT h

cn (εcn) + gT h
cp (εcp)

described in detail in Ref. [5] from Eqs. (24a) to (26).
These calculations are based on Shlomo’s theory as in

Ref. [6] from Eq. (6) to Eq. (25). We have given in Table IIa,
the details of these values. We have plotted gT h

c (ε) versus ε

FIG. 2. The values of �i

Rexp
(a) for eight even-even nuclei, (b) for

even-odd, odd-odd, and even some even-even nuclei for i = 1, (c) for
all targets for i = 2, and (d) for all targets for i = 3.

from ε = −10 to ε = 80 MeV in Fig. 3 where we have also
indicated the experimental values of gc(exp) and gR(exp) at
ε = 14.8 MeV and at ε = −εf , respectively. These values of
gc(exp) and gR(exp) correspond to the spikes in Fig. 1.

It is evident that the experimental values of gc(exp) and
gR(exp) are invariably much higher than the theoretical values.
This is different from the comparison of experimental values
of gc(exp) for the 23 targets on the smooth portion (A) of Fig. 1
where it was possible to exactly match the experimental values
of gc(exp) with ε and obtain exact values of excitation energy
〈εc〉 as described in detail in Ref. [5] and given in Fig. 7 of that
reference.

All the values of gc(exp) and gR(exp) have been obtained
semiempirically by the hit and trial method to fit the experi-
mental result of the energy spectra and the angular distribution
as shown in Fig. 5 of Ref. [1] for V51 and Cu63 included among
other nuclei. This is also the case for the other five nuclei, i.e.,
22Ti46, 24Cr50, 24Cr52, 26Fe54, and 28Ni60.

FIG. 3. The values of gc(T h) of the spikes as a function of
incident energy ε for 22Ti46, 23V51, 24Cr50, 24Cr52, 26Fe54, 28Ni60,
and 29Cu63 along with gc(exp) and gR(exp).
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TABLE IIa. The values of gc(T h) at different values of the excitation energy ε for the group of seven targets.

No. Nucleus εf ε = 0 ε = 14.8 MeV ε = 20 MeV ε = 30 MeV ε = 40 MeV ε = 50 MeV ε = 60 MeV ε = 70 MeV ε = 80 MeV

1 22Ti46 3.62(−10.74) 4.77 4.17 4.14 4.89 4.89 5.57 6.42 7.41 8.56
2 23V51 3.95(−10.83) 5.17 4.46 4.39 5.03 5.03 5.65 6.43 7.36 8.42
3 24Cr50 3.87(−10.29) 5.09 4.54 4.51 5.36 5.36 6.13 7.07 8.18 9.45
4 24Cr52 4.03(−10.91) 5.25 4.61 4.55 5.29 5.29 5.98 6.84 7.86 9.03
5 26Fe54 4.21(−10.83) 5.42 4.92 4.89 5.85 5.85 6.94 7.73 8.95 9.36
6 28Ni60 4.79(−10.33) 5.89 5.36 5.31 6.25 6.25 7.10 8.16 9.40 10.8
7 29Cu63 4.73(−10.32) 6.13 5.59 5.52 6.46 6.46 7.32 8.39 9.64 11.07

TABLE IIb. The values of εC = E, εf = S, V0, gC(exp) = gu(p), gR(exp) = g0, gC (exp)
gR (exp) = Rexp, and RT h for i = 1, i = 2, and i = 3

configurations.

No. Nucleus εC = E εf = S V0 gC(exp) = gu(p) gR(exp) = g0
gC (exp)
gR (exp) = R(exp) RT h(p,h) configuration

h = 2 p = 0 h = 1 p = 1 h = 0 p = 2

1 22Ti46 56.4 34.26 41.6 9.21 6.79 1.3 1.4 0.73 0.8
2 23V51 56.5 34.7 41.7 6.91 6.48 1.07 1.24 1.17 0.85
3 24Cr50 56.5 34.01 41.7 6.48 6.48 1.00 1.4 1.2 0.88
4 24Cr52 56.0 34.09 41.8 8.00 7.45 1.07 1.4 1.15 0.86
5 26Fe54 56.5 34.77 41.8 6.00 3.45 1.13 1.3 1.13 0.86
6 28Ni60 56.0 34.47 41.2 8.00 6.97 1.15 1.36 1.12 0.88
7 29Cu63 56.0 33.68 41.0 8.00 7.51 1.06 1.49 1.12 0.87

TABLE IIc. The values of fi = RT h

Rexp
, �i

Rexp
= 1−f1

Rexp
, and ( �1

�i
)2 for i = 1, i = 2, and i = 3 configurations.

