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Given a set of collective variables, a method is proposed to obtain the associated conjugated collective momenta
and masses starting from a microscopic time-dependent mean-field theory. The construction of pairs of conjugated
variables is the first step to bridge microscopic and macroscopic approaches. The method is versatile and can
be applied to study a large class of nuclear processes. An illustration is given here with the fission of 258Fm.
Using the quadrupole moment and eventually higher-order multipole moments, the associated collective masses
are estimated along the microscopic mean-field evolution. When more than one collective variable is considered,
it is shown that the off-diagonal matrix elements of the inertia play a crucial role. Using the information on the
quadrupole moment and associated momentum, the collective evolution is studied. It is shown that dynamical
effects beyond the adiabatic limit are important. Nuclei formed after fission tend to stick together for a longer
time leading to a dynamical scission point at a larger distance between nuclei compared to the one anticipated
from the adiabatic energy landscape. The effective nucleus-nucleus potential felt by the emitted nuclei is finally
extracted.
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I. INTRODUCTION

Nuclear time-dependent mean-field based on the energy
density functional approach is experiencing nowadays a
renewal of interest [1–6]. In particular, it allows one to
describe a wide variety of dynamical processes ranging
from small to large amplitude collective motions, including
nuclear reactions. Among the most difficult challenges one
can mention is the description of nuclear fission where a
single nucleus encounters large deformation leading finally
to separated fragments.

Although the fission process is quite well understood
phenomenologically [7], it still remains one of the most
difficult processes to describe microscopically. One of the
major difficulties is the necessity to treat collective and
single-particle degrees of freedom (DOF) simultaneously as
quantum objects [8]. Moreover, fission is a dynamical process
and therefore should be treated as such. To describe the
dynamic of fission, one can a priori use two strategies. Using
the fact that the time scale associated to fission is rather
large, the most common starting point is to first select a few
collective DOFs and generate an adiabatic energy landscape.
Then, the time scale associated to fission can be evaluated
using semiclassical approximation. Alternatively, the real time
dynamic can be explicitly followed using for instance the time-
dependent generator coordinates method [9]. Two important
problems are generally encountered in this strategy. First, this
approach can hardly accommodate too many collective DOFs
due to the increasing complexity. Second, while rather slow,
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the dynamics of fission might deviate from the completely
adiabatic path when the two fragments approach the scission.

An alternative strategy is to use microscopic quantum
transport theories such as the time-dependent energy den-
sity functional (TD-EDF) theory. This approach offers the
possibility to describe some aspects of the fission process
without assuming adiabaticity while leaving the possibility to
explore rather complex shapes during the separation process.
In addition, the recent inclusion of dynamical pairing has
opened new perspectives [10–15]. On the other hand, the
TD-EDF approach cannot describe completely the fission
process due to the absence of spontaneous symmetry breaking
and due to poor treatment of quantal effects in collective
space. However, it can still provide important information in
particular after the system has passed the fission barrier. This
has been illustrated in Refs. [16–18] and more recently in
Ref. [19].

The TD-EDF directly performs the evolution of single-
particle states in a self-consistent mean-field. From this
evolution, one can directly infer the information on any
one-body degree of freedom like multipole deformation, neck
formation, and/or fragment separation, final kinetic energies,
etc. The aim of the present work is to explore the possibility
to get macroscopic transport coefficients, like collective mass,
collective potential, or energy dissipation, directly from TD-
EDF. In particular, this should allow us to compare the results
of TD-EDF to similar quantities generally obtained in the
adiabatic limit and/or macroscopic models.

In the following, we analyze first how collective masses and
momenta can be associated to given collective observables
along a microscopic mean-field path. Once the pairs of
conjugated operators are available, a macroscopic reduction
of the microscopic approach can be made to give physical
insights. For the fission process, the energy sharing between
internal and selected DOFs can be precisely scrutinized.
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II. COLLECTIVE MASS AND MOMENTUM EXTRACTED
FROM DYNAMICAL MEAN-FIELD THEORY

In the present section, we assume that the mean-field
trajectory, including or not including pairing, is known, leading
to a specific trajectory in the Liouville space of the normal and
anomalous density matrices (ρ(t),κ(t)). Starting from these
densities, we want to extract information on a set of given
collective variables. Note that, although we present examples
specifically on the fission process, the approach developed here
is general and can be applied to other processes.

A. TD-EDF evolution of one-body operators

Before starting the main subject of the present work, we
recall some aspects of TD-EDF with pairing. The matrix
elements of the normal and anomalous densities are defined
through

ρij (t) = 〈â†
j âi〉, κij (t) = 〈âj âi〉,

where (â†
i ,âi) correspond to creation/annihilation operators of

a complete set of single-particle states. The expectation values
are taken on the trial quasiparticle vacuum that is evolved in
time. The TD-EDF equations of motion are similar to the time-
dependent Hartree-Fock-Bogoliubov (TD-HFB) ones and can
be written as (see for instance [20])

i�
d

dt
ρ = [h(ρ),ρ] + κ�∗ − �κ∗, (1)

i�
d

dt
κ = h(ρ)κ + κh∗(ρ) − ρ� − �ρ∗ + �. (2)

Here h(ρ) and � are respectively the mean-field and pairing
field matrix. These operators can be generically written as

h(ρ)ij =
(

p2

2m

)
ij

+ Uij (ρ)

=
(

p2

2m

)
ij

+
∑
kl

vM
ikjlρlk, (3)

�ij = 1

2

∑
kl

vP
ijklκkl, (4)

where U is the mean-field potential. Here vM and vP denote the
effective vertex respectively in the particle-hole and particle-
particle channels and can be directly defined as functional
derivatives of the energy. In the nuclear context, the difference
between TD-HFB and TD-EDF stems from the flexibility in
choosing the effective interactions.

