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The nucleon mean-field potential has been thoroughly investigated in an extended Hartree-Fock (HF)
calculation of nuclear matter (NM) using the CDM3Y3 and CDM3Y6 density dependent versions of the M3Y
interaction. The single-particle (SP) energies of nucleons in NM are determined according to the Hugenholtz–Van
Hove theorem, which gives rise naturally to a rearrangement term (RT) of the SP potential at the Fermi momentum.
Using the RT obtained exactly at the different NM densities and neutron-proton asymmetries, a consistent method
is suggested to take into account effectively the momentum dependence of the RT of the SP potential within
the standard HF scheme. To obtain a realistic momentum dependence of the nucleon optical potential (OP), the
high-momentum part of the SP potential was accurately readjusted to reproduce the observed energy dependence
of the nucleon OP over a wide range of energies. The impact of the RT and momentum dependence of the SP
potential on the density dependence of the nuclear symmetry energy and nucleon effective mass has been studied in
detail. The high-momentum tail of the SP potential was found to have a sizable effect on the slope of the symmetry
energy and the neutron-proton effective mass splitting at supranuclear densities of the NM. Based on a local
density approximation, the folding model of the nucleon OP of finite nuclei has been extended to take into account
consistently the RT and momentum dependence of the nucleon OP in the same mean-field manner, and success-
fully applied to study the elastic neutron scattering on the lead target at the energies around the Fermi energy.
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I. INTRODUCTION

The nucleon mean-field potential or single-particle (SP)
potential is the most important quantity determining the SP
properties of neutrons and protons in the nuclear matter (NM)
as well as in the finite nuclei [1], and it has been the focus
of recent many-body studies of the NM, like the Brueckner-
Hartree-Fock (BHF) calculations of the NM starting from a
realistic choice of the free nucleon-nucleon (NN) interaction
[2–4] or the mean-field studies of the NM on the Hartree-Fock
(HF) level, using the different versions of the effective (in-
medium) NN interaction [5–7]. A quite interesting aspect of the
SP potential is its direct connection with the nuclear symmetry
energy [4,7], a key quantity necessary for the determination
of the equation of state (EOS) of the asymmetric NM [8].
Many microscopic studies of the EOS were done based either
on the nonrelativistic or relativistic mean-field potential given
by realistic two-body and three-body NN forces or interaction
Lagrangians [9,10]. Such microscopic many-body studies did
show the important role played by the Pauli blocking effects
as well as the increasing strength of the higher-order NN
correlations at the high NM densities. These medium effects
are usually considered as the main physics origin of an explicit
density dependence embedded in the different versions of
the effective NN interaction, being used currently in the
HF calculations of the nuclear structure or nuclear reaction
studies. Among them, quite popular are the density dependent
versions of the M3Y interaction (originally constructed to
reproduce the G-matrix elements of the Reid [11] and Paris
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[12] NN potentials in an oscillator basis), which have been
successfully used in the HF studies of the NM [13–17] as well
as in the folding model studies of the nucleon-nucleus and
nucleus-nucleus scattering [18–23].

With the phenomenological density dependence of the M3Y
interaction parametrized to give a realistic description of the
NM saturation properties [13,14,18] within the HF frame, the
HF nucleon optical potential (or the high-momentum part of
the SP potential) was used to determine the explicit energy
dependence of the density dependent M3Y interaction [13,24]
based on the observed energy dependence of the nucleon
optical potential (OP). These density and energy dependent
versions of the M3Y interaction have been further used in
the folding model calculation of the nucleon-nucleus and
nucleus-nucleus OP [19–22]. The simple assumption for the
SP potential in the NM made in Refs. [13,24] is roughly
equivalent to the microscopic SP potential of the Brueckner-
Bethe theory [25], which lacks the so-called rearrangement
term that arises naturally in the Landau theory for the infinite
Fermi systems [26]. Such a rearrangement term (RT) also
appears when the SP potential is evaluated from the total NM
energy using the Hugenholtz and Van Hove (HVH) theorem
[27], which is exact for all the interacting Fermi systems,
independent of the type of the interaction between fermions.
For the infinite NM, it is straightforward to see that the HVH
theorem is satisfied on the HF level only when the in-medium
NN interaction is density independent, i.e., when the RT is
equal to zero [28]. It is, therefore, of high interest to assess
the impact of the RT on the SP potential in a mean-field study
of the NM within the standard HF frame using a realistic
density dependent NN interaction. Moreover, given the fact
that the nuclear symmetry energy and nucleon effective mass
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are directly linked to the momentum and density dependence
of the single-nucleon potential [4,7], it is highly desirable to
have a method to take into account properly the density and
momentum dependence of the RT of the SP potential on the
HF level, which is the main motivation of the present study. It
is further expected that, in a local density approximation, one
should be able to include, in the same mean-field manner, the
RT and momentum dependence of the density dependent NN
interaction into the folding model calculation of the nucleon
OP for the finite nuclei, which is being evaluated so far mostly
on the HF level [19,20,22,23]. Towards this goal, an extension
of the single-folding approach for the nucleon OP [19] has
been done and applied to study the elastic neutron scattering
on the lead target measured at the incident energies of 30.4
and 40 MeV [29].

II. EXTENDED HF FORMALISM FOR THE
SINGLE-PARTICLE POTENTIAL

In the present HF approach, we consider the homogeneous,
spin-saturated NM of given neutron (ρn) and proton (ρp)
densities, or equivalently, of given total nucleon density
ρ = ρn + ρp and neutron-proton (NP) asymmetry δ = (ρn −
ρp)/ρ. Using the direct (vD

c ) and exchange (vEX
c ) parts of the

(central) in-medium NN interaction vc, the total NM energy
can be determined in the standard nonrelativistic HF scheme
as E = Ekin + Epot, where the kinetic and potential energies
are

Ekin =
∑
kστ

nτ (k)
�

2k2

2mτ

, (1)

Epot = 1

2

∑
kστ

∑
k′σ ′τ ′

nτ (k)nτ ′(k′)
[〈kστ,k′σ ′τ ′|vD

c |kστ,k′σ ′τ ′〉

+ 〈kστ,k′σ ′τ ′|vEX
c |k′στ,kσ ′τ ′〉],

= 1

2

∑
kστ

∑
k′σ ′τ ′

nτ (k)nτ ′(k′)〈kστ,k′σ ′τ ′|vc|kστ,k′σ ′τ ′〉A.

