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Relativistic effects in three-nucleon forces for nuclear matter and finite nuclei
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In order to simulate the relativistic effects of the Dirac-Brueckner-Hartree-Fock approach for finite nuclei,
the part of the Urbana three-nucleon (3N) force is considered, which represents the enhancement of the small
components of the Dirac spinors for the nucleons in the nuclear medium. This 3N force is included in a
Brueckner-Hartree-Fock calculation with rearrangement terms using a realistic model for the NN interaction.
The strength of the 3N force is adjusted to reproduce the empirical saturation point of nuclear matter and then
used in corresponding studies of the closed shell nuclei 16O and 40Ca. Special attention is paid to a consistent
treatment of the spectrum of particle states in the NN propagator of the Bethe-Goldstone equation.
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I. INTRODUCTION

One of the main challenges of theoretical nuclear physics
is the attempt to derive the bulk properties of nuclear systems,
which includes the saturation properties of infinite nuclear
matter and also the binding energies and size of finite
nuclei, from a realistic model of the nucleon-nucleon (NN)
interaction. In this context models of the NN interactions
are called realistic if they have been determined to fit the
experimental data for two nucleons, i.e., the NN scattering
phase shifts and the data of the deuteron, with high accuracy.
These so-called realistic NN interactions are in contrast to
phenomenological or effective NN forces such as the Skyrme
interactions [1,2] or relativistic mean field models [3], which
are fitted to describe the bulk properties of nuclear systems
using Hartree-Fock or mean-field approximations.

Examples of such realistic NN interactions are the one-
boson-exchange (OBE) models of the Bonn (also Idaho) [4]
group or the local interaction models of the Argonne or Urbana
groups [5]. Rather sophisticated versions of these models have
been developed, such as the CD-Bonn potential [6] and the
Argonne V18 potential [5].

Although these potentials are “soft” compared to the hard-
core potentials developed in the middle of the last century,
they contain strong tensor- and short-range components, which
make it inevitable to employ a calculation tool which treats
correlations beyond the mean-field or Hartree-Fock approxi-
mation [7]. A typical example of such a many-body approach
is the Brueckner-Hartree-Fock (BHF) approximation, which is
based on the solution of two-nucleon scattering equation in the
nuclear medium, leading to an energy- and density dependent
effective interaction, the so-called G matrix.

Attempts have been made to compare this G matrix
with the phenomenological models of a nuclear force as
the Skyrme interaction mentioned above and identify the
density dependence of the Skyrme interaction with the medium
dependence of the G matrix [8,9].

The variation principle of Hartree-Fock calculations with
density-dependent forces leads to rearrangement terms, which
in the case of the Skyrme interaction are very important to
obtain good agreement with the empirical data for nuclear
matter and finite nuclei. Therefore also the BHF approximation
has been extended to include such rearrangement terms.

Accounting for the energy dependence of G this leads to
the renormalized BHF (RBHF) approach [10] whereas the
density dependent HF (DHF) approximation also accounts
for the Pauli-rearrangement terms [9,11]. The inclusion of
the rearrangement terms is not only justified to simulate the
features contained in the effective theory, but, in contrast to
BHF, the DHF approach fulfills the Hughenholtz–van Hove
theorem due to the inclusion of the rearrangement terms [12].

The BHF approach using realistic NN interaction leads to
a saturation point for nuclear matter. The saturation points
calculated with various models for the realistic NN interaction
form the so-called Coester band [7,13], which misses the
empirical data in a significant way. Therefore many attempts
have been made to explore various effects, which make the
NN interaction in the nuclear medium different from the
NN interaction in the vacuum. An example of such studies
is the inclusion of subnucleonic degrees of freedom, e.g., in
terms of intermediate excitations of the interacting nucleons
to the �(3,3) resonance. Such mutual polarization effects
should occur already in the interaction of two nucleons in
the vacuum. In fact such processes with intermediate isobar
excitations provide a substantial contribution to the medium
range attraction of the NN interaction, which in the OBE
model is described in terms of the exchange of a light scalar σ
meson [14,15]. In the nuclear medium these attractive terms are
quenched due to dispersive and Pauli effects, features which
could be described in terms of a density-dependent NN force
or a 3N interaction [16,17]. Such isobar effects turned out to
be non-negligible; however, this did not cure the problem of
the Coester band, i.e., they did not shift the saturation point
calculated for nuclear matter to the empirical data.

Another form of medium dependence of the NN interac-
tion has been supplied by the Dirac-Brueckner-Hartree-Fock
(DBHF) approximation [18,19]. Here one considers the Dirac
structure of the self-energy of the nucleon and accounts
for the effect that the attractive scalar component of this
self-energy yields Dirac spinors for the nucleons in the nuclear
medium with an enhanced small component as compared to
the corresponding spinor for a nucleon in the vacuum. Again
this change of the Dirac spinors in the medium and the corre-
sponding change for the matrix elements of meson exchange
can be described either in terms of a medium-dependent
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NN force or by means of a 3N force parameterized in theform
of a Z diagram with 2σ exchange terms [20,21].