Let us consider a general one-body operator Q̂ with

Q̂ =
∑
ij

〈i|Q̂|j 〉â†
i âj . (5)

Its expectation value along the TD-EDF path is given by 〈Q̂〉 =
Tr(Qρ). Therefore, its evolution writes

i�
d〈Q̂〉
dt

= i�Tr

(
Q

dρ

dt

)

= Tr(Q[h(ρ),ρ]) + Tr(Q[κ�∗ − �κ∗]). (6)

We restrict here the discussion to the case of zero range
effective interaction in the pairing channel. More precisely, we
assume that the interaction writes g(r)δ(r − r ′)(1 − Pσ )/2,
where g(r) is the strength (r dependence accounting for a
density dependence) and Pσ is the spin-exchange operator.
This type of interaction is used in the present work as well as
in most TD-EDF calculations with pairing correlation. Then
the pairing field � is local in space and one has

Tr(Qκ�∗) = Tr(Q�κ∗)

= 2
∫

d3r g(r)Q(r)κ↑↓(r)κ∗
↓↑(r), (7)

where κσσ ′(r) ≡ κrσ,rσ ′ . Therefore the second term on the right
hand side of Eq. (6) cancels out and

i�
d〈Q̂〉
dt

= Tr(Q[h(ρ),ρ])

= Tr([Q,h(ρ)]ρ), (8)

where the permutation property of the trace is used to obtain
the last expression.

Note that even if the pairing field does not explicitly appear
in the equation of motion of a normal operator, it contributes
to the dynamics through its self-consistent influence on the
one-body density given by Eq. (1).

In the present work, we further restrict the discussion to
collective DOFs associated to the one-body operator Q̂α that
are local in space. Using the eigenstates |r〉 as a complete
basis, Eq. (5) becomes

Q̂α =
∫

d3rQα(r)�̂†(r)�̂(r), (9)

where �̂†(r) and �̂(r) are the creation/annihilation operators
of a particle at position r , and Qα(r) = 〈r|Q̂α|r〉 is the
local matrix element of the operator Q̂α . For the sake of
simplicity, we omitted the spin and isospin quantum numbers.
Note that most macroscopic DOFs of interest like multipole
operators, relative distance, mass asymmetry, etc., correspond
to expectation values of local one-body operators.

Along the mean-field trajectory, the collective evolution is
given by

qα(t) ≡ Tr[Qαρ(t)] =
∫

Qα(r)n(r,t)d3r, (10)

where we have introduced the local density n(r,t) = ρrr(t).
The first step to bridge the microscopic mean-field theory
and a macroscopic-like evolution for the collective variable
qα is to find the corresponding conjugated momentum pα

and associated collective mass, denoted by Mα . Assuming
a classical equation of motion for qα , Eq. (8) should ultimately
identify with an equation of motion of the form q̇α = pα/Mα .

In most TD-EDF approaches used nowadays, the functional
is based on a zero-range Skyrme-like interaction. Then, the
mean-field potential is also local in space, i.e., 〈r|Û |r′〉 =
δ(r − r′)U (r), leading directly to

[Q̂α,Û ] = 0. (11)
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Reporting in Eq. (8), we finally obtain that

dqα

dt
= − i

2�m
Tr([Qα,p2]ρ(t)) ≡ pα

Mα

, (12)

where m is the nucleon mass, and p is the single-particle
momentum matrix. From this expression, a simple guess for
the conjugated momentum fulfilling the constraint pα = 〈P̂α〉,
is to assume that it can directly be defined through

P̂α ≡ −i
Mα

2�m

∑
ij

〈i|[Q̂α,p̂2]|j 〉â†
i âj . (13)

From this definition, using p = −i�∇ and performing the
commutator, one sees that the matrix elements of the operator
P̂α in the position space are given by

Pα ≡ −i�
Mα

m

(∇2Qα

2
+ ∇Qα · ∇

)
, (14)

that is similar to the expression obtained in [21] using
a variational principle around a static mean-field to study
anharmonic effects in giant resonances.

One shortcoming of the above expression is that the
operator P̂α contains the collective mass Mα that is unknown.
To further progress, we seek for the condition that (Q̂α,P̂α) are
conjugated observables. Strictly speaking conjugated variables
should fulfill the condition

[Q̂α,P̂α] = i�. (15)

Imposing this strict condition at all time seems rather com-
plicated. A simpler condition that is used for instance in the
time-dependent RPA (TD-RPA) [22] is to impose that this
condition is fulfilled when the expectation value is performed
on the TD-RPA ground state. In the TD-EDF case, this would
transpose as imposing the condition

〈[Q̂α,P̂α]〉 = i�, (16)

where the expectation value is taken on the time-dependent
quasiparticle vacuum. Using the commutation relation of one-
body operators, we first note that

[Q̂α,P̂α] =
∑
ij

〈i|[Qα,Pα]|j 〉â†
i âj . (17)

Therefore, the constraint (16) can be equivalently written as
the matrix element constraint,

Tr(ρ(t)[Qα,Pα]) = i�, (18)

along the trajectory. Using expression (13), we also have

Tr{[Qα,Pα]ρ(t)} = −i
Mα

2�m
Tr{[Qα,[Qα,p2]]ρ(t)}

= +i�
Mα

m
Tr[ρ(t)∇Qα · ∇Qα].