(2)

The SP wave function |kστ 〉 is plane wave, and the summation
in Eqs. (1) and (2) is done separately over the neutron (τ =
n) and proton (τ = p) SP indices. The nucleon momentum
distribution nτ (k) in the spin-saturated NM is a step function
determined with the Fermi momentum k

(τ )
F = (3π2ρτ )1/3 as

nτ (k) =
{

1 if k � k
(τ )
F ,

0 otherwise.
(3)

According to the Landau theory for the infinite Fermi systems
[25,26], the SP energy eτ (k) in the NM is determined as

eτ (k) = ∂E

∂nτ (k)
= tτ (k) + Uτ (k) = �

2k2

2mτ

+ Uτ (k), (4)

which is the change of the NM energy caused by the
removal or addition of a nucleon with the momentum k. The
single-nucleon potential Uτ (k) consists of both the HF and

rearrangement terms

Uτ (k) = U (HF)
τ (k) + U (RT)

τ (k), (5)

where U (HF)
τ (k)=

∑
k′σ ′τ ′

nτ ′(k′)〈kστ,k′σ ′τ ′|vc|kστ,k′σ ′τ ′〉A

(6)

and U (RT)
τ (k) = 1

2

∑
k1σ1τ1

∑
k2σ2τ2

nτ1 (k1)nτ2 (k2)

×〈k1σ1τ1,k2σ2τ2| ∂vc

∂nτ (k)
|k1σ1τ1,k2σ2τ2〉A.

(7)

When the nucleon momentum approaches the Fermi mo-
mentum (k → k

(τ )
F ), eτ (k(τ )

F ) determined from Eqs. (4)–(7) is
exactly the Fermi energy given by the Hugenholtz–Van Hove
theorem [27]. Using the transformation [28]

∂

∂nτ (k)

∣∣∣∣
k→k

(τ )
F

= ∂ρτ

∂nτ

(
k

(τ )
F

) ∂k
(τ )
F

∂ρτ

∂

∂k
(τ )
F

= 1

�

π2[
k

(τ )
F

]2

∂

∂k
(τ )
F

,

(8)
where � is the total volume of the NM in the momentum
space, the rearrangement term of the SP potential Uτ at the
Fermi momentum can be obtained [30] as

U (RT)
τ

(
k→k

(τ )
F

) = 4
π2[

k
(τ )
F

]2

∑
τ1τ2

�

2(2π )6

∫∫
nτ1 (k1)nτ2 (k2)

×〈k1τ1,k2τ2| ∂vc

∂k
(τ )
F

|k1τ1,k2τ2〉Ad3k1d
3k2.

(9)

At variance with the RT part, the HF part of the SP potential
can be readily evaluated at any momentum

U (HF)
τ (k) = 2

∑
τ ′

�

(2π )3

∫
nτ ′(k′)〈k,k′τ ′|vc|k,k′τ ′〉Ad3k′.

(10)

The spin components of plane waves in the HF and RT
parts of the SP potential are averaged out, and this results
in the spin degeneracy factors 4 and 2 in the expressions (9)
and (10), respectively. We keep in mind that the SP potential is
determined consistently at each total NM density ρ. As a result,
Uτ is a function of the total NM density ρ, the neutron-proton
asymmetry δ, and the nucleon momentum k. For the spin-
saturated NM, only the spin-independent terms of the central
NN interaction are needed for the determination of the SP
potentials (9) and (10). In the present work, we have used two
density dependent versions (CDM3Y3 and CDM3Y6) [18] of
the M3Y interaction based on the G-matrix elements of the
Paris NN potential in a oscillator basis [12]. Thus, the central
part of the CDM3Yn interaction was used in the present HF
calculation explicitly as

vD(EX)
c (s) = F0(ρ)vD(EX)

00 (s) + F1(ρ)vD(EX)
01 (s)τ 1 · τ 2,

where s = |r1 − r2|. (11)
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TABLE I. Parameters of the density dependence (13) of the
CDM3Yn interaction. The incompressibility K of the symmetric NM,
the nuclear symmetry energy S0, and its slope L were obtained from
the HF results (30) at the saturation density ρ0 ≈ 0.17 fm−3.

Interaction i Ci αi βi γi K S0 L

(fm3) (fm3) (MeV) (MeV) (MeV)

CDM3Y3 0 0.2985 3.4528 2.6388 −1.500 218
1 0.2343 7.6514 9.7494 6.6317 30.1 49.6

CDM3Y6 0 0.2658 3.8033 1.4099 −4.000 252
1 0.2313 7.6800 9.6498 6.7202 30.1 49.7

The radial parts v
D(EX)
00(01) (s) are kept unchanged as determined

from the M3Y-Paris interaction [12], in terms of three
Yukawas,

v
D(EX)
00(01) (s) =

3∑
ν=1

Y
D(EX)
00(01) (ν)

exp(−Rνs)

Rνs
, (12)

and the explicit Yukawa strengths and ranges can be found,
e.g., in Table I of Ref. [20]. The density dependence of the
interaction (11) is assumed to have the same functional form
as that introduced first in Ref. [18],

F0(1)(ρ) = C0(1)[1 + α0(1) exp(−β0(1)ρ) + γ0(1)ρ]. (13)

The parameters of the isoscalar (IS) density dependence F0(ρ)
were determined [18] to reproduce the saturation properties
of the symmetric NM and give the nuclear incompressibility
K = 218 and 252 MeV with the CDM3Y3 and CDM3Y6
interactions, respectively. These interactions, especially the
CDM3Y6 version, have been well tested in numerous folding
model analyses of the elastic nucleon-nucleus [19] and
nucleus-nucleus scattering [21], and the charge-exchange
scattering to the isobar analog states [20,23]. Like in Ref. [20],
the parameters of the isovector (IV) density dependence F1(ρ)
were determined in the present work to reproduce the BHF
results for the IV term of the microscopic nucleon OP in the
asymmetric NM obtained by Jeukenne, Lejeune, and Mahaux
(JLM) [31,32]. Because of the RT included in the extended
HF calculation of the nucleon OP, the parameters obtained for
the IV density dependence F1(ρ) are slightly different from
those used earlier [20,23]. For convenience of the readers who
are interested in using the CDM3Yn interaction in the HF
or folding model calculation, the parameters of the density
dependence are given explicitly in Table I.

