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Introduction of a valence space in quasiparticle random-phase approximation: Impact on
vibrational mass parameters and spectroscopic properties
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For the first time, using a unique finite-range interaction (D1M Gogny force), a fully coherent and time-feasible
calculation of the Bohr Hamiltonian vibrational mass is envisioned in a Hartree-Fock-Bogoliubov + quasiparticle
random-phase approximation (QRPA) framework. In order to reach a reasonable computation time, we evaluate
the feasibility of this method by considering two restrictions for the QRPA: the Tamm-Dancoff approximation
and the insertion of a valence space. We validate our approach in the even-even tin isotopes by comparing the
convergence scheme of the mass parameter with those of built-in QRPA outputs: excited-state energy and reduced
transition probability. The seeming convergence of these intrinsic quantities is shown to be misleading and the
difference with the theoretical expected value is quantified. This work is a primary step towards the systematic
calculation of mass parameters.
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I. INTRODUCTION

One of the most challenging goals in nuclear physics
is to describe all the nuclei of the chart using a unique
formalism with as few free parameters as possible. Though
very promising, the exact triaxial generator coordinate method
(GCM) is for now unmanageable for heavy nuclei because of
its outrageous computation cost [1–3]. Thus, the quadrupole
5-dimensional collective Hamiltonian (5DCH)—GCM under
the Gaussian overlap approximation—is for now our only
tool capable of dealing with both light (as soon as the
concept of mean field is meaningful) and heavy nuclei under
a common theoretical framework. Yet, several studies have
already pointed out some drawbacks of this approach such
as its inadequacy for describing rigid spherical nuclei, or
more generally speaking, the dependence of the reliability
of the results with the nuclear deformation [4,5]. Possible
improvements would be to add beyond-mean-field correlations
in mass parameters as suggested in Refs. [2,4–6]. The quasi-
particle random-phase approximation (QRPA) could provide
enriched microscopic ingredients entering the vibrational mass
parameters to be used for the 5DCH Hamiltonian, if the
computational burden is not too heavy. Since mass parameters
exhibit strong variations with the deformation [7,8], they have
to be computed for each point (β,γ ) of a triaxial mesh. Such
full QRPA calculations with the Gogny interaction are out of
reach due to the calculation time needed for each (β,γ ) point
of the triaxial map. Some approximations, namely the finite
amplitude method [9] or the Arnoldi diagonalization [10],
have already been applied successfully to the RPA with
zero-range interactions to obtain spectroscopic properties
more rapidly. Local QRPA has led to satisfactory results in
calculating mass parameters, first restricted to pairing plus
quadrupole excitations [11], and more recently using the
Skyrme interaction [12]. Here, we decide to test limitations of
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the excitations (or correlations) to provide the first vibrational
mass parameters obtained through QRPA with a Gogny
interaction. Previous studies have already tested the impact
of a cutoff of the 2-quasiparticle (2-qp) excitation energy in
QRPA, such as Refs. [13] (Skyrme) and [14] (Gogny D1S), but
the effect of an inert core in QRPA has never been considered.
Approaches such as the one developed here, exploring ways
of setting limitations inside the QRPA framework, are of high
interest. By reducing the mass parameter computational time,
it could open the path towards considerable improvement in
the 5DCH approach. In this paper, we briefly consider the
Tamm-Dancoff approximation (TDA), in which ground-state
correlations are neglected. Then, following standard shell-
model techniques, we examine another way of restricting
the excitations that consists in introducing a valence space,
i.e., limited excitation space, in QRPA calculations. The
convergence of the mass parameter is discussed for the first
time according to different inert cores as well as the limits in
the 2-qp excitation energy that are set. The convergence of the
QRPA excitation energies and reduced transition probabilities
are examined at each step.

The present study is focused on 100−144Sn (spherical) tin
isotopes at zero deformation. It allows us to decorrelate the
valence space from the deformation. This work evaluates the
feasibility of the approach, and studies dedicated to the impact
of the deformation and the effects of the new mass parameters
on the 5DCH spectroscopy will be performed in the future.