Therefore, we see that the condition (18) determines uniquely
the collective mass through

1

Mα(t)
= 1

m
Tr[ρ(t)∇Qα · ∇Qα], (19)

all along the trajectory and henceforth also leads to an
unambiguous definition of the collective momentum operator

P̂α when reporting the mass in Eq. (14). A similar formula
is sometimes used to compute collective mass from a micro-
scopic adiabatic energy landscape (see for instance [23–25]).
The difference is that this expression has been derived here
without assuming adiabaticity. In addition, since the expec-
tation value is directly performed using the time-dependent
mean-field density it automatically contains possible influence
of other DOFs as well as the pairing effects. Notice that the
normal density ρ(t) implicitly takes into account the pairing
effect through the occupation numbers, which evolve under
influence of interaction in the pairing channel. We also note
here again that the derivation presented above relies on the
assumptions that the effective interactions both in particle-hole
and particle-particle channels are local and zero-range. The
mass formula (19) is rather straightforward to calculate. We
give illustration of some expressions obtained for specific
collective operators in Appendix A.

Once the mass and the momentum are known, one can
also define the collective kinetic energy corresponding to the
selected variable as

Eα
kin(t) = p2

α(t)

2Mα

= 1

2
Mαq̇2

α(t). (20)

B. Generalization to several collective degrees of freedom

Let us now consider a more general case where a set
of N collective DOFs {Qα}α=1,N are selected. A naive
generalization to the previous section is to assign to each
variable Qα , a collective momentum Pα with matrix elements
given by Eq. (14). One should a priori also generalize the
commutation relation (18). Using Eq. (14), we have

〈[Q̂α,P̂β ]〉 = i�
Mββ

m
Tr[ρ(t)∇Qα · ∇Qβ] = i�

Mββ

Mαβ

, (21)

where the off-diagonal mass matrix elements reads

1

Mαβ(t)
= 1

m
Tr[ρ(t)∇Qα · ∇Qβ]. (22)

This expression naturally extends the previous case and
was also given in Ref. [25]. As shown in Appendix B,
the diagonalization of the mass gives new canonical pairs
of collective operators (Q̂′

k,P̂
′
k), whose commutation rules

identify with the TDRPA ones and are given by

〈[Q̂′
k,P̂

′
l ]〉 = i�δkl . (23)

The diagonalization is equivalent also to removing the corre-
lation among the variables like multipole moments.

These new operators are particularly useful to get simple
expressions for the evolution and collective energy. In partic-
ular, we have q̇ ′

k = p′
k/M

′
α while the collective kinetic energy

is simply given by

E
{α}
kin =

∑
k

p′2
k (t)

2M ′
k(t)

. (24)

Once the set of collective variables is properly defined,
macroscopic analysis of TD-EDF evolution can be made. Such
a connection from the microscopic level to the macroscopic
one is illustrated below for the fission process.
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III. APPLICATION TO THE FISSION OF 258Fm

To illustrate the method presented in the previous section,
we consider the case of 258Fm that was the subject of the
recent work [19]. This nucleus is anticipated to have three
different paths towards fission. In this work, we concentrate on
the so-called symmetric compact shape. The energy landscape
is obtained using the EV8 program with a constraint of the
quadrupole moment [26]. We use here the standard definition
for multipole moments

Qλ =
√

16π

2λ + 1
〈r̂λŶλ0〉, (25)

leading for instance to Q2 = 〈2ẑ2 − x̂2 − ŷ2〉.
An illustration of the potential energy curve (PEC) is shown

in Fig. 1 as a function of the quadrupole moment Q2. As in
Ref. [19], the Sly4d Skyrme functional [1] is used for the
mean-field channel while a constant interaction is retained for
the pairing channel. The static calculations are performed with
a mesh size 13.2 × 24.4 × 13.2 fm3 and a mesh step �x =
0.8 fm.

The dynamical evolution of the system starting from
any point of the PEC can be made consistently using the
recently developed TD-EDF code including pairing in the BCS
approximation [15,27,28]. Dynamical calculations shown here
are performed in a mesh of size 26.4 × 72.8 × 13.2 fm3 with
the same mesh step as in the static case �x = 0.8 fm. The
time step is �t = 1.5 × 10−24 sec ≈0.45 fm/c. In the present
calculations, reflection and axial symmetries are assumed in
the constrained calculation. Since symmetry cannot be broken
spontaneously by mean-field, only even multipole moments
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FIG. 1. (Color online) Potential energy curve of 258Fm nucleus
as a function of the quadrupole deformation parameter (in barn units).
Isosurfaces of the total density drawn at half the maximum value at
Q2 = 34, 80, 194, and 399 b are also shown. The horizontal lines
indicate the different starting points that are used in this work as initial
conditions for the time-dependent evolution. The different vertical
dashed lines corresponds from left to right to Q2 = 34.2 b, Q2 = 80 b
(barrier position), Q2 = 160 b (spontaneous fission threshold Qth

2 ),
Q2 = 182 b, Q2 = 194 b, Q2 = 296 b, and Q2 = 400 b. The two
thick arrows indicate the spontaneous fission threshold Qth

2 and the
adiabatic scission point Qsc

2 .
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FIG. 2. (Color online) Single-particle energies in 258Fm nucleus
along the adiabatic PEC. The green solid curves show the neutron
and proton Fermi energies. Positive and negative parity states are
respectively shown with red filled and blue open triangles. The vertical
lines indicate the initial values of the quadrupole moment taken in
the present dynamical calculations. The shaded area presenting the
region where the system does not spontaneously fission is also shown.

can be nonzero during the evolution. In particular, we do not
consider here possible octupole deformation.