The DBHF approximation has been successful in the
sense that it reproduced the empirical saturation point of
nuclear matter without adjustment of any additional parameter
[18,22–28]. Since, however, the consistent treatment of cor-
relation and relativistic effects for finite systems is a rather
involved problem, the full Dirac-Brueckner equations have not
yet been solved for finite nuclei. In fact, Van Giai et al. [29]
addressed this problem as one of the main open problems in
nuclear physics. Different approximation schemes have been
developed, which treat either the relativistic effects or the
correlation effects in an approximate way.

The most popular approximation scheme is to analyze the
DBHF calculations of infinite matter in terms of an effective
field theory with meson-nucleon coupling constants depending
on the nucleon density and perform relativistic mean field or
relativistic Hartree-Fock calculations for finite nuclei using
the semiphenomenological density functionals, which were
adjusted to reproduce DBHF results for infinite matter [30,31].
For a recent discussion of such relativistic density functionals
see [28] and references listed there. Such studies consider the
relativistic features of DBHF explicitly, but ignore more or less
the effects of correlations beyond the mean field approach. It
has been pointed out that the rearrangement terms originating
from the density dependence of the meson-nucleon coupling
constants are very important to improve the description of
finite nuclei [31].

In the present investigation we are going to discuss a
different approximation scheme for the DBHF approach in
finite nuclei. The focus is to consider the correlation effects in
terms of a direct evaluation for finite nuclei and treat the Dirac
effects in an approximate way. However, in contrast to the
method developed in [32] the Dirac effects are not described
in terms of a local density approximation but are simulated
using a three-nucleon interaction.

Various attempts have been made to parametrize the 3N
forces discussed so far in terms of a simple local 3N force.
As an example we mention the Urbana force [33,34], which is
composed of two terms,

Vijk = AV 2π
ijk + U V R

ijk. (1)

The first part is from 2π exchange with an intermediate �
excitation and may be considered to simulate the medium-
dependent isobar effects discussed above. The second term
is typically defined in terms of 2σ exchange and can be
interpreted to simulate the effects of the Z diagram discussed
above. This means the second term is thought to represent the
relativistic effects of the DBHF approach [35]. Typically this
3N force is reduced to a density-dependent NN interaction,
which is then added to the bare NN interaction (see, e.g., [36]
and references therein) and the parameters A and U in Eq. (1)
can be adjusted to reproduce the empirical saturation point for
symmetric nuclear matter.

This scheme has been criticized by Hebeler and
Schwenk [37] and later by Carbonne et al. [38] They argue
that an expression for the total energy with kinetic energy ti ,

2N interaction Vij , and 3N potential Vijk ,

E =
∑

i

tiρi + 1

2

∑
i,j

Vijρiρj + 1

6

∑
i,j,k

Vikjρiρkρj , (2)

leads to the single-particle energy

εi = ti +
∑

j

Vijρj + 1

2

∑
j,k

Vikjρkρj , (3)

which is different from the result that is obtained when the 3N
force is added to the 2N interaction by

1

2
V eff

ij (ρ) = 1

2
Vij + 1

6

∑
k

Vikjρk . (4)

This is of course true, and at first sight this would imply that
the medium effects discussed above would lead to different
results when they are treated in terms of a three-body force or
considered as a density-dependent NN interaction. We note,
however, that both approaches lead to the same result, if the
single-particle energies are defined according to the Landau
definition of the quasiparticle energy, i.e.,

εi = ∂

∂ρi

E(ρ), (5)

which means that rearrangement terms due to the density
dependence of V eff are taken into account. With this inclusion
the result is the independent on the treatment as a 3N term or
a density-dependent 2N contribution.

In this investigation we will discuss Brueckner-Hartree-
Fock kind of calculations for nuclear matter and finite nuclei
based on a realistic NN interaction with inclusion of a
three-nucleon force. Special attention will be paid to the
rearrangement terms originating from the density dependence
of the G matrix and the treatment of the 3N force in terms
of a density-dependent 2N interaction. We will show that
an adjustment of the constant U defining the relativistic
three-body force in (1) is sufficient to obtain the empirical
saturation point for symmetric nuclear matter. The same 3N
force leads to a fair description also for the bulk properties of
finite nuclei.

After this introduction we will discuss the Brueckner-
Hartree-Fock approach with 3N forces and inclusion of
rearrangement terms in Sec. II of this paper. The results for
infinite matter and finite nuclei are discussed in Sec. III. Special
attention will be paid to the treatment of the 3N force in finite
nuclei and the description of the particle state spectrum in the
Bethe-Goldstone equation. The main results and conclusions
are summarized in Sec. IV.

II. BRUECKNER HARTREE FOCK APPROACH
AND REARRANGEMENT TERMS

A. Nuclear matter and finite nuclei

The Brueckner Hartree Fock (BHF) approach can be
defined in terms of three central equations. The first one of
these equations is the Bethe-Goldstone equation

G(ω) = V + V
Q̂

ω − Ĥ0
G (6)
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defining the so-called G matrix in terms of the free-space
NN interaction V . Replacing the Pauli operator Q̂—which
forbids the scattering of the interacting nucleons into statesthat
are below the Fermi energy and therefore occupied by other
nucleons—with the unit operator and the energy denominator
ω − Ĥ0 with the difference of kinetic energies of free nucleons,
the G matrix turns into the Lippman-Schwinger equation
defining the scattering matrix T for two nucleons in the
vacuum. Therefore the Bethe-Goldstone equation can be
interpreted as the solution of the problem of two nucleons
interacting in the nuclear medium and the G matrix can be
understood as the effective interaction of two nucleons, which
accounts for correlation between the interacting nucleons. The
single-particle energies are then defined within the standard
BHF approach using the Hartree-Fock expression in terms of
the G-matrix interaction:

εBHF
i = 〈i|t̂ |i〉 +

∑
j

〈ij |G(ω = εi + εj )|ij 〉ρj . (7)

The single-particle density ρj is diagonal in the basis of
Hartree-Fock states

〈k|ρ̂|j 〉 = ρjδjk ,

and the diagonal elements ρj take the values 1 for occupied
hole states with energies εj below the Fermi energy and 0 for
the particle states above the Fermi level. In the case of finite
nuclei these Hartree Fock states have to be determined as
the eigenstates of the BHF single-particle Hamiltonian, which
corresponds to the single-particle energies defined in Eq. (7).
In the case of infinite nuclear matter these single-particle
states are plane waves due to the symmetry of the system
under translational transformation. Note, however, that also
in the case of infinite matter a self-consistent solution of the
Bethe-Goldstone equation (6) and the evaluation of the single-
particle energies according Eq. (7) are required to determine
the starting energy ω according to the Bethe-Brandow-Petchek
theorem.

After solving Eqs. (6) and (7) in a self-consistent way one
can evaluate the total energy as

E =
∑

i

〈i|t̂ |i〉ρi + 1

2

∑
ij

〈ij |G(ω = εi + εj )|ij 〉ρjρi , (8)

which is the third of the three equations to define the BHF
approximation. Note that using the BHF definition of the
single-particle energies (7) the corresponding expression for
the total energy leads to Koltuns sum rule [39]

EBHF =
∑

i

1

2

(〈i|t̂ |i〉 + εBHF
i

)
ρi . (9)

The definition of the single-particle energies for the in-
termediate particle states, i.e., the definition of the operator
H0 in the propagator of the Bethe-Goldstone equation (6) has
been discussed for many years. It has been shown by Song
et al. [40] that the contribution from three-body correlations
is minimized in nuclear matter with the so-called continuous
prescription [41], which means that the single-particle energies
for the states above the Fermi level are calculated in the
same way as those for the hole states below. As will be

discussed below, we will try to adopt this prescription in
our calculations. Since it is very elaborate to evaluate the
single-particle energies for all states in finite nuclei, we will
approximate the Hamiltonian for the two-particle states in this
case by

Ĥ0 = Q̂(t̂1 + t̂2)Q̂ − 2C, (10)

which is the operator of the kinetic energy of the interacting
particles restricted to the states above the Fermi energy. A
constant C is introduced to make the spectrum “continuous”
across the Fermi energy. Appropriate values will be discussed
below.

Another rather technical obstacle for the solution of the
Bethe-Goldstone equation (6) is the definition of the Pauli
operator Q̂. This Pauli operator is easily defined for nuclear
matter using the rest frame of the nuclear matter system by

Q̂|�k1, �k2〉 =
{

|�k1, �k2〉 for |�k1| > kF and |�k2| > kF ,

0 else,

with �ki denoting the momenta of the interacting nucleons
and the Fermi momentum kF . The Bethe-Goldstone equation,
however, is more easily solved in the center-of-mass frame
of the interacting nucleon, as the momentum of the center of
mass is conserved and the relative momentum can be expanded
in a partial wave basis. Therefore one typically employs the
so-called angle-average approximation for the Pauli operator
and approximates the single-particle spectrum by a quadratic
form

ε(�k) =
�k2

2m∗ + C∗ (11)

with an effective mass m∗ and a constant C∗ fitted to describe
the single-particle spectrum for the states below the Fermi
momentum. Using these approximations, the Bethe-Goldstone
equation can be solved separately in each partial wave, which
reduces the numerical effort drastically. Methods have been
developed to treat the Pauli operator and the single-particle
spectrum without these approximations [42,43] and it has
been shown that the angle average in the Pauli operator is
a reasonable approximation, while the parametrization of the
single-particle spectrum according to Eq. (11) can lead to
considerable differences, as we will also discuss below.

The problem of a precise treatment of the two-particle
propagator is even more pronounced in calculation of finite
nuclei, as the single-particle states are only defined after
the corresponding Hartree-Fock equations have been solved.
Since we are using the simple parametrization of Eq. (10)
for the single-particle spectrum, we avoid a precise treatment
for the Pauli operator (see, e.g., [9]) and use the so-called
angle average for finite nuclei [44,45] for a basis of os-
cillator states, which is appropriate for the nucleus under
consideration.

The single-particle states |i,lj 〉 states are expanded in the
very same oscillator basis |n,lj 〉HO

|i,lj 〉 =
∑

n

c
lj
n,i |n,lj 〉HO , (12)
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assuming spherical symmetry of the states for the closed-shell
nuclei considered. The quantum numbers l and j refer to
the orbital and total angular momenta of the single-particle
states and the projection quantum numbers for the angular
momentum are dropped. An attempt is made to optimize the
oscillator basis in the sense that the oscillator parameter is
chosen such that the corresponding expansion coefficients c

lj
n,i

are close to 1 for all occupied single-particle states. In this way
it is typically sufficient to restrict the expansion in Eq. (12) to
radial quantum numbers 0 � n � 4.

