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In this theoretical study, we report an investigation on the behavior of two-neutron separation energy, a
differential variation of the nucleon separation energy, the nuclear charge radii, and the single-particle energy
levels along the isotopic chains of transitional nuclei. We have used the relativistic mean-field formalism with
NL3 and NL3* forces for this present analysis. The study refers to the even-even nuclei such as Zr, Mo, Ru, and Pd
for N = 42−86, where a rich collective phenomena such as proton radioactivity, cluster or nucleus radioactivity,
exotic shapes, island of inversion, etc. are observed. We found that there are few nonmonotonic aspects over
the isotopic chain, which are correlated with the structural properties such as shell/subshell closures, the shape
transition, clustering, magicity, etc. In addition to these, we have shown the internal configuration of these nuclei
to get a further insight into the reason for these discrepancies.
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I. INTRODUCTION

Nowadays, one of the most sensitive and crucial regions in
the nuclear chart for investigation lies between Z = 35–64
and A = 82–132. This region reveals a large number of
interesting discoveries of new phenomena, such as proton
radioactivity [1–3], cluster radioactivity [4–6], exotic shapes
[7,8], island of inversion [9,10], abnormal variation of major
shell closures (i.e., extra stability near drip line) [11–13], giant
halo near neutron drip-line region [14], etc. These crucial
features may be due to the rapidly growing possibility of the
neutron-proton ratio (N/Z) in a nucleus. From the last few
decades, it is possible to study these exotic nuclei by using
the radioactive isotope beam (RIB) facilities. This reveals
the concept entitled, as aforementioned, magic number. In
other words, the confirmation of magic numbers near the
β-stability line is not mandatory universal [15–17]. Further,
the structural properties of nuclei far away from the β-stability
line are also active areas of research in both theories and
experiments [13,14,18]. In particular, the neutron-rich Zr−,
Mo−, Ru−, and Pd− with mass numbers A = 100–130 are
of special interest for various reasons. For example, they lie
far away from the β-stable region of the nuclear landscape,
resulting in a well-established deformation, but close enough
in the magnitude of microscopic excitations to compete with
the collectivity of double shell closure nuclei [14,19,20].
Moreover, these nuclei are also holding an active participation
in the nucleosynthesis of heavy nuclei in the astrophysical r
process. The mass and decay properties are quite an essential
ingredient to building up the path, the isotopic abundances,
and the time period of these process [21].

In addition to that, the nuclear structure of these nuclei is
characterized by a strong competition between various shapes,
which gives rise to the shape instabilities that lead to coexisting
nuclear shape transitions in the isotopic chains [22]. This could
be understood from the potential energy surface at different
deformations. Elaborately, the occurrence of two (or more)
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nearly equally deep minima in the potential energy surface at
different deformations shows the signature for nuclear shape
coexistence. Hence, one can say the nuclear shapes not only
vary with the nucleon number but also with the excitation
energy and spin. It is well known that the binding energy of a
nucleus is one of the most precisely measured observable from
the experiments [23,24]. Several nuclear observables, which
are highly relevant for understanding various features of the
nuclear structure, can be computed from its mass, such as the
average nuclear field, nucleon-nucleon (NN) potential, single-
particle energy, etc. The correlations among these fundamental
quantities are amended to explain the deformed ground states,
low-lying isomeric states, and few derived quantities, such
as moments of inertia and vibrational excitation energy, etc.
[25–28]. It is acclaimed that the energy involved in the removal
of fermions from a strongly correlated system of identical
fermions must be a good indicator for the stability of the
system. The magnitude of this energy has much higher values
for systems with an even number of particles than an odd
one, if the pairing is a dominant component in the binary
fermion-fermion interaction.

In the present work, the quantities of interest are the nuclear
potential energy surface, nuclear shape, nuclear binding
energy, two-neutron separation energies (S2n), the differential
variation of neutron separation energy �S2n, the root-mean-
square charge distribution rch, and the single-particle energy
level for the even-even mass transition nuclei. Based on these
decisive observables, we have focused on the evolution of
the structural properties of transition nuclei. The paper is
organized as follows: Sec. II gives a brief description of
the relativistic mean-field formalism including the pairing
energy correlation. The results of our calculations along with
discussions are presented in Sec. III. Section IV includes a
short summary along with a few concluding remarks.

II. RELATIVISTIC MEAN-FIELD (RMF) METHOD

From the last few decades, the nuclear covariant density
functional theories (CDFTs) are quite successful in describing
the ground and the intrinsic excited state, including fission
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TABLE I. The center-of-mass energy obtained from phenomenological [58] and microscopic self-consistent methods [59,60] for Zr isotopes.