No. Nucleus fi = RT h

Rexp

�i

Rexp
= 1−f1

Rexp
( �1

�i
)2

i = 1 i = 2 i = 3 i = 1 i = 2 i = 3 i = 1 i = 2 i = 3

1 22Ti46 1.07 0.66 0.77 −0.54 0.250 0.17 0.21 1.00 2.30

2 23V51 1.25 0.91 0.77 −0.23 0.075 0.21 0.10 1.00 0.12

3 24Cr50 1.40 1.2 0.88 −0.41 −0.020 0.12 0.25 1.00 1070

4 24Cr52 1.33 1.08 0.83 −0.32 0.075 0.12 0.13 1.00 0.39

5 26Fe54 1.17 1.02 0.77 −0.15 −0.018 0.20 0.014 1.00 0.21

6 28Ni60 1.20 0.91 0.70 −0.18 0.095 0.26 0.22 1.00 0.11

7 29Cu63 1.43 1.025 0.82 −0.40 −0.014 0.17 0.12 1.00 0.064

TABLE IIIa. The values of gT h
T (ε) at different values of the excitation energy ε for six target nuclei.

No. Nucleus εf ε = 0 ε = 14.8 MeV ε = 20 MeV ε = 30 MeV ε = 40 MeV ε = 50 MeV ε = 60 MeV ε = 70 MeV ε = 80 MeV

1 40Zr90 6.27(−12.92) 8.23 7.94 7.80 9.06 9.06 10.24 11.70 13.41 15.38

2 42Mo92 6.55(−13.31) 8.38 8.29 8.16 9.65 9.67 11.00 12.65 14.58 16.80

3 41Nb93 6.30(−12.40) 8.46 8.18 8.12 9.29 9.29 10.48 11.96 13.70 15.69

4 42Mo94 6.73(−12.13) 8.54 8.36 8.20 9.58 9.58 10.85 12.42 14.27 16.38

5 42Mo95 6.70(−12.40) 8.61 8.39 8.23 9.55 9.55 10.79 12.32 14.12 16.19

6 42Mo96 6.37(−13.51) 8.69 8.43 8.25 9.52 9.52 10.73 12.23 13.99 16.00
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But so much deviation of gc(exp) and gR(exp) from values
calculated using Shlomo’s theory shows that Shlomo’s model
does not take into account certain features of the nuclear
structure in the reaction mechanism. It is well known that
theories of compound nucleus formation [7], direct reaction,
and inelastic scattering [8], which were developed earlier,
did not include the preequilibrium process for which the
theory came much later and includes a formation of the
compound process, through the MS, MSC processes, as well
as evaporation, direct reaction, and inelastic scattering. The
trial and error method of comparing experimental data with
the Kalbach computer program automatically includes these
processes.

On the other hand Shlomo’s model, using the Green’s
function, does not seem to involve these nuclear structure
effects. It is interesting that these seven nuclei in category
B have high values of (εf ), i.e., ≈34 MeV, compared to
30–32 MeV for most nuclei. These perhaps make the direct
reaction more probable. It is interesting to note that for all
these seven cases, the values of gc(exp)

gR(exp) are much less than the
values of the preequilibrium processes which is true for nuclei
in category A. This ratio varies from 1.06 to 1.30 for these
seven nuclei. On the other hand these values are 1.49, 1.33,
and 1.37 for magic number nuclei, such as 20Ca40, 28Ni58, and
39Y89 and vary from 1.025 to 1.83 for other nuclei in category
A.

This shows that for category B nuclei, the direct knockout
direct reaction process plays a significant role, which is
not taken into account when one uses the Green’s function
approach while calculating the energy dependence by using
Shlomo’s model.

We have given in Table IIb, the values of 〈εc〉=E, (εf )=S,
〈V0〉, gc(exp) = gu(p), gR(exp) = go, and gc(exp)

gR (exp) = Rexp and
RT h for i = 1, i = 2, and i = 3 corresponding to h = 2, p = 0,
h = 1, p = 1 and h = 2, p = 0, respectively, for the seven
nuclear targets, plotted in Fig. 4 where we assumed 〈εc〉 ≈
56 MeV for all the targets. In Table IIc, we have given the

FIG. 4. The values of �i

Rexp
for three cases of (a) for seven cases

of spikes for i = 1, (b) for seven cases of spikes for i = 2, and (c) for
seven cases of spikes for i = 3.

FIG. 5. The values of gc(T h) of dips as a function of incident
energy for 40Zr90, 42Mo92, 41Nb93, 42Mo94, 42Mo95, and 42Mo96

along with gc(exp) and gR(exp).

values of f1 = RT h

Rexp
, �i

Rexp
= 1−f

Rexp
, and (�2

�i
)2 for these nuclei for

i = 1, i = 2, and i = 3. We have taken �2 as the reference
deviation because it gives the least deviation values as shown
in the column for �i

Rexp
in Table IIc. We then, see that (�2

�i
)2 for

(i = 1) and (�2
�i

)2 for (i = 3) have very small values, except

for 22Ti46 for i = 2 and i = 3.
This shows that these cases correspond to a direct reaction

where not only the values of gc(exp) and gR(exp) are
much larger than the theoretical values as calculated using
Shlomo’s model, showing that they do not correspond to the
preequilibrium model, which accords with the h = 2, p = 0
(i = 1) configuration as the prominent process, but on the
other hand it accords with h = 1, p = 1 as the dominant
configuration, corresponding to the direct reaction.