The HF results for the total energy per particle E/A of the
asymmetric NM are shown in Fig. 1. One can see that the
saturation density rapidly decreases with the increasing NP
asymmetry, and the pure neutron matter (δ = 1) is unbound
by the (in-medium) NN interaction. At the high NM densities,
the E/A curves obtained with the CDM3Y6 interaction are
stiffer than those obtained with the CDM3Y3 interaction, and
this is due to the higher nuclear incompressibility K given
by the CDM3Y6 interaction. The behavior of the EOS of the
asymmetric NM with the increasing NP asymmetries shown
in Fig. 1 is typical and similar to those observed earlier in the
HF calculations of the NM using the different types of the
in-medium (density dependent) NN interaction [15–17].

FIG. 1. (Color online) Total NM energy per particle E/A at the
different NP asymmetries δ given by the HF calculation (1) and
(2), using the CDM3Y3 (lower panel) and CDM3Y6 (upper panel)
interactions with their IV density dependence anew determined in the
present work. The solid circles are the saturation densities of the NM
at the different NP asymmetries.

Given the parametrization (11) of the CDM3Y3 and
CDM3Y6 interactions, the HF part of the SP potential can
be explicitly obtained in terms of the IS and IV parts as

U (HF)
τ (ρ,δ,k)=F0(ρ)U (M3Y)

0 (ρ,k)±F1(ρ)U (M3Y)
1 (ρ,δ,k),

where U
(M3Y)
0 (ρ,k)=ρJ D

0 +
∫

A0(r)vEX
00 (r)j0(kr)d3r, (14)

and U
(M3Y)
1 (ρ,δ,k)=ρJ D

1 δ +
∫

A1(r)vEX
01 (r)j0(kr)d3r.

Here A0(1)(r)=ρnĵ1
(
k

(n)
F r

) ± ρpĵ1
(
k

(p)
F r

)
,

J D
0(1) =

∫
vD

00(01)(r)d3r, (15)

and ĵ1(x)=3j1(x)/x = 3(sin x − x cos x)/x3.

The (−) sign on the right-hand side of Eq. (14) pertains to
the single-proton (τ = p) and (+) sign to the single-neutron
(τ = n) potentials. Because the original M3Y interaction is
momentum independent, the momentum dependence of the
HF potential (14) is entirely determined by the exchange terms
of U

(M3Y)
0(1) .

Applying the HVH theorem, the RT of the SP potential is
also obtained explicitly in terms of the IS and IV parts, but at
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the Fermi momentum only,

U (RT)
τ

(
ρ,δ,k

(τ )
F

)=U
(RT)
0

(
ρ,k

(τ )
F

) + U
(RT)
1

(
ρ,δ,k

(τ )
F

)
,

where U
(RT)
0

(
ρ,k

(τ )
F

)= 1

2

∂F0(ρ)

∂ρ

[
ρ2J D

0 +
∫
A2

0(r)vEX
00 (r)d3r

]

and U
(RT)
1

(
ρ,δ,k

(τ )
F

)= 1

2

∂F1(ρ)

∂ρ

[
ρ2J D

1 δ2 +
∫
A2

1(r)vEX
01 (r)d3r

]
.

(16)

One can see from Eq. (16) that the RT becomes zero if
the density independent M3Y interaction is used in the HF
calculation of the SP potential. In such a case, the HVH
theorem is satisfied already on the HF level [28]. At a given
NP asymmetry δ, the IV part of the RT is the same for both the
single-neutron (τ = n) and single-proton (τ = p) potentials,
and that affects the simple representation of the nucleon OP
by Lane [33,34], where the IV parts of the neutron and proton
OP are equal but with the opposite sign.

In general, as seen from Eq. (7), the RT of the SP
potential should be present at the arbitrary nucleon momenta.
Microscopically, the momentum dependence of the RT was
shown, in the BHF calculation of the NM [1,3,4], to be
due to the higher-order NN correlation, like the second-order
diagram in the perturbative expansion of the mass operator
or the contribution from the three-body forces, etc. In the
finite nuclei, the rearrangement effects in the nucleon removal
reactions (which have about the same physics origin as
the RT potential considered here) were shown [35] to be
strongly dependent on the energy of the stripping reaction,
a clear indication of the momentum dependence of the RT
potential. The question now is whether one can assess the
momentum dependence of the RT of the SP potential on the
HF level. Making use of the factorized density dependence
of the CDM3Y3 and CDM3Y6 interactions, we suggest
in the present work a rather simple method to include
consistently a momentum dependent RT into the SP potential
in the same HF framework. An important constraint of this
procedure is that adding a realistic momentum dependent RT
to the HF potential should improve the agreement of the
calculated nucleon OP in the NM with the empirical data.
It has been shown [13,24] that the momentum dependence
of the HF potential (14) could account fairly well for the
observed energy dependence of the nucleon OP after a slight
adjustment of the interaction strength at the high energies.
Therefore, we adopt phenomenologically a momentum depen-
dent RT of the SP potential in the functional form similar to
(14) as

U (RT)
τ (ρ,δ,k) = F0(ρ)U (M3Y)

0 (ρ,k)

+F1(ρ,δ)U (M3Y)
1 (ρ,δ,k), (17)

where the (momentum-independent) rearrangement contri-
butions to the IS and IV density dependencies of the
CDM3Yn interactions are determined consistently from
the exact expression (16) of the RT at the Fermi

momentum as

F0(ρ) = U
(RT)
0

(
ρ,k

(τ )
F

)
U

(M3Y)
0

(
ρ,k → k

(τ )
F

) and

(18)

F1(ρ,δ) = U
(RT)
1

(
ρ,δ,k

(τ )
F

)
U

(M3Y)
1

(
ρ,δ,k → k

(τ )
F

) .