II. FORMALISM

In a quadrupole 5DCH calculation, the seven parameters
entering the Hamiltonian

H5DCH = V + Trot + Tvib (1)

are obtained from constrained Hartree-Fock-Bogoliubov
(CHFB) calculations over the (β,γ ) map. These parameters
are a collective potential V , three moments of inertia Ji

(with i ∈ {x,y,z}) for the rotational part, and three vibrational
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F. LECHAFTOIS, I. DELONCLE, AND S. PÉRU PHYSICAL REVIEW C 92, 034315 (2015)

mass parameters Bμν (with (μ,ν) ∈ {0,2}2, B02 = B20) for the
vibrational part. These vibrational mass parameters can be
obtained by using a formula analogous to the one derived in
Ref. [15] for RPA

Bμν = �
2

2

M−3,μν

[M−1,μν]2
, (2)

where the pth order moment Mp,μν of the quadrupolar
strength distribution (Q̂2ν) reads

Mp,μν =
∑

n

Ep
n |〈0̃|Q̂2μ|n〉〈n|Q̂2ν |0̃〉|. (3)

When dealing with a HFB calculation, |0̃〉 is the vacuum
for Bogoliubov quasiparticles as defined in Ref. [16] (later
on, for the sake of simplicity, a Bogoliubov quasiparticle is
merely called a quasiparticle, qp), |n〉 is a 2-qp excitation
state, and En is the associated energy En = Eqp1 + Eqp2. In
the QRPA framework, |0̃〉 is the vacuum for QRPA excitations
(phonons) and |n〉 is a QRPA phonon of energy ωn defined by
the quasiboson creation operator θ+

n

θ+
n |0̃〉 = |n〉, (4)

with θn|0̃〉 = 0 (5)

and θ+
n =

∑
i<j

Xij
n η+

i η+
j − Y ij

n ηjηi, (6)

where i,j run over the qp levels obtained from the HFB
ground state (spherical point for considered isotopes), η+(η)
is the quasiparticle creation (annihilation) operator, and Xn,
Yn are the amplitudes of the 2-qp excitations. Following a
few steps [17], Eq. (3) can be rewritten to work with mass
parameters a la Thouless-Valatin:

Mp,μν =
∑

n

ωp
n |〈0̃|Q̂2μθ+

n |0̃〉〈0̃|Q̂2νθ
+
n |0̃〉|. (7)

The phonon energy ωn is associated to the amplitudes Xn and
Yn which are solutions of the QRPA equation(

A B
B∗ A∗

)(
Xn

Yn

)
= ωn

(
Xn

−Yn

)
, (8)

using the interaction matrices A and B.
We define

Q̂20 =
√

4π

5
r2Y20, (9)

Q̂22 =
√

4π

5
r2(Y22 + Y2−2). (10)

For spherical nuclei, it can be shown that

B00 = �
2

2

M−3,00

[M−1,00]2
= 2B20 = 4B22. (11)

This relation of proportionality allows us to restrict our study
to B00.

All calculations, at each step, are performed with the D1M
Gogny force [18] in a harmonic oscillator basis with 11 major
shells. It is worth noting that we checked the stability of the

results versus the number of major shells in the basis. The
HFB calculations have been performed using the axial code of
Ref. [19]. The full computation of the cylindrical QRPA [20]
matrix elements of one nucleus requires approximately 2 000
CPU hours. It can now be spread over hundreds of MPI
threads [14] to get the result within a day. We extract a
submatrix from the QRPA matrix according to the desired
valence space (depending on the approximation studied). We
then diagonalize the matrix as explained in Ref. [20] and
finally process the Xn and Yn amplitudes with a fast portion
of code in order to get the mass parameter and the energy
spectrum with the corresponding γ strengths at once. It is
worth noting that in the case of a full QRPA calculation, the
potential spurious states go down to zero energy. For spherical
nuclei, whatever the restriction considered, spurious states that
would appear and not completely fall down to zero would still
not be a problem. As a matter of fact, we study here J = 2 and
J = 3 states only. Due to the sphericity, these states are fully
decoupled from the possible spurious states, which can only
be J = 0 or J = 1 states.