C.

The third category of target nuclei for which the behavior
of the single-particle level densities gc(exp) and gR(exp) is
different from the smooth curve A of Fig. 1 involves six target
nuclei 40Zr90, 42Mo92, 41Nb93, 42Mo94, 42Mo95, and 42Mo96.
For all these cases, the values of gc(exp) are much lower than
indicated for nuclei marked as A. All these nuclei contain quite
close to the magic numbers of the neutrons, i.e., n = 50, 53, 54,
etc. We have plotted in Fig. 5, and given in Table IIIa the values
of gT h

c (εc) as a function of ε from ε = −10 to ε = 80 MeV
along with gc(exp) and gR(exp) for these nuclei.

In general, the values of gc(exp) and gR(exp) for both these
energies are much lower than the theoretically expected values
except for 40Zr90 and 42Mo92 for which the values of gc(exp)
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TABLE IIIb. The values of εC = E, εf = S, V0, gC (exp)
gR (exp) = R(exp), and RT h for i = 1, i = 2, and i = 3, corresponding to h = 2, p = 0;

h = 1, p = 1; and h = 0, p = 2 configurations.

No. Nucleus εC = E εf = S V0 gC(exp) = gu(p) gR(exp) = g0
gC (exp)
gR (exp) = R(exp) RT h(p,h) configuration

h = 2 p = 0 h = 1 p = 1 h = 0 p = 2

1 40Zr90 40.0 32.38 40.2 8.97 4.97 1.80 1.13 1.09 0.95

2 42Mo92 40.0 31.97 39.6 10.48 4.97 2.10 1.14 1.04 0.94

3 41Nb93 40.0 32.6 40.2 6.98 4.08 1.62 1.13 1.04 0.95

4 42Mo94 40.0 32.87 40.2 5.45 2.97 1.8 1.03 1.04 0.95

5 42Mo95 40.0 32.60 39.5 5.45 2.97 1.8 1.03 1.04 0.95

6 42Mo96 40.0 31.49 39.5 5.33 2.91 1.84 1.15 1.05 0.95

are a little higher than the expected values in curve A at the
14.8 MeV energy of ε (both of them involve N = 50). Also
the values of gR(exp) are lower than the expected values for
all cases.

We have given in Table IIIb, the values of 〈εc〉=E, (εf )=S,
〈Vo〉, gc(exp), gR(exp), gc(exp)

gR (exp) , and the values of RT h for i = 1,
i = 2, and i = 3, corresponding to h = 2, p = 0, h = 1, p =
1, h = 0, p = 2, respectively. In Fig. 6, we have plotted the
values of �i

Rexp
as a function of A for these six nuclei. Assuming

〈εc〉 as 40 MeV, we find that the values of �i

Rexp
are nearly

the same for the h = 2, p = 0 configuration as for the h = 1,
p = 1 or the h = 0, p = 2 configurations.

It can be seen from Fig. 5 that if we extrapolate the values
of gc(exp) so that it crosses the theoretical values of gT h

c (εc)
for 40Zr90 and 42Mo92 the energy of incidence comes out to be
nearly zero. For 41Nb93, it turns out to be nearly −14 MeV; for
42Mo94, it is nearly −22 MeV, for 42Mo95 again it is nearly
−25 MeV, and for 42Mo96 it is −18 MeV.

How should these results be interpreted?
It seems that the experimental values include the nuclear

structure effect of the nuclei, which happen to have neutrons
near the magic number 50, e.g., 40Zr90 and 42Mo92 have

FIG. 6. The values of �i

Rexp
for six cases of dips for (a) i = 1, (b)

i = 2, and (c) i = 3.

50 neutrons, 41Nb93 has 52 neutrons, 42Mo94 has also
52 neutrons, 42Mo95 has 53 neutrons, and 42Mo96 has 54
neutrons. It is expected that gc(exp) will be affected by these
magic or near magic numbers due to the nuclear structural
effects especially because of the binding energy of the ground
state of these nuclei. Large binding energies and large Coulomb
effect may not allow the protons to be excited to large positive
energies. The large extrapolated negative energy of incidence,
as referred to in the above paragraph, however may not be the
realistic values of ε. The theoretical curve, based on Shlomo’s
theory, does not include the nuclear structure effect, and hence
the large negative extrapolated values of ε do not seem to
correspond to the real situation. This only indicates the effect
of the large binding energies of the ground states of target
nuclei.