The expansion coefficients c
lj
n,i can then be determined by

solving the BHF equations, which are given in the oscillator
representation by

∑
n

{〈n′,lj |t̂ + UBHF|n,lj 〉HO+}clj
ni = εic

lj
n′i , (13)

with 〈n′,lj |t̂ |n,lj 〉HO the matrix elements for the kinetic energy
in the basis of oscillator states and the corresponding matrix
elements for the BHF single-particle potential, which can be
calculated as

〈n′,lj |UBHF|n,lj 〉HO

=
∑

kl′j ′mm′J

2J + 1

2j + 1
〈n′,lj,m,′l′j ′|G|n,lj,m,l′j ′〉JHO

×ρ
l′j ′
k c

l′j ′
m′kc

l′j ′
mk , (14)

with the anti-symmetrized matrix-elements of the G matrix
〈n′,lj,m,′l′j ′|G|n,lj,m,l′j ′〉JHO in the basis of two-nucleon
oscillator states coupled to total angular momentum J . The
nonlinear equations (13) and (14) are solved in an iterative
way to obtain self-consistent solutions for the expansion
coefficients c

lj
ni as well as single-particle energies εi of the

BHF single-particle states.
The effects of the 3N interaction are taken into account

using a density-dependent 2N interaction as indicated in Eq. (4)
Note, however, that the weighting coefficients of this density-
dependent 2N interaction have been adjusted to obtain the
correct expressions for the total energy and single-particle
energies as presented in Eqs. (2) and (3), respectively.

B. Rearrangement terms

The BHF approximation, which has briefly been sketched
in the preceding subsection, corresponds to a Hartree-Fock
calculation, replacing the two-particle interaction by the
corresponding G matrix. The G matrix, however, must be
understood as an effective interaction, due to its dependence
on the starting energy ω and the Pauli operator, depends on
the density operator of the system considered. Therefore the
BHF definition of the single-particle energy does not obey the
Landau definition of the quasiparticle energy in (5). In fact,
applying the Landau prescription to the energy functional (8)
one obtains the BHF terms of (7) plus two additional terms,
the starting energy rearrangement term �Uω

i and the Pauli
rearrangement term �U

Q
i , which are due to the dependence

of G on starting energy ω and Pauli operator Q.

The starting energy rearrangement term can be written

�Uω
i =

∑
j,k

ρjρk〈j,k|∂G

∂ω
|j,k〉∂εj

∂ρi

=
∑
j,k

ρjρk〈j,k|∂G

∂ω
|j,k〉〈i,j |G|i,j 〉. (15)

The second line of this equation is obtained by substituting
εj in the first line by the corresponding BHF definition of
the single-particle energy. This may be considered as an
approximative treatment of the starting energy rearrangement
term. In principle one may prefer an approach in which
the single-particle energy εj in the first line of Eq. (15)
is replaced by the complete definition of the single-particle
energy including starting-energy- and Pauli-rearrangement
terms as well as effects arising from the 3N force. This leads
to a summation of a large class of terms in the definition of the
single-particle potential and has been discussed e.g. in [46].
The contributions of these higher-order terms, however, is
small, therefore will be ignored in the present work. Treating
the rearrangement terms in leading order only, we also ensure
that the effect of the 3N force is identical if its treated as a 3N
force or simulated in terms of a density-dependent 2N force
with inclusion of the corresponding rearrangement term [see
discussion of Eqs. (2) to (4) above].

Note that adding �Uω
i to the BHF definition of the single-

particle energy leads to

εRBHF
i = εi + �Uω

i (16)

= 〈i|t̂ |i〉 +
∑

j

〈ij |G(ω = εi + εj )|ij 〉Pj , (17)

which means that we have replaced the single-particle density
ρj in Eq. (7) by

Pj = ρj

[
1 +

∑
k

ρk〈j,k|∂G

∂ω
|j,k〉

]
. (18)

This expression for Pj typically yields values of the order of
0.8–0.9 and is often interpreted as a partial occupation of states
j below the Fermi energy. The approximation (16) represents
the leading terms of the so-called renormalized BHF approach
(RBHF) [8,9]. Therefore we will use this name also in the
following. Note that the Koltun sum rule of (9) cannot be used
any longer to evaluate the total energy (8) using the RBHF
definition of the single-particle energy.

The Pauli rearrangement term can be written as

�U
Q
i = −

∑
j,k,l

ρjρk|〈j,k|G|i,l〉|2 1 − ρl

εj + εk − εi − εl

, (19)

and corresponds to the term of second order in G in the
hole-line expansion of the self-energy. Calculations including
Pauli- and starting energy rearrangement terms will be denoted
as density-dependent Hartree-Fock calculations (DHF) and
employ single-particle energies of the form

εDHF
i = εi + �Uω

i + �U
Q
i (20)
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FIG. 1. (Color online) Results for symmetric nuclear matter calculations using the pn interaction of the CD-Bonn potential. The left panel
presents results for the single-particle potential U (k) assuming a Fermi momentum kF of 1.36 fm−1, which corresponds to the empirical
saturation densities. Results are displayed for the BHF approximation using the angle -average in the Bethe-Goldstone equation (BHF AA) and
BHF, RBHF [see Eq. (16)] and DHF [see Eq. (20)] calculations solving the Bethe-Goldstone equation without this approximation. The right
panel shows the corresponding results for the energy per nucleon calculated at various Fermi momenta.