Method 100Zr 102Zr 104Zr 106Zr 108Zr 110Zr 112Zr 114Zr 116Zr 118Zr 120Zr

Ec.m = 3
4 A− 1

3 −6.63 −6.58 −6.54 −6.46 −6.46 −6.42 −6.38 −6.34 −6.31 −6.27 −6.23

Ec.m = 〈F |P 2|F 〉
2M

−6.83 −6.79 −6.75 −6.68 −6.61 −6.55 −6.49 −6.45 −6.41 −6.44 −6.47

states of the exotic heavy and superheavy nuclei over the nu-
clear chart [29–36]. Basically, there are four different patterns
to perform the covariant density functional: the point coupling
nucleon or meson exchange interactions connected with
the density-dependent or nonlinear couplings. One can also
introduce all shape degrees of freedom to CDFTs by breaking
both the axial and reflection symmetries simultaneously (see
Ref. [34] for more details). In the relativistic mean-field
approach, the nucleus is considered as a composite system of
nucleons (proton and neutron) interacting through exchanges
of mesons and photons [31,37–42]. Further, the contributions
from the meson fields are described either by mean fields or
by pointlike interactions between the nucleons [43,44]. and
the density-dependent coupling constants [45,46] or nonlinear
coupling terms [47,48] are introduced to reproduce the correct
saturation properties of infinite nuclear matter. Here, most of
the computational efforts are devoted to solving the Dirac
equation and to calculate various densities. In the present
calculations, we have used the microscopic self-consistent
relativistic mean-field (RMF) theory as a standard tool to
investigate the nuclear structure phenomena. It is worth
mentioning that the RMF approach is one of the most popular
and widely used formalisms among them. The relativistic
Lagrangian density (after several modification of the original
Walecka Lagrangian to take care of various limitations) for a
nucleon-meson many-body system [37–42,49–53] is given as:

L = ψi{iγ μ∂μ − M}ψi + 1

2
∂μσ∂μσ − 1

2
m2

σ σ 2

−1

3
g2σ

3 − 1

4
g3σ

4 − gsψiψiσ − 1

4
�μν�μν

+1

2
m2

wV μVμ − gwψiγ
μψiVμ − 1

4
�Bμν. �Bμν

+1

2
m2

ρ
�Rμ. �Rμ − gρψiγ

μ�τψi. �Rμ

−1

4
FμνFμν − eψiγ

μ (1 − τ3i)

2
ψiAμ. (1)

From the above Lagrangian, we obtain the field equations
for the nucleons and mesons. These equations are solved
by expanding the upper and lower components of the Dirac
spinors and the boson fields in an axially deformed harmonic
oscillator basis, with an initial deformation β0. The set of
coupled equations are solved numerically by a self-consistent
iteration method [54–57]. Based on the effective interactions
used in the RMF functional, the center-of-mass energy can
be calculated either in harmonic oscillator approximation or
from the quasiparticle vacuum self-consistently. In the case of
oscillator approximation, the spurious center-of-mass motion
is subtracted using the Elliott-Skyrme approximation [58]. The

analytical form is given as:

Ec.m = 3
4A− 1

3 , (2)

where A is the mass number. On the other hand, one should
estimate the center-of-mass energy using the self-consistent
method [59,60],

Ec.m = 〈F |P 2|F 〉
2M

, (3)

where |F 〉 = |F 〉RMF wave function. P and A are the total
linear momentum and the nuclear mass number, respectively.
The results obtained from these two methods for Zr isotopes
are given in Table I. From the table it is clear that the calculated
center-of-mass energies from both the cases are almost overlap
with each other. Hence, one can use any one of the method
for the center-of-mass energy correction in the calculation of
this nuclear mass region (see Ref. [60]). The total quadrupole
deformation parameter β2 is evaluated from the resulting
proton and neutron quadrupole moments, as

Q = Qn + Qp =
√

16π

5

(
3

4π
AR2β2

)
. (4)

The root-mean-square (rms) matter radius is defined as

〈
r2
m

〉 = 1

A

∫
ρ(r⊥,z)r2dτ, (5)

where A is the mass number, and ρ(r⊥,z) is the axially
deformed density. The total binding energy and other ob-
servables are also obtained by using the standard relations,
given in Ref. [49]. As outputs, we obtain different potentials,
densities, single-particle energy levels, radii, deformations,
and the binding energies. For a given nucleus, the maximum
binding energy corresponds to the ground state and other
solutions are obtained as various excited intrinsic states.