As it was observed previously including or not including
pairing, the system will spontaneously separate into two
fragments only above a certain value of the initial quadrupole
moment, which is larger than that of the fission barrier shown in
Fig. 1 [16–19]. The lowest initial quadrupole moment leading
to spontaneous fission within TD-EDF is called hereafter
“dynamical fission threshold” and will be denoted by Qth

2 . In
the present calculation, the threshold deformation is approxi-
mately Qth

2 � 160 b. The shaded area in this figure indicates the
region where the system does not spontaneously fission. The
fact that Qth

2 is well beyond the expected barrier position points
out the deviation from the adiabatic limit of the microscopic
transport theory close to the single-particle levels crossing.
This point was already discussed in Ref. [16]. To illustrate the
connection between the dynamical fission threshold and level
crossing, the single-particle energies evolution obtained in the
static constrained mean-field are shown in Fig. 2 as a function
of Q2.

We see in particular that for large Q2 a gap in single-particle
energies appears that shows the transition from one to two
nuclei. At low quadrupole moments, many crossings occur.
When one leaves the system initially in the shaded area,
single-particle wave functions will evolve in time. However,
the motion is not adiabatic and both occupations above and
below the Fermi energy will be populated in time. The PEC is
meaningful only if lowest levels are preferentially occupied
during the evolution while higher levels are depopulated.
TD-EDF including or not including pairing does not lead to
sufficient reorganization of single-particle occupation numbers
during the crossing to follow the adiabatic PEC as has already
been realized in Refs. [16–19]. As studied in Ref. [17], the
system initialized inside the shaded area can still fission if, for
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FIG. 3. (Color online) Density profiles obtained for different initial Q2. The densities are shown as a function of time. For initial Q2 below
the fission threshold, a quadrupole boost has been imposed initially. From left to right, the initial Q2 values are Q2 = 34.2 b, Q2 = 80 b,
Q2 = 160 b, and Q2 = 194 b. The system is eventually initially boosted leading to nonzero values of Eini

2 directly indicated in the figure. The
isodensity curves are drawn from 0.03 to 0.15 fm−3 with increments of 0.03 fm−3.

instance, a boost in the quadrupole momentum is applied at
initial time. In practice, the boost is imposed by applying the
local operator exp[ip2Q2(r)/�] to each single-particle wave
function. This induces an additional initial collective kinetic
energy [17]

Eini
2 = p2

2

2m

∫
|∇Q2(r)|2n(r,t = 0)d3r,

where n(r,t = 0) denotes the local density of the system
in the adiabatic curve selected at a given initial moment.
Note that Eini

2 = p2
2/(2M2) with the quadrupole mass given

by Eq. (19).
In Fig. 3, several examples of density evolution obtained for

different initial conditions including or not including a boost
initially and leading to fission are illustrated. We see that a
variety of phenomena including ternary fission in some cases
can be observed.
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A. Mass parameter from TD-EDF

In the present section, we consider different initial
quadrupole deformations between the fission barrier and
the scission point. The scission point corresponding to a
quadrupole deformation Qsc

2 can already be seen as shown
in Fig. 1. It corresponds to the kink in the PEC appearing
at Q2 � 270 b. After the scission point, the PEC is nearly
dominated by the Coulomb interaction between the two
fragments (see also Fig. 8).

As an illustration, we consider that the initial state corre-
sponds to Qini

2 = 160 b, that is a situation just above the spon-
taneous fission threshold. This initial condition is similar to the
one considered in Ref. [19]. In particular, it has been shown
that if the system is left initially with zero collective energy, the
total final kinetic energy of fragments after TD-EDF evolution
is compatible with experimental observation. To study the
possible nonadiabatic effect, initial conditions with boost of
varying intensity (including no boost at all) are used.

The quadrupole moment is selected as the most relevant
collective DOF. Using Eq. (19), the associated collective mass
is then given by (see Appendix A)

1

Mα

= 4

m
(2〈r̂2〉 + 〈Q̂2〉), (26)

where 〈r̂2〉 and 〈Q̂2〉 are respectively the root-mean-square
radius and quadrupole moment along the path.

To get physical insight it is interesting to consider the
situation where the system is already about to get separated
into two fragments with a neck. Assuming simply that the neck
position is at the center of the whole system, quantities like
mass, position, momentum, and intrinsic deformations of each
fragment can be estimated through

〈X̂〉[1] =
∫

X(r)n(r,t)�(z)d3r,

〈X̂〉[2] =
∫

X(r)n(r,t)[1 − �(z)]d3r,

where X̂ and X(r) are the local operator and its local matrix
element, respectively, corresponding to the specific quantity
under interest, �(z) is the Heaviside step function, and
[i = 1,2] is a label of fragments. For a dinuclear system, the
quadrupole mass can be recast as

1

M2
= 8μ(t)

m2
R2(t) + 4

m

∑
i=1,2

[2〈r̂2〉[i] + 〈Q̂2〉[i]],

where μ(t) = mA1A2/A is the reduced mass of the system
and R(t) is the relative distance between the center of mass of
the two fragments.

At very large distance, R(t) → +∞, we see that the mass
is dominated by the first term and tends to infinity. For display
purposes we consider, as a reference mass, the mass obtained
assuming no intrinsic quadrupole deformation 〈Q̂2〉[i=1,2] = 0

and using the simple prescription 〈r̂2〉[i] = 3
5Ai(1.2A

1/3
i )

2
fm2.

The reference mass obtained in this way is denoted by M2,as.
In the following, the quadrupole mass will always be shown
with respect to this mass.