Similarly the values of gR(exp) as given in Table IIb when
extrapolated yield large negative values for Fermi energies to
hold well.

One may then assume that gc(exp) and gR(exp) correspond
to MSD, the statistical process, whose values are expected to
be low because of large binding energies of the ground states
of these nuclei with magic or near magic numbers of neutrons.
Quantum statistical fluctuation and MSD could be playing a
role in determining the values of gc(exp) and gR(exp) and 〈εc〉
and (εf ).

Although the values of gc(exp) and gR(exp) have been
obtained by applying the Kalbach model to the experimental
data by using the trial and error method, which will include the
nuclear structure effects, the values of 〈εc〉 and (εf ) correspond
to the MSD process through quantum statistical fluctuations
leading to a compound nucleus. The energy spectra for 40Zr90,
42Mo92, and 41Nb93 have strong indications of compound
nucleus formation as given in Fig. 4 of Ref. [1].

We assume that 〈εc〉 for these nuclei corresponds to εc close
to the values for Y89, Rh103, Pd106, etc. We therefore assume
εc = 0 for all these nuclei so that according to Table IIc in
Ref. [5] and Table Ia, 〈εc〉 ≈ 40 MeV.

We therefore give in Table IIIb the values of 〈εc〉 as ≈
40 MeV corresponding to ε = 0 and take the Fermi energy

values of (εf ) = S. The values of fi = gT h
c

gc(exp) ,
1−f1

Rexp
= �i

Rexp
,

and (�1
�i

)2 as given in Table IIIc are calculated on this basis. It

is interesting to see that the values �i

Rexp
and (�1

�i
)2 for the three
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TABLE IIIc. The values of fi = RT h

Rexp
, �i

Rexp
= 1−f1

Rexp
, and ( �2

�i
)2 for i = 1, i = 2, and i = 3.

No. Nucleus fi = RT h

Rexp

�i

Rexp
= 1−f1

Rexp
( �1

�i
)
2

i = 1 i = 2 i = 3 i = 1 i = 2 i = 3 i = 1 i = 2 i = 3

1 40Zr90 0.63 0.60 0.53 0.205 0.22 0.27 1.00 0.86 0.58
2 42Mo92 0.54 0.49 0.45 0.22 0.24 0.26 1.00 0.90 0.80
3 41Nb93 0.70 0.60 0.58 0.24 0.23 0.26 1.00 1.04 0.73
4 42Mo94 0.57 0.58 0.53 0.24 0.23 0.26 1.00 1.04 0.92
5 42Mo95 0.57 0.58 0.53 0.24 0.23 0.26 1.00 1.04 0.92
6 42Mo96 0.64 0.57 0.52 0.19 0.23 0.25 1.00 0.69 0.59

cases, i.e., i = 1, i = 2, and i = 3 do not differ too much from
each other although �i

Rexp
for i = 1 is the least. This could be

the effect of the quantum statistical process.

III. CONCLUSION

Essentially one can summarize the results of this paper as
follows:

(1) For category A target nuclei, both Kalbach’s model
and Shlomo’s theory are applicable, and h = 2, p = 0
is the dominant configuration for the interaction as
concluded in this paper, and the shell structures of
〈εc〉 as founded in Ref. [6] are consistent with each
other. This supports the principle of the preequilibrium
model of MSD and MSC for the nuclear reaction
mechanism for these target nuclei for the (n,p) reaction
at 14.8 MeV.

(2) On the other hand, for category B target nuclei, the
Kalbach model creates values of Rexp = gc (exp)

gR (exp) which
seem to support the knockout and nuclear-transfer-type

direct reaction mechanisms with the dominance of
the h = 1, p = 1 configuration due to low binding
energies of nucleons in nuclear levels at the ground
level in target nuclei. Shlomo’s theory does not explain
gc(exp) and gR(exp), which are much higher than the
theoretical values given by Shlomo’s theory. In other
words gc(exp) and gR(exp) contain the effect of the
direct reaction, but Shlomo’s theory does not take
into account the individual nuclear structure effects
involved in the direct reaction.

(3) Similarly in the C category target nuclei, the values of
gc(exp) and gR(exp) are much lower than that predicted
by Shlomo’s theory. This indicates that gc(exp) and
gR(exp) contain the information for compound nucleus
formation but with less contributions from the pre-
compound process, which is given in Shlomo’s theory.
This is because of the effect of the nuclear structure
due to the strong binding energy of the nucleons in
the nuclear levels and the Coulomb effect in general.
Perhaps quantum statistical fluctuations and the MSD
process play a role in creating gc(exp) and gR(exp) at
lower values and energies.
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