A. Pairing energy

To deal the nuclear bulk properties of open-shell nuclei,
one can not neglect the pairing correlation in their ground
and intrinsic excited state [61]. Various methods, such as
the BCS approach, the Bogoliubov transformation, and the
particle number conserving methods, have been developed
to treat the pairing effects in the study of nuclear properties
including fission barriers [62–65]. In principle, the Bogoliubov
transformation is a widely used method to take pairing
correlation into account for the drip-line region [39–42,66,67].
In the case of nuclei not too far from the β-stability line, one
can use the constant gap BCS pairing approach reasonably
well to take care of pairing [68]. Further, the BCS approach
may fail for neutron-rich light nuclei. In the present analysis,
we have considered the intermediate mass neutron-rich nuclei,
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hence the RMF results with BCS treatment should be reliable.
In other words, to avoid the difficulty in the calculation, one
can employ the constant gap BCS approach to deal with the
present mass region [51,69,70]. Now the expression for pairing
energy is given by

Epair = −G

[∑
i>0

uivi

]2

, (6)

where v2
i + u2

i = 1 is known as the occupation probability
and G is the pairing force constant [71–73]. The variational
procedure with respect to the occupation numbers v2

i , gives
the BCS equation 2εiuivi − �(u2

i − v2
i ) = 0 and the pairing

gap � is defined by

� = G
∑
i>0

uivi . (7)

This is the famous BCS equation for pairing energy. The
densities are contained within the occupation number,

ni = v2
i = 1

2

[
1 − εi − λ√

(εi − λ)2 + �2

]
. (8)

The standard expression for the pairing gaps of proton and neu-
tron are �p = RBse

sI−tI 2
/Z1/3 and �n = RBse

−sI−tI 2
/A1/3,

respectively [69]. Here the constants and their values are as
follows: R = 5.72, s = 0.118, t = 8.12, Bs = 1, and I =
(N − Z)/(N + Z). (Note that the gaps obtained by these
expressions are valid for nuclei both on or away from the
stability line for this mass region.) The pairing force constant G
is not calculated explicitly from the RMF equations. Using the
above gap parameter, we calculate the occupation probability
and the chemical potentials λn and λp from the particle
numbers using the above equations. Now, we can rewrite the
pairing energy as,

Epair = −�2

G
= −�

∑
i>0

uivi . (9)

Since it depends on the occupation probabilities v2
i and u2

i ,
the pairing energy should change with particle number for a
constant pairing gap. It is well known that the pairing energy
Epair diverges if it is extended to an infinite configuration space
for a constant pairing gap � and force constant G. Also, for
the states spherical or deformed, with large momenta near the
Fermi surface, � decreases in all the realistic calculations with
finite range forces. However, for the sake of simplicity of the
calculation, we have assumed the pairing gap for all states is
equal near the Fermi surface. In the present calculations we
have used a pairing window, and all the equations extended up
to the level εi − λ � 2(41A1/3), where a factor of 2 has been
included in order to reproduce the pairing correlation energy
for neutrons in 118Sn using Gogny force [71,72]. This kind
of approach has already been used by many other authors in
RMF and Skyrme-Hartree-Fock (SHF) models [51,52,71,72].

III. DETAILS OF CALCULATION AND RESULTS
DISCUSSION

In the present work, we have used the successful NL3
[74] and the recently proposed NL3* [75] force parameters,
which are excellent in the description of ground and excited
states with many collective aspects for spherical and deformed
nuclei. In the mean time, there are several other mean-
field interactions that have been developed. In particular,
the density-dependent meson-exchange DD-ME1 [46] and
DD-ME2 [76] interactions, which are adjusted to improve
the isovector channel. Further, the density-dependent points
coupling interaction [34,77] has been developed to describe
the deformed heavy and superheavy nuclei. Even these
interactions have been developed to provide a very successful
description of various special features. At present, the NL3 [74]
and NL3* [75] forces are also accepted in competition with
these parameters to reproduce the properties of the stable and
nuclei far from the β-stability line. In RMFT, the mean-field
equations are solved self-consistently by taking different
inputs of the initial deformation called β0 [49,51,71,74,75].
To verify the convergence of the ground-state solutions for
this mass region, we pursued the calculation for NB = 20 and
varying NF from 10–22. The difference between the binding
energy obtained from NF = 18 to NF = 10–22 is entitled as
relative binding energy difference and denoted as (�E)B .
The estimated relative binding energy difference (�E)B =
EB(NF = 18) − EB(NF = 10–22), the charge radius rch, and
the quadruple deformation β2 for 100,126Zr, 102,128Mo,104,130Ru,
and 106,132Pd isotopes from NL3 and NL3* force are shown
in Fig. 1. From the figure, it is clear that the variations of
these solutions are �0.02% on binding energy and 0.01%
on nuclear radii over the range of major shell fermions
NF from 10–14. But these relative changes are reduced to
�0.002% on binding energy and 0.001% on nuclear radii for
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FIG. 1. (Color online) The obtained results for nuclear rela-
tive binding energy difference (�E)B = EB (NF = 18) − EB (NF =
10–22), charge radius rch and the quadruple deformation β2 for
100,126Zr, 102,128Mo, 104,130Ru, and 106,132Pd isotopes from NL3 and
NL3* force parameter. See text for more details.
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NF values from 14–22. Hence, the desired number of major
shells for fermions and bosons are NF = 18 and NB = 20 for
the considered mass region. However, the number of mesh
points for Gauss-Hermite and Gauss-Lagurre integration are
20 and 24, respectively. For a given nucleus, the solution
corresponding to maximum binding energy is treated as a
ground state and other solutions are the intrinsic excited states
of the nucleus.