III. RESULTS

A. Nuclear matter

All the calculations presented here have been performed
using the proton-neutron part of the charge-dependent Bonn
(CD-Bonn) interaction, which has been defined and adjusted
to the two-nucleon data by Machleidt, Sammarruca, and
Song [6].

Results of conventional BHF calculations for symmetric
nuclear matter, using the angle-average approximation for the
Pauli operator and the parametrization of the single-particle
potential using the quadratic form of Eq. (11) are presented by
the dashed line, labeled BHF AA, in Fig. 1. The single-particle
potential, which is displayed in the left panel of this figure
for a Fermi momentum kF of 1.36 fm−1, which corresponds
to the empirical saturation density, reflects the quadratic
parametrization, which is adjusted to reproduce the BHF
single-particle potential U (k) for momenta k below the Fermi
momentum and extended to momenta above kF .

The calculated binding energy per nucleon of such BHF
AA calculations, shown in the right panel of Fig. 1, yield a
minimum, representing the prediction for the saturation point,
at about twice the empirical saturation density and an energy
of around −20 MeV, which is much more attractive than the
empirical value of −16 MeV.

The consistent treatment of the two-particle propagator in
the Bethe-Goldstone equation (6), avoiding the angle average

of the Pauli operator and using a consistent single-particle
spectrum, leads to quite different results as can be observed
from a comparison of the BHF results, presented by the red
solid curves in Fig. 1 and the BHF AA results. As it has
been discussed by Schiller et al. [42], these differences can
mainly be attributed to the definition of the single-particle
potential. As can be seen from the left panel of Fig. 1, the
single-particle energies used to define the propagator of the
Bethe-Goldstone equation are quite similar for momenta below
kF . For the particle states with momenta above kF , however,
the calculated BHF energies are more attractive than described
by the quadratic parametrization of the BHF AA approach.

The corresponding differences in the two-particle propaga-
tor lead to matrix elements of G, which are in general more
attractive in the BHF than in the BHF AA approach, which
leads to more binding energy in the former as compared to
the latter calculation. This can be seen from the energy as
a function of density curves, presented in the right panel of
Fig. 1. The BHF calculations yield a saturation point with even
larger binding energy (−24 MeV) than the BHF AA approach
at a larger saturation density.

Figure 1 also provides the relevant information about the
effects of the rearrangement terms in the definition of the
single-particle potential in Eqs. (16) and (20). The dominant
contribution arises from the starting energy rearrangement
term, �Uω

i , which is taken into account using the RBHF
approximation. As expected from the representation of the
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FIG. 2. (Color online) Results for symmetric nuclear matter calculations using the CD-Bonn potential with (red curves) and without
inclusion (black curves) of the 3N potential. The left panel presents results for the single-particle potential U (k) assuming a Fermi momentum
kF of 1.36 fm−1 for the RBHF approximation. The right panel shows results for the energy per nucleon calculated at various Fermi momenta
for the of BHF, RBHF, and DHF approximations.

RBHF energies in terms of the partial occupation probabilities
defined in (18), these are less bound than the corresponding
BHF single-particle energies. This effect is more pronounced
for the states with momenta below kF than for the particle states
above the Fermi momentum. This enhances the calculated
binding energy even more, leading to a saturation point
with an energy per nucleon of less than −25 MeV at a
Fermi momentum of kF of 1.8 fm−1, which corresponds to
a saturation density 2.3 times the empirical value.

The Pauli rearrangement term, which is also included in
the DHF approximation, has a small effect. Its main effect
in the single-particle potential is concentrated at momenta
around the Fermi momentum, where it leads to a reduction
of the momentum dependence of U (k). This corresponds
to the enhancement of the effective mass m∗ to the bare
mass m, as has already been discussed, e.g., by Mahaux and
Sartor [47] and in [48]. The weak contribution of the Pauli
rearrangement effect is also reflected in the small difference
of the energies calculated in the DHF as compared to RBHF
approximation. It is worth noting that the qualitative features
of the Pauli rearrangement terms correspond to the effects the
M2 contributions of the extended BHF (EBHF) approximation
discussed by Zuo et al. in [11,49]. The absolute effect of the M2

term, as displayed, e.g., in Fig. 1 of [49], however, seems to be
larger than the difference between DHF and RBHF presented
here. This may be due to the fact that the CD-Bonn interaction,
which is considered in the present calculation is softer than the
Argonne interaction used by Zuo et al. Also note that the Pauli

operator has been treated in [11,49] using the angle-average
approximation.

All the calculations discussed so far have been performed
assuming just a realistic two-nucleon interaction only—here
the CD-Bonn interaction—and we find that the results of
the calculated saturation points are part of the so-called
Coester band [7,13]. This is true for the BHF approach,
and the rearrangement terms just provide a shift along
this Coester band. As it is one of the main goals of this
investigation to simulate the relativistic effects in terms of a 3N
potential, we considered the 3N part of the Urbana interaction
model [33,34], fixing the parameter A in Eq. (1) to be equal
to zero and adjusting the parameter U , the strength parameter
for the term to simulate the change of the Dirac spinors in the
medium, to reproduce the empirical saturation point. We did
not aim at a high-precision fit, but just tried to obtain results
close to the experimental data.