In Fig. 4(a), the ratio M2/M2,as of quadrupole mass deduced
with the present method is shown as a function of Q2 along the
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FIG. 4. (Color online) Top: Quadrupole mass parameter calcu-
lated from TD-EDF paths. In all cases, the initial quadrupole
moment is Qini

2 = 160 b. Different trajectories correspond to different
initial boosts. The corresponding initial collective energies Eini

2 are
systematically reported in the figure. The quadrupole mass obtained
using Eq. (19) assuming that the system follow the adiabatic PEC
is also shown (solid line) for comparison. Bottom: Quadrupole mass
obtained with varying initial quadrupole deformation, Qini

2 = 80, 114,
160, and 194 b.

TD-EDF trajectories for Qini
2 = 160 b. In this figure, the mass

obtained using an increasing initial boost in the quadrupole
collective momentum is shown. To illustrate the departure from
the adiabatic path, we also show the result obtained for a
given Q2 assuming that the local density identifies with the
corresponding density directly obtained from the constrained
mean-field calculation. In the following, the latter is referred
to as “static mass”.

We observe in Fig. 4(a) that the mass is in general rather
close to the static mass, especially if Eini

2 = 0 MeV. In that
case, the system first follows closely the adiabatic case and
then some deviation is observed. The deviation occurs around
the scission point. At this point, the slope of the PEC suddenly
changes to match the Coulomb case that dominates at large
distance. This increase of slope is expected to induce also a
larger collective velocity and therefore also induce a possible
departure from the adiabatic limit. We see in this figure
that the mass also depends on the initial collective velocity
imposed on the system. The larger the initial velocity, the more
deviation from the static mass is observed. It is however worth
mentioning that the adiabatic/nonadiabatic behavior cannot
easily be concluded solely from the difference of mass as will
be further illustrated below.

B. Mass parameter for Qini
2 � Qth

2

As we have mentioned already, TD-EDF cannot sponta-
neously lead to the separation of the system into two fragments
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FIG. 5. (Color online) Minimum collective energy after a boost
that should be initially deposited into the system to induce the fission
of 258Fm for Qini

2 � Qth
2 . This energy is plotted as a function of the

initial quadrupole deformation considered. For each Q2, the highest
(respectively lowest) value of the initial collective energy where the
scission is not (respectively is) observed is reported.

below Qth
2 due to the improper treatment of level crossing.

Still it is possible to induce a fission by imposing some
collective velocity initially. As already noted in Ref. [17], the
collective energy that should be initially put in the system to
observe fission is in general rather large. This aspect is further
illustrated in Fig. 5 where we investigated systematically
the minimal collective energy necessary to induce fission
for selected initial quadrupole deformation. To obtain this
curve, for each Qini

2 we systematically performed TD-EDF
calculation by increasing progressively the boost intensity. The
error bars correspond respectively to the largest (respectively
lowest) collective energy where fission is (respectively is not)
observed. Note that for the two lowest Qini

2 no binary fission
is observed but ternary fission is (see also Fig. 3).

The collective energy is very high compared to the typical
barrier height to fission. We would like to mention that this is
clearly a pathology of TD-EDF at small initial deformation and
beyond mean-field effects should clearly be included to obtain
meaningful information from microscopic transport models
around the fission barrier. Still, to illustrate that the present
method can apply in a situation rather far from the adiabatic
limit, we deduced the mass parameter for such initially highly
excited systems. A few examples are shown in Fig. 4(b).
In that case, important deviations are observed in the mass
parameters compared to the static/adiabatic limit. Since large
collective velocities are imposed initially, such deviations are
not surprising. However, the difference can also stem from
the fact that the initial boost can induce a motion that is not
described by the simple one-dimensional energy landscape
shown in Fig. 1. In particular, preparing the system using
constraint mean-field + boost is a rather arbitrary choice that
will induce specific motion not only in the Q2 collective
space but also in a larger space of collective variables like
the monopole 〈r2〉, hexadecapole Q4, etc. In particular, since
the mass reported in Fig. 4 is compared for the same Q2,
differences observed between the static and dynamical masses
stem from differences in the root-mean-square radii that
ultimately come from the differences in local densities. Clear
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FIG. 6. (Color online) Evolution of the total collective kinetic
energy Etot

kin as a function of time. The initial systems correspond
respectively to a quadrupole moment (a) Qini

2 = 171.0 b without
boost or (b) to Qini

2 = 79.8 b with initial boost. In both cases, the
CKE obtained using Eq. (24) and associated to Q2 only (E2

kin), Q4

only (E4
kin), or both (E2+4

kin ) are also shown.

differences are observed between densities shown in Fig. 3
and densities of the adiabatic PEC (Fig. 1). The differences in
local densities can of course come from nonadiabatic effects
but also from a more complex path in a multidimensional
potential energy landscape that could not be simply reduced
to the one-dimensional (1D) picture of Fig. 1.

C. Total versus collective kinetic energy

As we mentioned in Sec. II, the present method allows
us to access the set of conjugate momenta and the collective
kinetic energy (CKE) as well as the masses associated with
the set of collective coordinates. The CKE of the set of
collective variables {Qα} can be obtained following Sec. II B
diagonalizing the mass matrix and using Eq. (24). Note that
the diagonal and off-diagonal matrix elements of the mass are
given explicitly in Appendix A.

In Fig. 6, the CKE associated to the quadrupole and/or
hexadecapole moment are displayed as a function of time
during the fission process. We also compare these energies
to the total kinetic energy computed through

Etot
kin = �

2

2m

∫
d3r

j (r,t)2

n(r,t)
, (27)

where j (r,t) is the single-particle current. Two different
initial conditions are considered, one starting from an already
elongated shape without boost and one with a more compact
shape but where a boost in quadrupole momentum is applied
to induce fission.