III. APPROXIMATIONS

A. Tamm-Dancoff approximation

Contrary to calculations based on the Skyrme interaction
where the diagonalization is the most time-consuming part,
filling the matrices A and B with the Gogny interaction is
roughly 3 000 times longer than the diagonalization, and
reducing the number of matrix elements is the most efficient
way to decrease the computation load. The TDA assumes
that there are no correlations in the ground state, except
those coming from the HFB calculation. This implies that the
interaction matrix B is null and results in Yn = 0. Equation (8)
then reduces to QTDA:

AXn = ωnXn, (12)

which leads to a half-sized eigensystem problem and a
calculation time divided by two. Figure 1(a) shows the

FIG. 1. (Color online) Variation of (a) B
QTDA
00 , B

QRPA
00 , BHFB

00 and
(b) B

QTDA
00 /B

QRPA
00 , B

QRPA
00 /BHFB

00 with the mass number A.
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evolution of the mass parameters calculated with QTDA,
QRPA, and HFB for the whole isotopic chain. First, the HFB
mass parameter exhibits a strong shell closure effect. Thus
the mass parameter cannot be blamed for the inability of the
5DCH to deal with doubly magic nuclei. Second, the HFB
mass parameters, known for being too low, are indeed lower
than the QRPA ones. Figure 1(b) presents the variation with the
mass number A of the B

QTDA
00 /B

QRPA
00 and B

QRPA
00 /BHFB

00 ratios.
It is worth noting that we obtain an average B

QRPA
00 /BHFB

00
ratio of 1.34 along the isotopic chain. This value is close to
the average value of the range of factors usually applied to
correct the HFB masses [21]. However, this ratio is anything
but constant, in particular around A = 130. The peak in this
region could be due to the fact that the QRPA brings even
more correlations than HFB in the limit of low pairing, i.e.,
when the shell is nearly closed. Caution should then be taken
when performing such a correction. Last but not least, the
QTDA always overestimates the QRPA value by at least 15%,
showing the great imprecision brought by this approximation.
Although it dramatically reduces the computation time, the
TDA is disqualified for mass parameter calculations and will
then not be considered anymore. On a side note, we have
performed some calculations for 110Ru (oblate, β ∼ −0.2)
and 122Xe (prolate, β ∼ 0.3) in their ground states. The ratios
B

QRPA
00 /BHFB

00 for these nuclei are respectively 0.727 and 2.17,
which is still in the range of the aforementioned correction
factor. Once, again, it shows that this ratio is not to be
considered constant and that we will have to deal with the
evolution of the factor along constrained deformation in the
future.

B. Valence space

We now study the effect of the introduction of a valence
space, i.e., a space in which the quasiparticles can be excited.

1. Cutoff on the 2-qp energy

The first limitation resulting from such a valence space is a
restriction of the energy of the 2-qp excitations, viz., the sum
of the two involved qp energies. Here we suppose that as the
2-qp excitation energy is higher, the importance in the nuclear
response is lower, in the QRPA framework. A compromise
should exist between a cutoff in 2-qp excitation energy and a
reasonable mass parameter value. Figure 2 shows the evolution
of B00 as a function of the cutoff for all tin isotopes. Cutoff
values range between 10 and 100 MeV. Moreover, the QRPA
no-cutoff value is considered as our reference calculation. We
can first notice that except for some slight differences, all the
isotopes behave similarly. Below 50 MeV, the mass parameters
are ranging from 1.5 to 11 times higher than their respective
converged values. For a cutoff of 50 MeV, we already have
a fair approximation of the final mass parameters with less
than 10% difference. This difference then shrinks to less than
5% at 80 MeV. If the purpose of the QRPA calculation is
only to obtain mass parameters for the 5DCH, then it seems
reasonable to use a 50-MeV cutoff. In this case, computation
time is divided by a factor of 16 approximately. Whether we
should consider 10% or 5% small enough is a question that

FIG. 2. (Color online) Convergence of B00 for 100−144Sn with
the cutoff. The results are normalized by the respective no-cutoff
values.

would require a separate study evaluating the impact of such a
difference on the results of the 5DCH. Due to the similarity of
the behavior of the even-even tin isotopes mass parameters, the
curves will be plotted for 112,120,124Sn only in the following.