Consequently, the total SP potential is determined in the
present HF approach as

Uτ (ρ,δ,k) = U0(ρ,k) ± U1(ρ,δ,k)

= [F0(ρ) + F0(ρ)]U (M3Y)
0 (ρ,k)

± [F1(ρ) ± F1(ρ,δ)]U (M3Y)
1 (ρ,δ,k), (19)

where the (−) sign pertains to τ = p and the (+) sign to τ = n.
Thus, the momentum dependence of the total SP potential Uτ is
determined by that of the exchange terms of U

(M3Y)
0(1) . Due to the

presence of the RT, the absolute strength of the IV term of the
single-proton potential is not equal to that of the single-neutron
potential. One can see from expressions (17)–(19) that the
rearrangement effects actually result in a modification of the
IS and IV density dependence of the central interaction (11),
vc → vc + vc, so that the total SP potential can be estimated
in the standard HF scheme as

Uτ (ρ,δ,k)=
∑
k′σ ′τ ′

nτ ′(k′)〈kστ,k′σ ′τ ′|vc + vc|kστ,k′σ ′τ ′〉A.

(20)

Nucleon OP in the NM and the SP potential at high momenta

In the NM limit, the nucleon OP is determined as the (mean-
field) interaction potential between the nucleon incident on the
NM at a given energy E and the bound nucleons in the filled
Fermi sea [24]. In general, the nucleon OP contains both the
IS and IV parts [33,34] like the total SP potential (19). Given a
strong dominance of the IS term of the nucleon OP [19,22], one
needs first to explore the IS term of the nucleon OP predicted
by the HF calculation of the NM. Applying a continuous choice
for the nucleon SP potential [36] at the positive energies E,
we obtain in the HF scheme the nucleon OP in the symmetric
NM [13,24] as

U0(ρ,E) = U
(HF)
IS (ρ,E)

= F0(ρ)ρ

[
JD

0 +
∫

ĵ1(kF r)j0(k(E,ρ)r)vEX
00 (r)d3r

]
.

(21)

Here k(E,ρ) is the (energy dependent) momentum of the
incident nucleon propagating in the mean field of the nucleons
bound in the NM, and is determined as

k(E,ρ) =
√

2m

�2
[E − U0(ρ,E)], with E > 0. (22)

It is easy to see that k(E,ρ) > kF and U
(HF)
IS is just the high

momentum part of the isoscalar term of the HF potential (14).
Based on the above discussion, the total nucleon OP in the NM
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FIG. 2. (Color online) Energy dependence of the nucleon OP in
the symmetric NM (evaluated at the saturation density ρ0 with and
without the RT using the CDM3Y6 interaction) in comparison with
the empirical data taken from Refs. [37] (circles), [38] (squares),
and [39] (triangles). The momentum dependent factor g(k) has been
iteratively adjusted to the best agreement of the calculated nucleon
OP (24) with the empirical data (solid line).

should also have a contribution from the RT added,

U0(ρ,E) = U
(HF)
IS (ρ,E) + U

(RT)
IS (ρ,E)

= [F0(ρ) + F0(ρ)]U (M3Y)
0 (ρ,k(E,ρ)), (23)

where the density dependence F0(ρ) of the RT is determined
by relation (18).

The total nucleon OP (23) evaluated at the saturation density
ρ0 of the symmetric NM using the CDM3Y6 interaction are
compared with the empirical data [37–39] in Fig. 2. Although
the inclusion of the RT significantly improved the agreement of
the calculated U0 with the data at the lowest energies, it remains
somewhat more attractive at the higher energies in comparison
with the empirical trend. Such an effect is easily understood
in light of the microscopic BHF results for the nucleon OP
[36], where the energy dependence was shown to come not
only from the exchange part, but also from the direct part of
the microscopic OP because of the energy dependence of the
Brueckner G matrix. That is the reason why a slight linear
energy dependence has been introduced into the CDM3Y6
interaction [18,19], in terms of the g(E) factor. To be consistent
with the momentum dependence of the SP potential under
study, instead of the g(E) factor, we scale in the present work
the CDM3Yn interaction (11) by a momentum dependent
function g(k(E,ρ)), and iteratively adjust its strength to the
best agreement of the (HF+RT) nucleon OP obtained at the
saturation density ρ0 with the empirical data, as shown in
Fig. 2. As a result,

U0(ρ,E) = g(k(E,ρ))[F0(ρ) + F0(ρ)]U (M3Y)
0 (ρ,k(E,ρ)),

(24)
where k(E,ρ) is determined self-consistently from U0(E,ρ) by
Eq. (22). At variance with the g(E) factor fixed by the incident

FIG. 3. Momentum dependent scaling factor g(k) obtained with
both the CDM3Y3 and CDM3Y6 interactions from the best (HF+RT)
fit of the nucleon OP (24) to the empirical energy dependence of the
nucleon OP [39]. The points are the numerical results that are well
reproduced by a cubic polynomial (solid line).

energy [18,19], g(k(E,ρ)) is now a momentum dependent
function (see Fig. 3), carrying the important signature of the
momentum dependence of the nucleon mean-field potential.
Numerically, the obtained g(k) function is nearly identical
for both the CDM3Y3 and CDM3Y6 interactions, and it
can be considered as the explicit momentum dependence of
the CDM3Yn interaction that allows the incident nucleon to
feel the nucleon mean-field potential during its interaction
with the nucleons bound in the NM. In this sense, such a
momentum dependence is of a similar nature as the momentum
dependence of the G matrix in the microscopic BHF study
of NM, which is determined self-consistently through the
momentum dependence of the SP energies embedded in
the denominator of the Bethe-Goldstone equation [2,3]. The
technical difference here is that the k dependence of g(k) has
been determined from the best fit of the calculated SP potential
(24) at positive energies with the observed energy dependence
of the nucleon OP. It can be seen in Fig. 3 that g(k) becomes
smaller unity at k � 1.6 fm−1 only. Consequently, the obtained
g(k) function is used further in the extended HF calculation
to adjust the high-momentum part of the (HF+RT) SP
potential.