From this figure several interesting aspects could be seen:
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(i) At initial time Etot
kin = E2

kin. This is indeed due to the fact
that either the two are equal to zero [Fig. 6(a)] or that the initial
condition [Fig. 6(b)] is such that all initial kinetic energy is
imposed by the quadrupole boost.

(ii) The CKE associated to Q4 is also initially nonzero.
This stems from the fact that Q2 and Q4 are not independent
collective variables. Therefore boosting in the quadrupole
moment also induces an excitation of the hexadecapole and
most probably higher order even multipole moments.

(iii) Due to the rather strong correlations between Q2 and
Q4, the off diagonal matrix elements of the inertia play an
important role. Indeed, neglecting this contribution would give

E2+4
kin � E2

kin + E4
kin. (28)

However, summing directly these two energies would exceed
the total kinetic energy that is an upper bound whatever is the
selected set of collective variables. In Fig. 6, E2+4

kin accounts
for the off-diagonal inertia and finally leads to an energy that
is lower than Etot

kin.
(iv) At large distances, we see that

Etot
kin � E2+4

kin � E2
kin. (29)

This is due to the fact that all kinetic energies are dominated
by the relative motion of the two fragments in the exit channel.

D. Collective evolution close to scission

Here we investigate the collective evolution close to the
scission point. The scission can be seen directly on Fig. 1 by
the change of slope around Qsc

2 � 270 b. The evolution of the
collective momentum is displayed in Fig. 7 as a function of
Q2 for different initial deformations. We clearly see a different
behavior depending on whether the initial quadrupole moment
is above or below Qsc

2 . As we will see below, for Qini
2 � Qsc

2 the
momentum evolution corresponds essentially to the evolution
of two escaping nuclei boosted by their mutual Coulomb field.
For Qini

2 � Qsc
2 , the nuclear interaction between nuclei still

plays a significant role and a richer evolution is seen. In
that case, independently of the initial Qini

2 value, after some
transition time, all curves become nearly identical with one
another.
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FIG. 7. (Color online) Evolution of the collective momentum as
a function of time for different initial quadrupole deformations (with
Qini

2 � Qth
2 ). The arrow indicates the scission point associated to the

adiabatic potential.
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FIG. 8. (Color online) (a) Function F (Q2) obtained with TD-
EDF using Eq. (31) for the three evolutions with Qini

2 � Qsc
2 displayed

in Fig. 7. For comparison, we also show the forces acting on Q2 that
would be induced either by the adiabatic potential (black dashed
line) or solely by the Coulomb field (black filled circle). The arrows
in the figure indicate the Q2 value where the neck density ρneck

becomes ten times less than the saturation density ρsat = 0.16 fm−3.
The two arrows indicate the adiabatic path (static) and dynamical path
(dynamic). In the latter case, the position where ρneck/ρsat = 1/10 is
almost independent of Qini

2 . (b) Dynamical potential curve obtained by
integrating F (Q2) using Eq. (35). Again for comparison, the adiabatic
potential and the Coulomb field are also shown. Here, the origin of
energy is taken such that E = 0 for Q2 → ∞.

In the absence of dissipation and assuming that the
dynamics stem uniquely from a collective potential, one would
expect that the smaller is Qini

2 , the higher is P2(t) as a function
of Q2. However, it clearly seems from Fig. 7 that part of the
energy is dissipated in the early stage of the evolution. To
further progress, we may follow Ref. [6] and assume that the
momentum evolution can be written as a simple dissipative
equation of motion:

Ṗ2 = −∂Vcoll

∂Q2
+ 1

2

∂M2

∂Q2
Q̇2

2 − γ (Q2)Q̇2, (30)

where the collective potential Vcoll and the friction coefficient
γ are a priori unknown quantities. In the adiabatic limit, the
collective potential identifies with the one shown in Fig. 1 and
γ (Q2) = 0 along the path.

To remove the possible effect of the mass evolution
and eventually access the potential and dissipative collective
properties, it is convenient to define the quantity

F (Q2) ≡ Ṗ2 − 1

2

∂M2

∂Q2
Q̇2

2. (31)
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This function is shown in Fig. 8 as a function of Q2 for some of
the evolutions presented in Fig. 7. If the macroscopic transport
equation (30) is valid, this quantity is expected to identify
with

F (Q2) = −∂Vcoll

∂Q2
− γ (Q2)Q̇2. (32)

and therefore is sensitive to both the potential and dissipative
part. For comparison, we also display the cases where dissipa-
tion is assumed to be zero in Eq. (32) and where the potential
part identifies either to the adiabatic potential or solely to the
Coulomb field. In the latter case, the Coulomb potential for
large relative distance, or large Q2, is approximated by

VC ≈ Z1Z2e
2

R
≈ Z1Z2e

2√
A

2A1A2
Q2

= 1

4

√
A

2
Z2e2Q

−1/2
2 . (33)

The last expression is obtained for the symmetric fission case,
i.e., Z1 = Z2 = Z/2 and A1 = A2 = A/2 considered here,
and further assuming no intrinsic quadrupole deformation of
emitted fragments after scission.

Figure 8(a) gives interesting information on the different
steps leading to fission. We first see that after the very first
instant of the evolution where some dissipation occurred, all
evolutions obtained with Qini

2 � Qsc
2 are on top of each other.