A. Potential energy surface

Conventionally, in the case of a quantum mechanical
system, the path followed by the different solutions at various
deformations define a potential barrier or potential energy
surface, which can be used for the determination of the ground
state of a nucleus. More elaborately, from the potential energy
surface (PES) obtained from a self-consistent relativistic
mean-field theory, one can regulate the reasonable results
for the ground state similar to the nonrelativistic calculations
[78]. Since quadrupole deformation plays the most important
and dominant part, we have neglected the other deformation
coordinates in the present study for simplicity and low
computation time cost. Here, the potential energy curve is
calculated microscopically by the constrained RMF theory
[51,52,79–81]. The expectation value of the Hamiltonian
[61,71,80] at certain deformation is given as

H ′ =
∑
ij

〈ψi |H0 − λQ2|ψj 〉
〈ψi |ψj 〉 , (10)

where λ is the constraint multiplier and H0 is the Dirac mean-
field Hamiltonian. The convergence of the numerical solutions
on the binding energy and the deformation are not very much
sensitive to the deformation parameter β0 of the harmonic
oscillator basis for the considered range due to the large basis.
Thus, the deformation parameter β0 of the harmonic oscillator
basis is chosen near the expected deformation to obtain high
accuracy and less computation time period.

The potential energy surface as a function of deformation
parameter β2, for the proton rich nucleus 82Zr, the double
magic nucleus 90Zr and the neutron-rich nucleus 110,120Zr are
shown in Fig. 2 as a representative case. All other Mo−, Ru−,
and Pd− isotopes are also showing similar behaviors, which
are not given here. The energy (Eb = Eg.s − Ee.s) on the Y
axis is the difference between the ground-state energy to other
constraint energy solutions. The solid and dotted lines in the
figure are for NL3 and NL3* force, respectively. The calculated
PES for both the cases are shown for a wide range from oblate
to prolate deformations. We notice from the figure that more
than one minima appear at different β2. The magnitude of
binding energy for the corresponding minima shows that the
ground-state solution appears at a certain value of β2. The β2

for the ground state is not same for all isotopes of Zr (see
Tables II and III). For example, the ground-state solutions
for 82Zr, 90Zr, 110,120Zr, and 120Zr are ∼−0.2, 0.0, 0.4, and
0.0, respectively. One can find similar nature for both the
force parameters, hence one can conclude that the ground-
state properties of these nuclei are independent of the force
parameters used.
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FIG. 2. (Color online) The potential energy surface of
82,90,110,120Zr as a function of quadrupole deformation parameter β2

for both NL3 and NL3* forces in axially deformed relativistic mean
field calculations.

B. Nuclear binding energy and quadrupole deformation

The calculations mainly explain the nuclear structure as
well as the substructure properties, based on the basic ingre-
dients, such as binding energy (EB), quadrupole moment Q20,
nucleonic density distribution ρ(r⊥,z) = ρp(r⊥,z) + ρn(r⊥,z),
and rms nuclear radii, etc. Nevertheless, the present study
demonstrates the applicability of RMF on the nuclear structure
study for transition nuclei near the neutron drip line. The
obtained results for binding energy BE, the quadrupole
deformation parameter β2, and the charge radius rch for
NL3 and NL3* force parameters for the isotopic chain of
Zr, Mo, Ru, and Pd are listed in Tables II and III along
with the experimental data [82]. It is worth mentioning that
the obtained results from the NL3 force parameter almost
matches to the mass table by Lalazissis et al. [50] except
for a few nuclei, though the small differences are acceptable
in the accuracy of mean-field level. Further, we notice on the
binding energy and the rms rch for all nuclei over the isotopic
chain from RMF agree well with the experimental values.
Quantitatively, the mean deviation of BE and rch between
the calculated result and the available experimental data
over the isotopic chain are ∼0.01 and 0.004, respectively.
Further, the quadrupole deformation parameter β2, for both
ground state (g.s.) and selective excited states (e.s.) are also
given in Tables II and III. In some of the earlier RMF and
Skyrme Hartree-Fock (SHF) calculations, it was shown that the
quadrupole moment obtained from these theories reproduce
the experimental data pretty well [37,51,52,66,71,74,83–85].
From the table, one can find that the shape of a few nuclei
is not consistent with the experimental observed shape. In
this context, we have also estimated that the first excited
state solutions for these nuclei correspond to the experimental
deformations (see Tables II and III). A careful inspection to
these solutions shows that the small difference in the binding
energy is an indication of shape coexistence. In other words,
the two solutions in these nuclei are almost degenerate and
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TABLE II. The binding energy EB , root-mean-square charge radius rch, and the quadrupole deformation parameter β2 for the ground states
and few selective first intrinsic excited state of 82−126Zr and 86−130Ru nuclei compared with the experimental data [82] wherever available. See
the text for more details.