The situation is quite different concerning the IV term
of the nucleon OP because there are no systematic (energy
dependent) empirical data available, like those discussed
above for the IS potential. However, it is well established
from numerous optical model analyses of the elastic nucleon
scattering that the absolute strength of the IV term of the
nucleon OP is much weaker than that of the IS [19,20,38],
and the energy dependence of the nucleon OP is dominantly
determined by that of the IS term [38]. Consequently, the
momentum dependent function g(k) determined above for the
IS part should be a reasonable approximation for the IV part
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FIG. 4. Density dependence of the IV part of the neutron OP in
the pure neutron matter at the energy E = 1 MeV, evaluated with and
without the RT. The parameters (13) of the IV density dependence
F1(ρ) of the CDM3Y6 interaction have been iteratively adjusted to
give the best agreement of the HF+RT result with that of the BHF
calculation by the JLM group (solid circles) [31,32].

of the nucleon OP in the HF+RT calculation,

U1(ρ,δ,E) = g(k(E,δ,ρ))[F1(ρ)

+F1(ρ,δ)]U (M3Y)
1 (ρ,δ,k(E,δ,ρ)), (25)

where k(E,δ,ρ) is determined self-consistently from the total
nucleon OP in the asymmetric NM as

k(E,δ,ρ) =
√

2m

�2
[E − U0(ρ,E) ∓ U1(ρ,δ,E)]. (26)

Thus, the NN interaction in the τ.τ channel of the central force
(11) is also influenced by the nucleon mean-field potential
through the momentum dependent g(k) function. Like in
Refs. [20,23], parameters of the IV density dependence F1(ρ)
of the M3Y-Paris interaction have been iteratively adjusted
in the HF+RT calculation to achieve a good agreement of
the IV potential (25) with the microscopic nucleon OP in the
asymmetric NM given by the BHF calculation done by the
JLM group [31,32], with the contribution of the RT properly
included [40]. At variance with the previous studies where
F1(ρ) has been determined separately at each considered
energy [20,23], we have used in the present work a unique set of
the parameters of F1(ρ) which were determined from the best
fit of the IV potential (25) to the corresponding JLM results at
the lowest energies [32], where g(k) ≈ 1 (see Fig. 4). Together
with the IS density dependence F0(ρ) determined earlier [18],
the newly determined IV density dependence F1(ρ) of the
CDM3Yn interactions have been used in the present work to
calculate the total NM energy and the single-nucleon potential.
The absolute strength of F1(ρ) in the extended HF calculation
was scaled by a factor of 1.3, which was found necessary
in the folding model analysis of the (p,n) scattering to the
isobar analog states [20]. As a result, the nuclear symmetry
energy S(ρ0) at the saturation density given by the present HF

FIG. 5. Momentum dependence of the total SP potential in
the symmetric NM at the saturation density ρ0, with the explicit
contributions from the RT and HF parts. The upper panel shows the
results of the extended HF calculation (23), and the lower panel shows
the total SP potential (24), with the high-momentum part corrected by
the g(k) function determined from the observed energy dependence
of the nucleon OP.

calculation is very close to the empirical value of about 30 MeV
(see also the next section). The final values of the parameters
of F0(ρ) and F1(ρ) are given with the most important NM
properties in Table I.

The total (density and momentum dependent) SP potential
is now determined as

Uτ (ρ,δ,k) = g(k)[U0(ρ,k) ± U1(ρ,δ,k)], (27)

where U0(ρ,k) and U1(ρ,δ,k) are determined by using Eq. (19)
and the same function g(k) as that shown in Fig. 3. The total SP
potentials obtained at the saturation density ρ0 ≈ 0.17 fm−3

from the extended HF calculation (20) of the symmetric NM
and the pure neutron matter using the CDM3Y6 interaction
are shown in Figs. 5 and 6, respectively. One can see that
the RT is largest at the nucleon momenta close to zero, which
correspond to nucleons deeply bound in the NM (k � kF ). The
RT steadily decreases with the increasing nucleon momentum,
and the decrease of the RT becomes faster when the high-
momentum part of the SP potential is scaled by the g(k)
function determined [see Eqs. (24) and (25)] to reproduce
the observed energy dependence of the nucleon OP. In this
case, the SP potential reaches zero and changes sign at the
momentum k ≈ 3.3 fm−1 that corresponds to the nucleon OP
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FIG. 6. The same as Fig. 5 but for the total SP potential in the
pure neutron matter.

at the incident energy around 220 MeV, where the empirical
(Schrödinger-equivalent) Uop was shown to become repulsive
[39]. Such a momentum dependence of the SP potential agrees
well with that predicted by the microscopic BHF calculation
(see, e.g., Figs. 6 and 7 of Ref. [3]). A decrease of the RT with
the increasing nucleon momentum (or energy) also agrees with
the observed energy dependence of the rearrangement effect
in the nucleon removal reactions [35]. In the relative strength,
the RT contributes to about 20–30% of the total strength of
the SP potential at ρ = ρ0 over a wide range of the nucleon
momentum and is, therefore, a very clear manifestation of the
HVH theorem [27].

The dependence of the neutron and proton SP potentials on
the NP asymmetry (with the explicit contributions from the RT
and HF parts) is shown in Fig. 7, and one can see that the RT is
the same for both the neutron and proton SP potentials. In the
present extended HF scheme, such an equality is exactly ob-
tained from the RT given by the HVH theorem (16). At a given
NM density, the RT decreases slightly with the increasing NP
asymmetry δ. As can be seen from the lower panel of Fig. 7, the
repulsive contribution of the RT becomes much stronger at the
high density ρ = 2ρ0, with the relative strength up to 70% of
the HF term. Such a behavior of the RT is well expected, given
the higher-order NN correlations and the three-body forces as
the physics origin of the RT [1,3], which become much more
substantial with the increasing NM density. The results of our
extended HF calculation shown in Fig. 7 also agree well with
those of the recent BHF calculation of the asymmetric NM by

FIG. 7. (Color online) Contributions of the RT and HF parts to
the total neutron and proton SP potentials evaluated at the different NP
asymmetries δ and nucleon momenta k = k

(τ )
F , using the CDM3Y6

interaction. The results obtained at the saturation density ρ = ρ0 are
shown in the upper panel, and those obtained at the density ρ = 2ρ0

are shown in the lower panel.