The dynamic before scission deviates significantly from the
expected adiabatic one underlining the importance of both
nonadiabatic and dissipative effects. In particular, we clearly
see that the dynamical formation of the neck differs from the
adiabatic case. Defining the scission point as the Q2 value
where the neck density equals 1/10 of the saturation density,
we observe that dynamically the scission occurs at much larger
Q2 than the adiabatic case (arrows in Fig. 8). This has two
consequences: (i) First, the two nuclei stick together at a
larger distance compared to the adiabatic case. Accordingly,
the nuclear field can play an enhanced role. (ii) We see that
we should introduce the notion of “dynamical scission point”
that a priori differs from the “adiabatic scission point” and
that occurs at a larger quadrupole moment. In the present case
of symmetric compact fission, the dynamical scission point
occurs around Q

sc,dyn
2 � 360 b, compared to the adiabatic

scission point Q
sc,stat
2 � 270 b.

After scission, the dynamical evolution is very close to
the Coulomb field case (black filled circles). This indicates
that no dissipation takes place after this point and that the
dissipation mainly occurs at the initial time of the calculation.
For large Q2, we clearly observe some oscillations around
the average Coulomb repulsion that could be attributed to
the dynamical oscillation of the intrinsic shapes of each
nucleus. These oscillations obviously go beyond the simple
macroscopic approximation (30) since they involve additional
intrinsic shape degrees of freedom.

Following [6], one could a priori use F (Q2) to get the
potential energy landscape as well as the friction coefficient
along the path. However, the method used in Ref. [6] that
consists in performing two evolutions with close initial condi-
tions cannot be applied here due to the fact that the collective
velocity becomes rapidly independent of Qini

2 . Figure 7 seems
however to indicate that dissipation occurs only at rather small

Q2. For Q2 > 300 b, one might assume that the motion is only
driven by a potential denoted by V dyn(Q2). Then, we have the
approximate relationship

∂V dyn(Q2)

∂Q2
= −F (Q2), (34)

where F (Q2) is estimated along the path using Eq. (31). To
get the potential itself, one should fix the boundary condition.
We know from Fig. 8(a) that the potential identifies to a
good approximation with the Coulomb potential after the
scission. The potential can eventually be obtained through the
relation

V dyn(Q2) = VC

(
Qmax

2

) +
∫ Qmax

2

Q2

F (Q′
2)dQ′

2, (35)

where Qmax
2 is taken much larger than the dynamical scission

point. Note that we do not take into account here the
excitation energy of the fragments. Some examples of the
potential obtained in this way are shown in Fig. 8(b) assuming
Qmax

2 = 800 b. Vad shown by the dashed curve in Fig. 8(b) is
drawn by shifting the PEC given in Fig. 1 so that it coincides
with VC at Q2 = 433 b (� Q

sc,stat
2 ) and thus Vad → 0 for

Q2 → ∞.
We see in Fig. 8(b) that the potential obtained using Eq. (35)

differs significantly from the adiabatic one at small Q2 due to
dynamics and eventually nonadiabatic effects. Note that the
dynamical potential should be interpreted with some caution
since it might contain some dissipative effects especially at
initial time. It is worth in particular mentioning that the
adiabatic and dynamical potentials should be identical at
initial Q2. We clearly observe in Fig. 8(b) a lower value
for the dynamical case. The difference between the adiabatic
and dynamical curves at t = 0 corresponds to the energy
transferred into the other collective degrees freedom or internal
excitations during the fission. We see that this difference is
≈23 MeV for Qini

2 = 160 b.

E. Dissipation estimated from energy balance

Alternatively, in order to estimate the energy dissipated into
the internal excitation of the fragments, an analysis similar to
Ref. [16] has been made for the total kinetic energy (TKE) of
the outgoing fragments after fission. The TKE is defined as

TKE = 1

2
μṘ2 + Z1Z2e

2

R
≡ Trel + VC(R) (36)

at large R well beyond the scission point. Note that the TKE
is the energy of the relative motion between the fragments at
infinite separation, and it is not the same quantity as either
Eq. (24) or Eq. (27), which may contain the internal excitation
energy of the fragments. The energy dissipated into the DOFs
other than the relative motion, or the excitation energy of
fragments, is then given by E∗ = E0 − TKE, where E0 is the
total energy of the system [16]. Note that the origin of energy
for E0 is taken as that for R(t) → ∞ with fragments staying
at their ground states.

In Fig. 9 we show relative kinetic energy Trel, the Coulomb
energy VC , and the total kinetic energy (TKE) of the fission
fragments as a function of the relative distance R for the

034601-9



YUSUKE TANIMURA, DENIS LACROIX, AND GUILLAUME SCAMPS PHYSICAL REVIEW C 92, 034601 (2015)

 0

 50

 100

 150

 200

 250

 300

 350

 10  15  20  25  30  35

en
er

gy
 (

M
eV

)

R (fm)

VC
Trel

VC + Trel

FIG. 9. (Color online) The relative kinetic energy Trel, the
Coulomb energy VC , and the total kinetic energy (TKE) of the fission
fragments as a function of the relative distance R for Qini

2 = 197 b.

evolution with Qini
2 = 194 b. We see a plateau in TKE for

large R at ≈238 MeV, which is identified as the TKE for this
process, while the total energy of the system is E0 ≈ 256 MeV,
which is given by the value of Vad in Fig. 8(b) at Qini

2 . Taking
the difference, we obtain E∗ ≈ 18 MeV. This is close to the
value obtained from the previous analysis confirming that the
difference between the adiabatic potential and the dynamical
potential estimated from Eq. (35) most likely stems from the
energy dissipated along the fission path.

IV. CONCLUSION

In the present work, a method is proposed to construct
conjugated collective momenta associated to a given set of
local collective variables along a time-dependent EDF path.
A detailed discussion is made on the proper definition of
associated inertia including the effect of its possible off-
diagonal matrix elements. Once pairs of conjugated collective
variables are obtained, one can make a macroscopic reduction
of the microscopic mean-field dynamic.