N RMF (NL3) RMF (NL3*) Experiment RMF (NL3) RMF (NL3*) Experiment

BE rch β2 BE rch β2 BE rch β2 BE rch β2 BE rch β2 BE rch β2

82−126Zr 86−130Ru
42 691.3 4.29 −0.197 690.9 4.29 −0.192 0.367 698.7 4.39 −0.204 698.1 4.39 −0.199

691.0 4.28 0.488 690.6 4.28 0.488
44 715.7 4.29 −0.188 715.8 4.27 −0.001 0.251 726.8 4.39 0.053 726.8 4.38 0.058

715.5 4.28 0.469 715.5 4.28 0.467
46 739.2 4.28 0.001 739.2 4.27 0.001 740.6 0.151 755.7 4.39 0.096 755.5 4.38 0.089
48 762.6 4.28 0.001 761.9 4.28 0.001 762.6 4.2812 0.185 782.3 4.37 0.006 782.0 4.37 0.004
50 783.9 4.28 0.001 783.1 4.28 0.000 783.9 4.2696 0.089 808.0 4.37 0.001 807.4 4.37 0.000 806.9
52 797.8 4.29 0.001 797.2 4.28 0.000 799.8 4.3057 0.1027 825.6 4.39 0.003 825.1 4.38 0.002 826.5 4.3927 0.1579
54 810.5 4.34 0.169 808.9 4.31 0.002 814.7 4.3312 0.090 843.2 4.42 0.159 842.5 4.42 0.155 844.8 4.4232 0.1947
56 824.5 4.38 0.243 822.9 4.38 0.233 828.9 4.3498 0.080 860.1 4.45 0.205 859.2 4.44 0.199 861.9 4.4536 0.2148
58 837.0 4.42 0.318 834.9 4.40 0.274 840.9 4.4185 875.3 4.47 0.225 874.3 4.47 0.216 877.9 4.4818 0.2404
60 849.8 4.48 0.432 847.6 4.49 0.453 852.2 4.5220 0.355 889.3 4.49 0.234 888.2 4.48 0.215 893.0 4.5104 0.2707
62 860.6 4.50 0.428 858.2 4.50 0.428 863.7 4.5690 0.427 903.9 4.57 0.385 901.7 4.52 0.295 907.5 0.257
64 870.6 4.52 0.427 868.0 4.52 0.424 873.8 0.38 917.6 4.54 −0.236 916.3 4.53 −0.232 920.9 0.292

916.9 4.58 0.373 915.8 4.57 0.371
66 880.4 4.54 0.419 877.6 4.54 0.418 883.9 931.0 4.55 −0.236 929.5 4.55 −0.234 933.3 0.295

929.1 4.59 0.357 928.0 4.59 0.357
68 889.8 4.56 0.416 886.8 4.56 0.419 892.6 943.4 4.57 −0.239 941.5 4.57 −0.238 945.0 0.306

941.5 4.60 0.349 940.1 4.60 0.348
70 897.2 4.59 0.445 893.9 4.59 0.461 900.4 954.1 4.59 −0.233 951.8 4.58 −0.229
72 904.1 4.62 0.478 900.4 4.62 0.479 963.9 4.59 −0.203 961.5 4.59 −0.196
74 911.8 4.52 −0.170 908.8 4.52 −0.166 974.2 4.61 −0.178 971.5 4.60 −0.176
76 917.7 4.52 −0.109 914.5 4.52 −0.095 983.1 4.62 −0.169 979.9 4.61 −0.167
78 923.4 4.52 0.065 920.0 4.52 0.043 991.6 4.61 0.114 988.7 4.60 0.111
80 929.6 4.54 0.003 925.7 4.53 0.002 999.5 4.61 0.074 996.2 4.61 0.074
82 935.6 4.55 0.001 932.0 4.56 0.001 1007.3 4.62 0.001 1003.4 4.61 0.001
84 936.7 4.56 0.001 932.8 4.57 0.064 1010.1 4.64 0.067 1006.3 4.64 0.076
86 937.3 4.57 0.069 933.6 4.58 0.079 1013.4 4.66 0.139 1009.4 4.66 0.138

might have large shape fluctuations. For example, in 82Zr the
two solutions for β2 = −0.197 and β2 = 0.25 are completely
degenerate with binding energies of 691.3 and 691.0 MeV,
respectively. Hence, the ground state can be changed to the
excited state and vice versa by a small change in the input,
such as the pairing strength, etc., in the calculations. Similar
behavior is also observed for a few other nuclei in the present
analysis and are listed in Tables II and III. Such phenomenon
is known to exist in many other mass regions of the nuclear
chart [86,87].