2. Inert core

In a full QRPA calculation, excitations of all nucleons, even
the deepest ones, are taken into account. By imposing an inert
core, we will only consider the excitations of the nucleons
outside the core, those closer to the Fermi level. The nucleons
located in the inert core are frozen and do not take part in the
excitation process. The present study has been prepared with
the following doubly magic cores: 40Ca,48Ca,56Ni,70Ca, and
78Ni (for 100Sn, 70Ca and 78Ni cores are excluded for there
would be no valence neutrons). Other doubly magic nuclei
would be either too small and thus not sufficiently time-saving
or too large to be used for at least one of the lightest tin
isotopes.

The evolution of the mass parameter according to the inert
core size (from 40Ca to 78Ni) as a function of the cutoff is
presented in Fig. 3. Whatever the core is, the values are, as
in Fig. 2, stabilized from a 50-MeV cutoff. On the one hand,
the two lightest calcium cores give good (48Ca) and even very
good (40Ca) approximated values. This can be seen in Fig. 3(d)
since in Figs. 3(a)–3(c) their values are indistinguishable from
the no-cutoff results. On the other hand, the last calcium
(70Ca) and the two nickel cores (56Ni and 78Ni) do not provide
sufficiently good results. Therefore, choosing a 40,48Ca core
could be a wise choice for these isotopes, allowing us to obtain
mass parameters 30% faster. We could even decide to use a
50-MeV cutoff in conjunction with a 40Ca core to compute
approximately 30 times faster acceptable mass parameters.
However, we have to keep in mind that we praised the 5DCH
for its ability to describe both light and heavy nuclei under a
common framework, and we need to determine a coherent
valence space—which is nucleus dependent—for different
nuclei to be consistent.
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FIG. 3. (Color online) Evolution of B00 using Ca cores (filled
points) and Ni cores (hollow points) as a function of the cutoff for
(a) 112Sn, (b) 120Sn, and (c) 124Sn. (d) Convergence with the core size
without any cutoff.

IV. QRPA SPECTRA

Restricting the valence space appears to be an efficient way
of saving computation time for the mass parameter calculation,
but the robustness of this result and the underlying hypothesis,
i.e., the low influence of the high-energy phonons in our
mass parameter, have to be assessed. This can be achieved by
examining the convergence scheme of QRPA intrinsic values
such as the energy spectrum or the transition probabilities.

A. Cutoff on the 2-qp energy

Figure 4 shows the convergence of the 2+
1 and 3−

1 energies
and their reduced transition probabilities with the cutoff. The
agreement between theoretical and experimental values of
the 2+

1 for tin isotopes can be found in Ref. [6] and will
not be discussed here. Opposite trends are observed for the
excited level energy and the associated transition probability
of all the isotopes. Unlike mass parameters, the transition
energies and probabilities do not reach convergence until a
high-energy cutoff value. In order to reach the 10% difference,
we need to extend our calculation up to 80 MeV and even
90 or 100 MeV for the 5% difference. For a 50-MeV 2-qp
energy cutoff, the mass parameters are converged while the
2+

1 and 3−
1 energies lie 30% away from the no-cutoff result.

Mass parameters and QRPA phonon energies behave quite
differently with respect to the 2-qp energy cutoff. Indeed, the
high-energy 2-qp excitations appear not take an active part in
mass parameters, when it is essential to get satisfactory phonon
energies. In Fig. 4 we can also notice that the reduced transition
probability is more sensitive to small energy cutoff values
than the excited-state energy itself. Then the well-known

FIG. 4. (Color online) Relative variation of (a) E(2+
1 ),

B(E2+
1 ,GS → 2+

1 ), E(3−
1 ) and (b) E(3−

1 ), B(E3−
1 ,GS → 3−

1 ) as a
function of the cutoff for 100−144Sn.

relation [22]

E(2+
1 )B(E2+

1 ) ∝ ZA−1/3 (13)

is violated for small-energy cutoff values.