Results of such calculations are displayed in Fig. 2. It is
worth noting that we can obtain a good description of the
empirical saturation point by adjusting only one parameter,
whereas most of the other attempts employ consider a
three-nucleon interaction with two or more parameters for a
corresponding fit.

The 3N term V R
ijk [see Eq. (1)], which we consider in our

studies, is of shorter range than the corresponding 2π exchange
term, V 2π

ijk . This may be the reason that the 3N term essentially
provides a repulsive shift in the single-particle potential U (k)
with almost no momentum dependence (see the example in the
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TABLE I. Results for 16O using BHF and RBHF approximations without (NN only) and with inclusion of the 3N interaction (with 3N)
and with 3N interaction in the global density approximation (with 3N GD). Values of single-particle energies (ε) occupation probabilities [P ,
see Eq. (18)] are listed for the occupied states as well as the energy per nucleon (E/A) and the radius of the charge distribution (Rc). The
Pauli operator in the Bethe-Goldstone equation has been defined in terms of oscillator function using an oscillator parameter b = 1.767 fm and
C = 5 MeV has been used to define the single-particle energies in Eq. (10).

16O NN only with 3N with 3N GD Expt. ε

BHF RBHF BHF RBHF BHF RBHF

ε (MeV) ε (MeV) P ε (MeV) ε (MeV) P ε (MeV) ε (MeV) P

Protons
s1/2 −58.19 −48.69 0.892 −44.76 −36.88 0.917 −41.59 −32.89 0.903 −44 ± 7
p3/2 −27.05 −20.93 0.897 −20.22 −14.82 0.840 −17.64 −12.11 0.797 −18.45
p1/2 −20.02 −16.25 0.871 −16.50 −12.27 0.824 −14.20 −9.80 0.792 −12.12

Neutrons
s1/2 −62.22 −52.07 0.892 −48.36 −39.67 0.918 −45.12 −35.58 0.907 −47
p3/2 −30.98 −24.19 0.901 −23.71 −17.60 0.846 −21.02 −14.69 0.802 −21.84
p1/2 −23.83 −19.44 0.875 −20.00 −15.05 0.829 −17.61 −12.36 0.795 −15.66

E/A (MeV) −6.08 −6.57 −4.61 −5.22 −3.93 −4.81 −7.98
Rc (fm) 2.35 2.45 2.59 2.66 2.64 2.72 2.74

left panel of Fig. 2). So we do not obtain the strong momentum
dependence which has been observed by Zuo et al. [50].

B. Finite nuclei

The focus of the present investigation is to see if a BHF
calculation with a parametrization of the Dirac effects in terms
of a 3N interaction can provide a good description for the
saturation point of nuclear matter as well as the bulk properties
of finite nuclei. For that purpose we performed BHF and RBHF
calculations for the closed shell nuclei 16O and 40Ca using the
same 2N and 3N interactions as just described for nuclear
matter.

Results of BHF calculations of 16O using just the CD-
Bonn potential are presented in Table I. One finds that the
calculated energy per nucleon (−6.08 MeV) is less attractive
as compared to the experimental value (−7.98 MeV) and the
calculated radius for the charge distribution, Rc, is much lower
(2.35 fm) than the empirical value of 2.74 fm. In order to
visualize this result for the “saturation point” for 16O in a way
that corresponds to the plot for nuclear matter as given, e.g., in
the right panel of Fig. 2, we indicated this result in the energy
versus the inverse of the radius of the charge distribution by
a red dot in Fig. 3. In fact, it is the upper of the two red dots,
connected by a solid line in the left panel of this figure.

Compared to the empirical data, represented by a green
diamond, we observe a situation that is quite different for
16O than for nuclear matter (see Fig. 2). In both cases the
BHF calculations yield value for kF or 1/Rc that are too
large as compared to experiment, which implies that the
average density calculated for the nuclear systems is too large.
With respect to the energy per nucleon, however, the BHF
calculations provide too much energy in nuclear matter and
too little for the finite nucleus. Therefore, in order to improve
the comparison with experiment, the inclusion of the same 3N
force must provide attraction in finite nuclei and repulsion in

infinite matter and reduce the calculated saturation density in
both cases.

The inclusion of rearrangement terms going from the BHF
to the RBHF approach yields occupation probabilities Pi of
the order of 0.8 to 0.9 as shown in Table I. From Eq. (16)
it is obvious that this leads to less attractive single-particle
energies in RBHF as compared to the BHF approach. The
smaller attraction of the single-particle potential is reflected in
a larger radius of the charge distribution. On the other hand
the less attractive single-particle energies yield less attractive
starting energies ω in the Bethe-Goldstone equation, which
leads to more attractive matrix elements of the G matrix and
results in a more attractive energy per nucleon. This means that
the inclusion of rearrangement terms shifts both, the energy
per nucleon and the radius of the charge distribution closer to
the experiment. As one can see from Table I and Fig. 3, this
effect is too small to provide a satisfying agreement.