C. Two-neutron separation energy S2n (Z, N)

Two-neutron separation energy S2n (Z,N ), can be estimated
from the ground-state nuclear binding energies of BE(Z,N ),
BE(Z,N − 2) and the neutron mass mn with the relation:

S2n(Z,N ) = −BE(Z,N ) + BE(Z,N − 2) + 2mn. (11)

The BE of the AXZ and A−2XZ are calculated from RMF for
NL3 and NL3* force parameters. It is essential to have very
precise mass measurements to predict the correct estimation of
the nucleon separation energy S2n. The calculated S2n energy
from RMF as a function of neutron number for Zr, Mo, Ru, and

Pd isotopes are compared with latest experimental data [82],
shown in the Fig. 3. From the figure, it is clear that in an isotopic
chain, the S2n energy shows the well-known regularities for
a given atomic number, i.e., the S2n decreases smoothly as
the number of neutron increases in an isotopic chain. Sharp
discontinuities (in other words, kinks) appear at neutron magic
numbers at N = 50 and 82. In energy terminology one can
say that the energy necessary to remove two neutrons from a
nucleus (Z,Nmagic + 2) is much smaller than that to remove
two neutrons from the nucleus (Z,Nmagic), which breaks the
regular trend.

D. Differential variation of two-neutron separation energy

The differential variation of the two-neutron separation
energy (S2n) with respect to the neutron number (N ), i.e.,
dS2n(N,Z) is defined as

dS2n(Z,N ) = S2n(Z,N + 2) − S2n(Z,N )

2
. (12)

The dS2n(N,Z) is one of the key quantities to explore the rate
of change of separation energy with respect to the neutron num-
ber in an isotopic chain. Here, we calculated the dS2n(N,Z)
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TABLE III. Same as Table II, only for 84−128Mo and 88−132Pd isotopes.

N RMF (NL3) RMF (NL3*) Experiment RMF (NL3) RMF (NL3*) Experiment

BE rch β2 BE rch β2 BE rch β2 BE rch β2 BE rch β2 BE rch β2

84−128Mo 88−132Pd
42 696.7 4.34 −0.206 696.2 4.34 −0.203 697.8 4.42 0.002 697.8 4.42 0.002
44 722.4 4.34 0.001 722.6 4.34 0.002 725.8 730.0 4.44 0.094 729.9 4.44 0.095
46 748.2 4.33 0.003 748.2 4.33 0.003 750.1 760.9 4.43 0.101 760.7 4.43 0.104
48 773.4 4.33 0.001 773.1 4.33 0.001 773.7 789.5 4.42 0.004 789.1 4.42 0.005
50 796.9 4.33 0.001 796.4 4.33 0.001 796.5 4.3156 0.1058 817.4 4.42 0.001 816.8 4.41 0.001 815.0
52 812.7 4.34 0.001 812.2 4.34 0.001 814.2 4.3518 0.1509 836.9 4.43 0.003 836.3 4.42 0.004 836.3
54 828.1 4.38 0.174 827.1 4.37 0.158 830.8 4.3841 0.1720 855.9 4.46 0.136 855.4 4.46 0.139 856.4
56 843.5 4.42 0.230 842.2 4.41 0.220 846.2 4.4088 0.1683 874.2 4.48 0.176 873.6 4.48 0.177 875.3 4.4839 0.196
58 857.2 4.45 0.268 855.7 4.43 0.246 860.5 4.4458 0.2309 891.1 4.51 0.189 890.5 4.50 0.188 892.8 4.5086 0.209
60 871.2 4.50 0.366 869.1 4.49 0.356 873.9 0.311 906.9 4.52 0.187 906.2 4.52 0.184 909.5 4.5322 0.229
62 883.6 4.53 0.386 881.4 4.52 0.382 886.9 0.362 921.8 4.53 0.190 921.1 4.53 0.179 925.2 4.5563 0.243
64 895.4 4.49 −0.234 894.0 4.49 −0.228 898.9 0.354 936.1 4.57 0.240 934.9 4.54 0.165 940.2 4.5776 0.257

895.2 4.54 0.379 893.9 4.54 0.377
66 907.4 4.51 −0.236 905.7 4.51 −0.233 0.38 951.8 4.59 −0.231 950.4 4.58 −0.229 954.3 0.220

906.5 4.56 0.374 904.9 4.55 0.373 950.3 4.60 0.292 949.5 4.60 0.290
68 918.1 4.53 −0.241 915.9 4.53 −0.239 965.7 4.62 −0.23 963.9 4.60 −0.234 967.6 0.164

963.5 4.62 0.304 961.9 4.60 0.301
70 927.0 4.55 −0.231 924.6 4.54 −0.223 977.9 4.63 −0.221 975.8 4.61 −0.226 0.207