Vidaña [41], using the Argonne NN interaction (V18 version
[42] with the Urbana three-body force).

To conclude this section, a simple and consistent method
has been developed to account effectively for the momentum
dependence of the RT of the SP potential in an extended HF
calculation using the CDM3Yn density dependent interactions
(11), based on the exact expression of the RT given by the
HVH theorem at each NM density and the empirical energy
dependence of the nucleon OP observed over a wide range of
energies.

III. SINGLE-NUCLEON POTENTIAL AND THE
SYMMETRY ENERGY

Given the importance of the nuclear symmetry energy for
the nuclear astrophysics studies, especially, its vital role in
the determination of the EOS of the asymmetric NM [8,9],
we focus in the present section on the connection of the
SP potential in the NM with the nuclear symmetry energy,
which has been widely discussed in Refs. [4,7]. The nuclear
symmetry energy S(ρ) is normally defined with an expansion
of the total NM energy per particle over the NP asymmetry
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δ as
E

A
(ρ,δ) = E

A
(ρ,δ = 0) + S(ρ)δ2 + O(δ4) + · · · . (28)

For δ < 1, the contribution of O(δ4) and the higher-order
terms in Eq. (28) was proven to be quite small [3,15] and
can be neglected (the so-called parabolic approximation).
For the pure neutron matter (δ = 1) the convergence of the
series (28) is slower, and the parabolic law becomes less
accurate. Therefore, a more general definition of the nuclear
symmetry energy as the energy required per particle to change
the symmetric NM into the pure neutron matter is also used in
the mean-field studies,

S(ρ) = E

A
(ρ,δ = 1) − E

A
(ρ,δ = 0). (29)

The nuclear symmetry energy S(ρ) can also be expanded
[43] around ρ0 as

S(ρ) = S0 + L

3

(
ρ − ρ0

ρ0

)
+ Ksym

18

(
ρ − ρ0

ρ0

)2

+ · · · ,

(30)

where L and Ksym are the slope and curvature parameters of
the symmetry energy at ρ0. While the curvature parameter
Ksym is still poorly known, it has been shown recently by
Li and Han [44] that quite a robust constraint for both S0

and L values has been established based on several tens
analyses of the terrestrial nuclear physics experiments and
astrophysical observations, which give S0 ≈ 31.6 ± 2.7 MeV
and L ≈ 58.9 ± 16.0 MeV. With the parameters of the IV
density dependence of the CDM3Yn interaction anew deter-
mined in the present work, the values of S0 ≈ 30.1 MeV and
L ≈ 49.7 MeV given by the HF calculation are well within
this empirical range.

Applying the HVH theorem to calculate the neutron and
proton energies (4) at the corresponding Fermi momenta, one
obtains [4,7] the nuclear symmetry energy directly from the
difference between the neutron and proton Fermi energies as

tn
(
k

(n)
F

) − tp
(
k

(p)
F

) + Un

(
ρ,δ,k

(n)
F

) − Up

(
ρ,δ,k

(p)
F

)
= 4S(ρ)δ + O(δ3) + · · · . (31)

Thus, Eq. (31) is simply the parabolic law in the SP energy
representation. As discussed in Sec. II, at given ρ and δ values
the contribution of the RT to the SP potential (16) is the same
for both the neutron and proton SP potentials. Therefore,
the RT contribution to the nuclear symmetry energy S(ρ)
through the difference between the neutron and proton SP
potentials in Eq. (31) is canceled out. The same conclusion
was also drawn in the recent BHF study of asymmetric NM
by Vidaña [41]. Using the single-nucleon potentials given by
the present HF calculation, we obtained exactly the same
S(ρ) from both Eq. (31) and the expansion (28), neglecting
the higher-order terms O(δ3) and O(δ4), respectively. These
results are compared with those given by the general definition
(29) in Fig. 8. One can see that the parabolic approximation is
reasonable only for δ < 1, and it becomes poorer for pure
neutron matter. As a result, the higher-order terms on the
right-hand side of Eqs. (28) and (31) need to be taken into

FIG. 8. (Color online) Nuclear symmetry energy S(ρ) at the NP
asymmetries δ = 0.6 and 1 obtained with the CDM3Y6 interaction,
using the parabolic approximation (28) and general definition (29).
The shaded (magenta) region marks the empirical boundaries implied
by the analysis of the isospin diffusion data and the double ratio of the
neutron and proton spectra observed in the HI collisions [43,45]. The
square is the empirical S value implied by the structure study of the
GDR [46], and the triangle is that established from the analysis of the
terrestrial nuclear physics experiments and astrophysical observations
[44]. The circles and crosses are results of the ab initio calculations
by Akmal et al. [47] and Gandolfi et al. [48], respectively.

account for very neutron-rich matter, as done recently by Chen
et al. [6].

The main method to probe S(ρ) obtained with a chosen
in-medium NN interaction is to probe this interaction in the
analysis of heavy-ion (HI) collisions [43,45] or in the structure
studies of nuclei with large neutron excess [46,49]. Based on
the constraints implied by such studies, extrapolation is often
made to study the low- and high-density behavior of nuclear
symmetry energy. For the illustration, we have compared in
Fig. 8 the HF results given by the CDM3Y6 interaction for
S(ρ) with the empirical data [43–46,49] and the results of the
ab initio calculations of the asymmetric NM by Akmal et al.
[47] and Gandolfi et al. [48]. Around the saturation density
ρ0 the symmetry energy S0 given by the HF calculation is
in a very good agreement with the empirical value [44,49].
In the low-density region (ρ ≈ 0.3 ∼ 0.6ρ0) the empirical
boundaries for S(ρ) deduced from the analysis of the isospin
diffusion data and double ratio of neutron and proton spectra
data of HI collisions [43,45] do enclose our HF result. At the
density ρ ≈ 0.1 fm−3, the HF result also agrees well with the
empirical value deduced from the structure study of the giant
dipole resonance (GDR) in heavy nuclei [46]. At supranuclear
densities, where the reliable empirical data are still absent, our
HF results follow closely those of the ab initio calculations
[47,48].