B. Inert core

Let us now study the convergence of QRPA outputs as a
function of the inert core size. We have performed calculations
with different cores for 100−144Sn but, as observed previously,
they all follow a common trend and results for 112,120,124Sn
only are reported in Figs. 5 and 6. As for the cutoff study,
transition energies and probabilities are much more sensitive
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FIG. 5. (Color online) Evolution of E(2+
1 ) for (a) 112Sn, (b) 120Sn,

(c) 124Sn, and B(E2+
1 ,GS → 2+

1 ) for (d) 112Sn, (e) 120Sn, and (f) 124Sn
with the cutoff using different inert cores.

to the introduction of an inert core than mass parameters.
None of the cores—even the smallest one of the set presented
here—allows us to obtain a satisfying value. Indeed, 40Ca-core
calculation cannot reproduce the 2+

1 properties, the transition
probability is at least halved, and the energy is between 30 and
50% too high compared to the full-space calculation. Similar
conclusions can be drawn for 3−

1 ; the eigenvalues (energy)
converge more rapidly than the associated eigenvectors (Xn

and Yn used to build B(Eλ)). It is worth noting that using an
16O core, though clearly useless to reduce the computation
time and thus not presented here, has proven to be extremely
close to the no-core calculation.

By exhibiting the weak convergence properties of QRPA
intrinsic quantities, this last study confirms the robustness of
the QRPA mass parameter calculation with a valence space,
including inert cores. Indeed, when imposing an inert core,
one blocks high-energy qp excitations from deep qp levels,
which play a weak role in the mass parameter value. On the
contrary, they are found to play an important role in the excited-
state energy and reduced transition probability. Consequently
none of the inert cores can provide satisfying values of these
quantities. Moreover, Fig. 5 demonstrates that whatever the
inert core is, the evolution of E(2+

1 ) and B(E2+
1 ) as a function

of the energy cutoff strongly resembles a convergence process.
Nevertheless, this leads to values far from the expected no-core
ones. Evaluating the product of E(2+

1 ) and B(E2+
1 ) could be

helpful for choosing an appropriate valence space.

FIG. 6. (Color online) Evolution of E(3−
1 ) for (a) 112Sn, (b) 120Sn,

(c) 124Sn, and B(E3−
1 ,GS → 3−

1 ) for (d) 112Sn, (e) 120Sn, and (f) 124Sn
with the cutoff using different inert cores.

V. CONCLUSION

In this paper, we introduce a valence space for the calcu-
lation of even-even tin isotopes vibrational mass parameters
in QRPA. The HFB 2-qp excitations entering the QRPA
calculations are restricted by an energy cutoff and an inert
core which define the valence space. This technique allows us
to obtain vibrational mass parameters a la Thouless-Valatin,
including more physics than those commonly used in the
5DCH approach. Indeed, using a valence space allows us
to save computation time up to a factor of 30 compared
to no-valence-space QRPA calculations. The rapidity of the
convergence of the so-calculated mass parameter, as a function
of the cutoff and the size of the inert core, is coherent with
the fact that mass parameters do not require the inclusion of
high-energy 2-qp excitations, in contrast with phonon energies;
it validates our hypothesis. This convergence property leaves
room for obtaining mass parameters in a reasonable computa-
tion time for deformed nuclei when the formalism is adapted
to the case of constrained deformation far from the minimum
of the potential energy surface. It would also allow us to face
full (β,γ ) mapping, when we are able to deal with triaxial
systems in QRPA. The QRPA approach with a valence space
that we are developing will contribute to broaden the amount
of nuclear phenomena that can be described by the 5DCH, one
of our most coherent and predictive tools for nuclear dynamics
up to now.
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Additionally, in this framework, we were able to show
that phonon transition energies and reduced probabilities
exhibit weak convergence properties. In particular, even with
the small 40Ca inert core, the 2+

1 and 3−
1 energies are far

from the no-core values. Thus in QRPA, caution should be
taken when considering the calculation of intrinsic quantities
(state energies, reduced transition probabilities) with a valence
space. This result was expected as it is known that one should
not use a universal effective interaction (like the Gogny force)
when dealing with unreasonably small valence spaces. It is

worth noting that the convergence of intrinsic observables
towards experimental values are of false appearance and thus
misleading.
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