975.3 4.60 0.216 974.1 4.59 0.216
72 935.7 4.55 −0.197 933.2 4.55 −0.190 989.1 4.63 −0.198 986.8 4.62 −0.184
74 944.6 4.57 −0.180 941.7 4.56 −0.179 1000.6 4.63 −0.163 998.1 4.62 −0.151
76 951.8 4.58 −0.172 948.4 4.58 −0.171 1011.9 4.63 0.115 1009.8 4.62 0.114
78 958.4 4.57 0.114 955.0 4.56 0.094 1022.8 4.64 0.104 1020.2 4.63 0.105
80 965.1 4.58 0.042 961.5 4.57 0.037 1032.4 4.65 0.073 1029.3 4.64 0.076
82 972.2 4.59 0.002 968.0 4.59 0.001 1041.5 4.65 0.001 1037.8 4.65 0.002
84 973.7 4.60 0.002 969.6 4.60 0.029 1044.5 4.66 0.027 1040.9 4.67 0.043
86 975.8 4.62 0.114 971.7 4.61 0.101 1048.7 4.69 0.130 1045.1 4.69 0.132

for NL3 and NL3* force parameters. Further, we have also
estimated the dS2n (N,Z) energy from the experimental S2n

energy. In Fig. 4, we compared the experimental values with

0
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FIG. 3. (Color online) The two-neutron separation energy as a
function of neutron number from RMF theory with NL3 and NL3*
force parameter for 82−126Zr, 84−128Mo, 86−130Ru, and 88−132Pd nuclei
are compared with the experimental data [82].

our calculation for Zr, Mo, Ru, and Pd isotopes. In general, the
large, sharp, deep fall in the dS2n over an isotopic chain shows
the signature of neutron shell closure. In other words, this
deviation in the general trend may disclose some additional
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FIG. 4. (Color online) The differential variation of the two-
neutron separation energy dS2n as a function of neutron number
from RMF theory with NL3 and NL3* force parameter for 82−126Zr,
84−128Mo, 86−130Ru, and 88−132Pd nuclei are compared with the
experimental data [82].
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FIG. 5. (Color online) The root-mean-square charge distribution
rch of 82−126Zr, 84−128Mo, 86−130Ru, and 88−132Pd nuclei from RMF
theory with NL3 and NL3* force parameter are compared with the
experimental data [89].

nuclear structure features. From the figure, we observed the
same characteristics for all Z = 38–46.

E. Root-mean-square charge distributions

The root-mean-square (rms) matter radius from relativistic
mean-field theory can be expressed as:

〈
r2
m

〉 = 1

A

∫
ρ(r⊥,z)r2dτ, (13)

where A is the mass number and ρ(r⊥,z) is the axially
deformed density. The rms charge radius can be calculated
from the rms proton radius 〈r2

p〉 with simple algebraic relation,〈
r2
ch

〉 = 〈
r2
p

〉 + 0.64. (14)

From the theoretical point of view, the macroscopic-
microscopic models [88] and microscopic mean-field formu-
lations using effective interactions are the most sophisticated
approaches to determine the rms charge radius in comparison
with experimental data [89]. In this present work, we have
shown the variations or fluctuations of the charge radii on top
of a fairly smooth average behavior in an isotopic chain. The
results from RMF approaches for NL3 and NL3* parameters
along with the available experimental data are shown in
Fig. 5. From the figure it is clear that the obtained radii from
RMF for 82−126Zr, 84−128Mo, 86−130Ru, and 88−132Pd follows
closely the experimental data [89]. For most of the nuclei,
the experimental values are unavailable; the RMF predictions
are made for the charge radius of such a nucleus that awaits
experimental confirmation. The circle, square, and triangle
symbols indicate the ground-state data for NL3, NL3*, and
experiment, respectively. Further, the solid circle and solid
square symbols indicate the shapes correspond to the first
intrinsic excited states obtained from NL3 and NL3* forces.
From the figure, one can observe the smooth behavior for
lighter isotopes, then there is a small drop in the charge radii
for Zr, Mo, and Pd at about N = 62, 64, 72, and 74. This drop
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FIG. 6. (Color online) The single-particle energy levels εi for
90Zr, 104Zr, 114Zr, and 122Zr from RMF model with NL3 force
parameter

corresponds to the transition from the prolate to the oblate and
vice versa. But the magnitude for both the states are different,
i.e., the oblate deformation is at β2 ∼ −0.2 while the prolate
one appears with β2 ∼ 0.4. In the case of the Pb isotope, the
change is the radii only at one place, i.e., at N = 74. Further,
one can notice that the tiny change in the calculation can lead to
the first intrinsic excited state as a ground state (see Fig. 2). In
other words, we can practically degenerate the ground-state
binding energy for the deformation corresponding to the
first intrinsic excited state. Thus, the inconsistency in the r2

c

could be explained in terms of configuration mixing, i.e.,,
the actual ground state is not only the spherical configuration
but also from the neighboring deformed intrinsic excited
states.