The explicit contribution of the RT to the nuclear symmetry
energy, through the difference between the neutron and proton
SP potentials (31), is canceled out. However, the vital role of
the rearrangement effects in the HF calculation of the nuclear
symmetry energy is well illustrated in Fig. 9, where S(ρ) values
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FIG. 9. (Color online) Nuclear symmetry energy S(ρ) given by
the HF calculation using the new parameters of the IV density
dependence F1(ρ) of the CDM3Y6 (upper panel) and CDM3Y3
(lower panel) interactions. These same HF results obtained with the
old parameters of F1(ρ) determined in Ref. [20] are shown as the
dashed lines. Other symbols are the same as in Fig. 8

obtained from the HF calculation using the new parameters of
the IV density dependence F1(ρ) of the CDM3Yn interactions
are compared with those obtained with the old parameters of
F1(ρ), determined in Ref. [20] by fitting the IV part of the
(HF only) SP potential to the IV part of the microscopic JLM
potential. One can see in Fig. 9 that S(ρ) given by the old
IV density dependence agrees with the empirical data and ab
initio results at NM densities up to about 2ρ0 only. Using the
new parameters of F1(ρ) obtained in the present work by fitting
the IV part of the (HF+RT) SP potential to the JLM potential
(see Fig. 4), the calculated S(ρ) values now follow closely
those given by the ab initio calculations over a wider range of
the NM densities, up to ρ ≈ 4ρ0.

With the Fermi momentum kF becoming larger at high
NM densities, a realistic momentum dependence of the
SP potentials should be helpful in constraining the nuclear
symmetry energy S(ρ) at the supranuclear densities, based
on the relation (31). The symmetry energies S(ρ) given by
the difference between the neutron- and proton SP energies
(31) at the NP asymmetries δ < 1 are shown in Fig. 10, with
and without the modification of the high-momentum part of
the (HF+RT) nucleon OP by the g(kF ) function determined
from the observed energy dependence of the nucleon OP. One
can see that the modification of the high-momentum tail of
the (HF+RT) SP potential results in a slightly softer slope

FIG. 10. (Color online) Nuclear symmetry energy S(ρ) obtained
at the NP asymmetry δ < 1 from the (HF+RT) SP energies with the
CDM3Y6 (upper panel) and CDM3Y3 (lower panel) interactions,
using the parabolic approximation (31). The solid (dashed) curves
show the results obtained with (without) the modification of the
high-momentum part of the SP potential by the g(k) function
determined from the observed energy dependence of the nucleon
OP. Other symbols are the same as in Fig. 8

of the nuclear symmetry energy at the high NM densities
that leads, in turn, to a good agreement of the HF results
with those of the ab initio calculations over a much wider
range of the NM density, up to ρ ≈ 5 ∼ 6ρ0. This result is,
thus, complementary to the recent efforts by Li et al. [50]
to determine the nuclear symmetry from the optical model
analysis of the elastic neutron-nucleus scattering over a wide
range of energies.

IV. NEUTRON-PROTON EFFECTIVE MASS SPLITTING

As discussed in Sec. II, due to the finite range of the Yukawa
functions in the radial part of the CDM3Yn interaction (11),
the SP potential depends explicitly on the nucleon momentum
k through its exchange term that implies a nonlocal single-
nucleon potential in the coordinate space. At the high nucleon
momenta, the momentum dependence of the SP potential is
further modified by the g(k) function implied by the observed
energy dependence of the nucleon OP. An important quantity
associated with the momentum dependence of the nucleon SP
potential is the nucleon effective mass m∗

τ , defined within the
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FIG. 11. (Color online) Density dependence of the neutron ef-
fective mass (32) at the NP asymmetry δ = 0, 0.3, and 0.6, obtained
from the SP potential given by the CDM3Y6 interaction. The HF and
HF+RT results are shown in the upper and lower panels, respectively.
The solid circles are the effective-mass values determined at the
saturation density ρ0.

nonrelativistic mean-field formalism as

m∗
τ (ρ,δ)

m
=

[
1 + m

�2k
(τ )
F

∂Uτ (ρ,δ,k)

∂k

∣∣∣∣
k

(τ )
F

]−1

, (32)

where m is the free nucleon mass. Thus, the nucleon effective
mass m∗

τ describes the nonlocality of the mean-field potential
felt by a nucleon propagating through the nuclear medium.
As such, the nucleon effective mass is directly linked to many
nuclear physics phenomena, like the dynamics of HI collisions,
damping of giant resonances, temperature profile of the hot
stellar objects, and neutrino emission therefrom [51]. For the
asymmetric NM, the relative difference between the neutron
and proton effective masses,

m∗
n−p(ρ,δ) = m∗

n(ρ,δ) − m∗
p(ρ,δ)

m
, (33)

is widely discussed [44,52] as the neutron-proton effective
mass splitting, which is closely related to the nuclear symmetry
energy S(ρ) and its slope parameter L [44]. The NP effective
mass splitting was also suggested to affect the neutron-
proton ratio during the stellar evolution, and the cooling of
protoneutron stars, etc. [52].