An illustration is given here with the fission process. A
precise analysis is made in the symmetric fission of 258Fm.
The mass matrix is calculated along the fission path including
only the quadrupole moment, and/or both the quadrupole
and hexadecapole moments. In particular, the important role
of off-diagonal matrix elements of the mass is underlined.
Then, a detailed analysis of the macroscopic evolution in
the quadrupole collective space is made. The importance of
dissipation in the early stage of the evolution is discussed.

TABLE I. Multipole operators Q̂λ =
√

16π
2λ+1 r̂λŶλ0 for λ =

2,3,4,5,6.

λ Operator

2 2ẑ2 − x̂2 − ŷ2

3 2ẑ3 − 3ẑx̂2 − 3ŷ2ẑ

4 1
4 (35ẑ4 − 30r̂2ẑ2 + 3r̂4)

5 1
4 (63ẑ5 − 70r̂2ẑ3 + 15r̂4ẑ)

6 1
8 (231ẑ6 − 315r̂2ẑ4 + 105r̂4ẑ2 − 5r̂6)

Clear nonadiabatic effects are probed, in particular associated
with the specific neck evolution. We show that the scission
point, called dynamical scission point, occurs at a much larger
quadrupole moment compared to that for the adiabatic path.
An attempt to extract the nucleus-nucleus potential felt by the
daughter nuclei after fission is also made. It is shown that this
potential significantly differs from the adiabatic one due to
the nonadiabatic effects and the dissipation of energy into the
intrinsic excitations of fission fragments.

The method presented here is rather versatile and could be
used in other dynamical processes. For instance, it could a
priori be used to study anharmonicity in giant resonances as
well as possible coupling between collective modes.
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APPENDIX A: GENERAL FORMULA FOR THE
INERTIA MATRIX

In this Appendix we give the explicit expression for the
inertia matrix

m

Mαβ

= Tr[ρ∇Qα · ∇Qβ], (A1)

associated with the general multipole moment

Q̂λ =
√

16π

2λ + 1
r̂λŶλ0. (A2)

Its expressions for 2 � λ � 6 are given in Table I.
Using the Racah algebra technique, one obtains the follow-

ing for the matrix:

m

Mλλ′
=

∑
L

(2L + 1)
(s − 2L)!(s − 2λ)!(s − 2λ′)!(s/2)!(s/2 − 1)!

(s − 1)!(s/2 − L)!(s/2 − L − 1)![(s/2 − λ)!]2[(s/2 − λ′)!]2
〈r̂λ+λ′−2−LQ̂L〉, (A3)

where s = λ + λ′ + L and the value of L runs over L = |λ −
λ′|,|λ − λ′| + 2,|λ − λ′| + 4, . . . ,λ + λ′ − 2. It allows us to

compute a matrix element for any multipolarities λ and λ′. In
Table II we illustrate expressions of the matrix elements for
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TABLE II. Illustration of the inertia matrix elements m/Mλλ′ for the multipoles of λ,λ′ = 2,3,4. The expressions for the multipole operators
are given in Table I.

λ\λ′ 2 3 4

2 4(2〈r̂2〉 + 〈Q̂2〉) 12
5 (3〈r̂2Q̂1〉 + 2〈Q̂3〉) 8

7 (9〈r̂2Q̂2〉 + 5〈Q̂4〉)
3 12

7 (7〈r̂4〉 + 4〈r̂2Q̂2〉 + 3〈Q̂4〉) 8
77 (99〈r̂4Q̂1〉 + 77〈r̂2Q̂3〉 + 150〈Q̂5〉)

4 8
231 (462〈r̂6〉 + 275〈r̂4Q̂2〉 + 243〈r̂2Q̂4〉 + 175〈Q̂6〉)

some important multipoles 2, 3, and 4, which are related to
elongation, mass asymmetry, and size of neck, respectively.

APPENDIX B: DEFINITION OF NEW OPERATORS ( Q̂′
α, P̂ ′

α)

In this Appendix, we give some intermediate steps to obtain
operators that fulfill the commutation rules (23) along the
TD-EDF trajectory.

The real-space representation of the momentum operator
conjugated to the coordinate Q̂α is given by

Pα = −i�
Mαα

m

(∇2Qα

2
+ ∇Qα · ∇

)
. (B1)

Accordingly, we have

〈[Q̂α,P̂β]〉 = i�
Mββ

m
Tr[ρ(t)∇Qα · ∇Qβ].

Introducing the mass matrix elements m/Mαβ ≡
Tr[ρ(t)∇Qα · ∇Qβ], the above expression can be written as

〈[Q̂α,P̂β/Mββ]〉 = i�
1

Mαβ

. (B2)

We introduce the orthogonal matrix W that diagonalizes the
mass, i.e.,

∑
αβ

Wkα

1

Mαβ

WT
βl = δkl

1

M ′
k

, (B3)

where 1/M ′
k is the eigenvalue of the inertia tensor. Then we

have ∑
αβ

WkαWT
βl〈[Q̂α,P̂β/Mββ]〉 = i�δkl

1

Mk

. (B4)

Introducing the new set of conjugated operators

Q̂′
k =

∑
α

WkαQ̂α, and P̂ ′
k = M ′

k

∑
α

Wkα

P̂α

Mαα

, (B5)

we see that these operators respect the desired commutation
relation

〈[Q̂′
k,P̂

′
l /M

′
l ]〉 = i�δkl

1

M ′
k

(B6)

or equivalently

〈[Q̂′
k,P̂

′
l ]〉 = i�δkl . (B7)
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