F. Single-particle energy levels

In the above analysis, we found some signatures of shell
closures at N = 82 for all these isotopic chains. As a further
confirmatory test, the single-particle energy levels for neutrons
in isotopic chains are examined. The obtained single-particle
levels εi for even isotopes of Zr near Fermi level are shown
in Fig. 6 for NL3 force as an ideal case. However, we have
obtained similar results for all isotopic chains from NL3 and
NL3* force parameters. We observed the large gap at N = 82,
near the drip-line region. In general, the spin-orbit splitting
of the levels are scaled down for neutron-rich nuclei, but
1h11/2 level (at N = 82) is higher in the Zr nuclei studied.
Quantitatively, in 122Zr, the �εi = εi(1i13/2)εi(1h9/2) at N =
82 is 4.5 MeV, which is a considerably large value compare
to the neighbor splitting. Almost identical behavior is noticed
for the isotopic chain of Mo, Ru, and Pd nucleus at N = 82,
irrespective of the force parameter used. Such a rearrangement
of the single-particle orbitals at N = 82, well accepted
the shell closure at N = 82 for the considered transitional
nuclei.

G. Contour plot of the axially deformed densities

In the above figures and tables, we have shown the results
some of the structural observables such as binding energy,
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FIG. 7. (Color online) The contour plot of the axially deformed
ground-state density distribution of proton and neutron for 82Zr and
90Zr.

quadrupole deformation, root-mean-square radius, separation
energy, differential separation energy, and single-particle
energy levels in comparison with the experimental data
[82,89], wherever available. Here, we have focused on the
ground of 82−126Zr, 84−128Mo, 86−130Ru, and 88−132Pd nuclei
along with a few selectively excited states. Based on these
structural observables, we found some significant signatures
of the shell closure at N = 82 (drip-line region) in the isotopic
chains. Further, the abnormal change in the S2n and dS2n in
the isotopic chain of Zr, Mo, and Ru nucleus suggests a shape
coexistence at N ∼ 64 and 74. This divergence over an isotopic
chain can be cut down by taking the dynamical correlations
beyond mean field [90–92].

To get a complete picture of the reason behind such
discrepancy over the isotopic chain, we have shown the contour
plot of the axially deformed density of protons and neutrons
of these nuclei. In Figs. 7 and 8, we have displayed the
distribution of Zr isotopes for N = 42, 50, 60, and 82 as
representative cases. All the isotopes of Mo, Ru, and Pd also
show similar behavior to Zr as shown in Figs. 7 and 8. From
the figure, one can clear identify the spherical, oblate, prolate
shapes corresponding to their β2 values as the local minima
in the PECs. Similar calculations can also be found in Refs.
[93,94]. In these figures, we can see the transition from oblate
to prolate at N = 42, then the change to the spherical structure
at N = 50, and further changing the deformations to prolate
ones. Even though the proton number is fixed in the isotopic
chain, still we found a little change in the density distribution
due to the influence of excess neutron number. Following the
color code, the red and light gray color correspond to the
high density (∼0.09 fm−3) and low density (∼0.001 fm−3),
respectively. More inspection of the figures shows that the

FIG. 8. (Color online) The contour plot of the axially deformed
ground-state density distribution of proton and neutron for 100Zr and
126Zr.

central density of the proton increases as compared to the
neutron with respect to the neutron number. In this region, few
isotopes of Mo (for 116−118Mo) are the triaxial shape in their
ground state, which is very close to the axial solutions [94]. In
other words, the location of minima for a triaxial solution for
these isotopes of Mo are almost same as the minima appear for
an axial prolate solution. Hence, we have used the simple axial
deformed calculation, which is adequate for the a qualitative
description of structural observables in this mass region.

IV. SUMMARY AND CONCLUSIONS

We have used self-consistent relativistic mean-field theory
with the most popular NL3 and recent NL3* force parameters
to study the structural evolution in transition nuclei. The
conjecture has been made from the binding energy, neutron
separation energies, differential variation of separation energy,
the root-mean-square charge radii, and the single-particle
energy levels of these nuclei. In the present calculations we
have shown that Zr, Mo, and Ru isotopes undergo a transition
from oblate to prolate shapes at N ∼ 64 and 74. But, the
case of Pd follows a smooth pattern throughout the isotopic
chain. We have also shown that the dependence of nuclear
charge radii on deformation also plays a crucial role on their
structural transition. Further, we have also observed a large
shell gap at N = 82 near the drip-line region, almost the same
in magnitude at N = 50 for these considered nuclei, which
is a well-known feature for mean-field calculation. We have
also demonstrated the efficiency of RMF theory calculations
to reproduce those features and therefore to make predictions
in unexplored regions.
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