The study of nuclear matter discussed above already
showed that the results of BHF kind of calculations are
rather sensitive to a consistent treatment of the two-particle
propagator in the Bethe-Goldstone equation. The treatment
of the particle-state spectrum in particular requires special
attention. The same is of course also to be expected for finite
nuclei. As discussed in the previous section, we approximate
the Pauli operator Q in the Bethe-Goldstone equation (6) by
a corresponding operator assuming oscillator states with an
oscillator parameter b = 1.76 fm and b = 2 fm in the cases
of 16O and 40Ca, respectively. The spectrum of the particle
states, denoted by H0 in Eq. (6), is represented by the simple
parametrization of (10), trying to adjust the constant C in
such a way that the resulting spectrum roughly matches the
calculated single-particle energies. All the results displayed in
Table I have been evaluated with C = 5 MeV. This choice is in
line with an old coupled cluster calculation by Zabolitzky [51]
demonstrating that such a choice would minimize the effects of
3N correlations in calculations of 16O. On the other hand, the
QT Q spectrum in the single-particle space considered yields
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FIG. 3. (Color online) Results for the energy per nucleon and the radius of the charge distribution (Rc) for 16O (left panel) and 40Ca are
presented in an energy versus 1/Rc plot to enable comparison with the corresponding figures for nuclear matter (Figs. 1 and 2). Results referring
to BHF calculations with different values of C in Eq. (10) defining the particle spectrum in the Bethe-Goldstone equation are connected by
a red solid line; those of RBHF calculations are connected by a blue dashed line. Results of calculations with just the 2N interaction, with
inclusion of the 3N term, and including the 3N term via a global density approximation are visualized by a dot, a box, and a cross, respectively.
The experimental result is given in terms of a green diamond symbol.

a lowest eigenvalue of 10 MeV for the 1s0d shell. Therefore
a shift of C = 15 MeV to a single-particle energy of −5 MeV
seems plausible to approximate a continuous particle state
spectrum. A larger value of C leads to more attraction, and
so the lines displayed in Fig. 3 indicate the range of results
changing C from 5 to 15 MeV, with the less attractive energy
representing the C = 5 MeV result. In this figure the results
of BHF calculations are represented by symbols connected by
a solid red line, while the symbols connected by a dashed blue
line refer to the results of RBHF calculations. The remarkable
sensitivity of the calculation to these changes in the spectrum
of the particle states calls for more sophisticated investigations
on this issue, to obtain unambiguous results.

The effects of including the 3N force can be seen by com-
paring the results visualized in in Fig. 3 in terms of the square
boxes with the corresponding results displayed by circles. As
expected, the inclusion of the 3N interaction yields a repulsive
effect and leads to a reduction of the total energy accompanied
by an increase of the nuclear radius. Comparing this effect with
the corresponding repulsive effect that one can obtain with a
lowering of the parameter C just discussed, one finds that the
3N force yields a larger increase in the radius if the energy is
changed by a similar amount. This may reflect the fact that a
proper treatment of the 3N force as compared to a modification
of the 2N interaction has a larger effect on the single-particle
potential [see the discussion in the Introduction connected to

Eqs. (3) and (4)]. Therefore a repulsive 3N interaction will be
more efficient in changing the single-particle potential and the
resulting radius of the particle distribution than in making a
similar change in the 2N interaction.

Figure 3 also shows results displayed in terms of crosses
and denoted as 3N GD (see also Table I). As discussed above,
this approximation scheme describes an attempt to evaluate the
effects of the 3N force in nuclear matter at various densities
and then transfer the result to the calculation of finite nuclei
by choosing the density of nuclear matter to be identical to the
average particle density calculated for the nucleus considered.
We find that this global density (GD) approximation yields
effects which are similar with a tendency to overestimate the
corresponding effects of a direct treatment in the finite nucleus
by 20 to 30 percent.

Similar calculations have also been done for the nucleus
40Ca. Results on the “saturation properties” of this nucleus
are displayed in the right panel of Fig. 3 considering the
values C = 10 and C = 15 MeV for the parametrization
of the particle state spectrum. More explicit results on the
single−particle energies are shown in Table II assuming
C = 10 MeV. The main features of these results for 40Ca
are very similar to those discussed for the example 16O and
therefore confirm these findings.

It is worth noting that, assuming C = 15 MeV and including
the 3N force, RBHF calculations of both nuclei yield results
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TABLE II. Results for 40Ca using BHF and RBHF approximations. The Pauli operator in the Bethe Goldstone equation has been defined in
terms of an oscillator function using an oscillator parameter b = 2.0 fm, and C = 10 MeV has been used to define the single-particle energies
in Eq. (10). For further details see the caption of Table I.

NN only with 3N with 3N GD

BHF RBHF BHF RBHF BHF RBHF

ε (MeV) ε (MeV) P ε (MeV) ε (MeV) P ε (MeV) ε (MeV) P

Protons
0s1/2 −94.27 −76.04 0.850 −53.18 −36.65 0.855 −45.35 −31.34 0.790
p3/2 −63.36 −48.11 0.869 −34.63 −21.93 9.745 −27.58 −17.92 0.692
p1/2 −53.82 −41.61 0.863 −30.53 −19.82 0.723 −24.10 −16.16 0.676
d5/2 −33.20 −21.81 0.816 −16.61 −8.47 0.718 −11.36 −5.51 0.724
1s1/2 −26.61 −18.06 0.739 −12.88 −7.15 0.726 0.9.33 −5.04 0.743
d3/2 −18.22 −12.20 0.736 −10.66 −5.29 0.713 −6.33 −2.85 0.731

Neutrons
s1/2 −104.3 −83.71 0.854 −61.35 −42.02 0.868 −53.30 −36.39 0.810
p3/2 −72.74 −55.31 0.869 −42.44 −27.02 0.760 −35.02 −22.71 0.704
p1/2 −63.12 −48.74 0.865 −38.23 −24.84 0.737 −31.41 −20.89 0.687
d5/2 −42.16 −28.58 0.830 −23.99 −13.36 0.720 −18.38 −10.13 0.722
1s1/2 −34.93 −24.43 0.752 −20.13 −12.00 0.723 −16.26 −9.63 0.736
d3/2 −26.88 −18.72 0.749 −17.84 −10.09 0.712 −13.19 −7.39 0.725

E/A (MeV) −9.02 −10.65 −5.31 −6.78 −3.95 −5.91
Rc (fm) 2.62 2.72 3.11 3.38 3.21 3.52

for energy and radius of the charge distribution that are in
good agreement with the experimental data (see Fig. 3 and
Table III). We do not intent to celebrate this as a success of the
Dirac BHF approach, or of the BHF approach simulating the
Dirac effects of DBHF in terms of a 3N force. We will keep in
mind that the strength of the 3N force, which was motivated to
simulate the Dirac effect, has been adjusted to reproduce the
saturation point of nuclear matter. With the 3N force adjusted
we made a reasonable but not uniquely justified choice for the
description of the particle-state spectrum to end up with a good
description of the bulk properties of finite nuclei as well.

Nevertheless, this result shows that, using an appropriate 3N
force to simulate the effects of Dirac spinors modified in the
nuclear medium within the framework of nonrelativistic BHF
calculations, one may be able to describe the bulk properties
of nuclear matter and finite nuclei based on a realistic NN
interaction.

TABLE III. Results for the energy per nucleon E/A and the
radius of the charge distribution Rc for 16O and 40Ca calculated in
BHF and RBHF approximation are compared to the experimental
data [52,53]. In contrast to the calculations leading to the results in
table I and table II a shift C = 15 MeV has been used to define the
single-particle energies in Eq. (10).

NN only with 3N Expt.

BHF RBHF BHF RBHF

16O E/A (MeV) −6.96 −9.47 −5.67 −8.15 −7.98
Rc (fm) 2.31 2.54 2.52 2.77 2.70

E/A (MeV) −9.54 −12.40 −5.98 −8.26 −8.55
Rc (fm) 2.62 2.76 3.08 3.43 3.48

The description of bulk properties (energy, radius of particle
distribution, density) is important, but it only only one set of
features of nuclear structure that we hope to describe within the
relativistic DBHF approach. Other important aspects we hope
to describe within a relativistic description of nuclear systems
are the energy dependence of the optical potential [54] and the
spin-orbit splitting of the single-particle energies [55], which
is enhanced due to the enhancement of the small component
of Dirac spinors in the nuclear medium.

Is this enhancement of the spin-orbit splitting, which is im-
portant to describe the strength of the spin-orbit term observed
in the experiment, also simulated by the simple 3N force of
Eq. (1)? Inspecting, e.g., the single-particle energies of the p3/2

and p1/2 states listed in Table I we do not find an enhancement
of the spin-orbit splitting with the 3N force included. In
fact, the differences between these single-particle energies are
always smaller with inclusion of the 3N force. This is related
to the fact that the 3N force yields larger values for the radii
which reduces the spacing between the single-particle states.
But even if one accounts for this size effect, the 3N force does
not provide an enhancement of the spin-orbit splitting. This
could be achieved by introducing an appropriate spin structure
in the 3N force, a feature which presumably would lead to more
parameters and spoil the simplicity of the present approach.

IV. CONCLUSION

An attempt has been made to simulate the relativistic
features of the Dirac-Brueckner-Hartree-Fock (DBHF) ap-
proach by adding effects of a simple three-nucleon (3N)
force to nonrelativistic many-body calculations based on
the BHF approach. One parameter, the strength of the 3N
force, is adjusted to reproduce the empirical saturation point
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of infinite nuclear matter and is then used without further
modifications for the description of finite nuclei. Special
attention is paid to the energy spectrum of particle states,
which is used in the propagator of the Bethe-Goldstone
equation, and the importance of rearrangement terms due to
the energy dependence of the effective interaction. For the
studies of finite nuclei in particular, more effort is needed
to optimize the treatment of the propagator in the Bethe-
Goldstone equation. Taking a reasonable choice for the particle
state spectrum and including the effects of rearrangement
terms, the renormalized Brueckner-Hartree-Fock calculations
with 3N force can reproduce the empirical values for the energy

and radius of charge distribution of nuclei such as 16O and
40Ca. This attempt to simulate the effects of the relativistic
features of the DBHF approach, however, fails to reproduce
other predictions of the Dirac phenomenology such as the
strength of the spin-orbit term in the single-particle field.
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(1980).
[47] C. Mahaux and R. Sartor, Adv. Nucl. Phys. 20, 1 (1991).
[48] Kh. S. A. Hassaneen and H. Müther, Phys. Rev. C 70, 054308
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