In the present work we do not intend to explore this issue
over such a wide scope, but focus briefly on the effect of

FIG. 12. (Color online) The same as Fig. 11 but for the proton
effective mass.

the RT in the determination of the nucleon effective mass
within the extended HF formalism as well as the effect
caused by the modification of the high-momentum part of
the SP potential to match the observed energy dependence of
the nucleon OP. The obtained neutron and proton effective
masses are shown in Figs. 11 and 12, respectively, and one
can see that the RT enhances m∗

τ substantially at high NM
densities. A similar behavior of the nucleon effective mass
can also be seen in the results of a recent microscopic BHF
calculation by Baldo et al. [51], where the RT originating from
three-body force drastically enhances the nucleon effective
mass at the high NM densities (see, e.g., Fig. 1 of Ref. [51]).
As found in Sec. III for the nuclear symmetry energy, the
modification of the high-momentum part of the (HF+RT)
SP potential by the g(k) function implied by the observed
energy dependence of the nucleon OP changes slightly the
slope of the density dependence of the nucleon effective mass
at the high NM densities (see Figs. 13 and 14). Although
the nucleon effective mass is still poorly known at the high
NM densities and/or the large NP asymmetries, the empirical
m∗/m value in the symmetric NM is known to be about 0.73
[53] at the saturation density ρ0. In good agreement with those
empirical data, our HF and HF+RT results obtained with the
CDM3Y6 interaction (see Fig. 13) give m∗/m ≈ 0.734 and
0.755, respectively. The modification of the high-momentum
part of the (HF+RT) single-nucleon potential by the g(k)
function reduces this result slightly to m∗/m ≈ 0.737 at
ρ = ρ0.
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FIG. 13. (Color online) The same (HF+RT) results for the neu-
tron effective mass as in the lower panel of Fig. 11, obtained
with (lower panel) or without (upper panel) the modification of the
high-momentum part of the SP potential by the g(k) function implied
by the observed energy dependence of the nucleon OP.

With quite a good agreement of the calculated nucleon
effective mass with the empirical data at δ = 0, it is of interest
to consider further the δ dependence of the m∗/m value. The
HF results obtained at the saturation density ρ0 are shown in
Fig. 15. Given the equal RT contribution to each of the neutron
and proton SP potential, the derivative with respect to the
nucleon momentum gives about the same RT contribution of
around 10% to the neutron and proton effective masses (upper
panel of Fig. 15), and the NP effective mass splitting (lower
panel of Fig. 15) is rather weakly affected by the rearrangement
effect. One can see that both the standard HF and extended
HF+RT results show a well defined linear δ dependence of the
NP effective mass splitting (33). Our final HF+RT results give
m∗

n−p(ρ0,δ) ≈ (0.26 ± 0.01)δ which is well inside the empiri-
cal boundary m∗

n−p(ρ0,δ) ≈ (0.27 ± 0.35)δ, established from
the analyses of the terrestrial nuclear physics experiments and
astrophysical observations [44]. Our result is, however, lower
than that estimated recently, m∗

n−p(ρ0,δ) ≈ (0.41 ± 0.15)δ,
from the phenomenological (isospin-dependent) nucleon OP
[52] determined from the extensive optical model analysis
of a large data set of the nucleon elastic scattering. The
uncertainty of 0.01δ in the HF+RT result is not statistical error
associated with the uncertainties of the model ingredients, but
the uncertainty in adopting a linear δ dependence of the NP
effective mass splitting (33) in Fig. 15. This fact indicates

FIG. 14. (Color online) The same as Fig. 13 but for the proton
effective mass.

simply that at δ < 1, when the parabolic approximation (28)
and (31) is reasonable for the nuclear symmetry energy, the
first-order symmetry term in the expansion of the single-
nucleon potential over δ (see, e.g., Ref. [6]) contributes
overwhelmingly to the determination of the m∗

n−p(ρ,δ) value.
With larger Fermi momentum kF at the high NM densities,

the modification of the momentum dependence of the SP
potentials by the g(kF ) function determined from the observed
energy dependence of the nucleon OP should be taken into
account in the HF+RT calculation of the NP effective mass
splitting. One can see in Fig. 16 that m∗

n−p(ρ,δ) becomes
larger at ρ = 2ρ0, and is enhanced further by more than 50%
when the modification of the high-momentum part of the SP
potential is taken into account. The behavior of the nucleon
effective mass (32) and the NP effective mass splitting (33)
at the supranuclear densities is still poorly known, and the
difference in the HF+RT results for the NP effective mass
splitting, m∗

n−p(ρ,δ) ≈ (0.48 ± 0.01)δ at ρ = 2ρ0 compared
to (0.26 ± 0.01)δ at ρ = ρ0, is quite significant and should be
of interest for the nuclear astrophysical studies.

V. FOLDING MODEL OF THE NUCLEON
OPTICAL POTENTIAL

Given the substantial rearrangement effects to the nucleon
OP found above in the extended HF calculation of the NM,
it is of high interest to study these effects in the many-body
calculation of the nucleon OP of the finite nuclei. As such,
the folding model (more precisely the single-folding model)
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FIG. 15. (Color online) Neutron and proton effective masses
(upper panel) and their splitting (lower panel) obtained at ρ = ρ0

and the different NP asymmetries δ. Both the HF and HF+RT results
show a well defined linear δ dependence of the NP effective mass
splitting (33).

has been proven to be a very effective tool to estimate the
nucleon OP [19,54,55]. It can be seen from the basic folding
formulas that this model generates the first-order term of the

FIG. 16. δ dependence of the neutron-proton effective mass
splitting obtained at ρ = 2ρ0. The HF+RT results were obtained
with (solid line) or without (dashed line) the modification of the
high-momentum part of the SP potential by the g(k) function
determined from the observed energy dependence of the nucleon
OP.

microscopic OP defined in Feshbach’s formalism of nuclear
reactions [56], based on the nucleon degrees of freedom. The
success of the single-folding approach in the description of the
elastic nucleon-nucleus scattering data measured for the targets
in the different mass regions suggests that the first-order term
of the Feshbach’s microscopic OP is indeed the dominant part
of the nucleon OP.

In the single-folding approach, the central OP of the τ -kind
nucleon incident on the target A at the energy E is evaluated
as a HF-type potential [19], using an appropriate, energy and
density dependent effective NN interaction vc(ρ,E),

UHF
τ (E,R) =

∑
j∈A

[〈kτ ,j |vD
c (ρ,E)|kτ ,j 〉

+ 〈kτ ,j |vEX
c (ρ,E)|j,kτ 〉

]
,

=
∑
j∈A

〈kτ ,j |vc(ρ,E)|kτ ,j 〉A, (34)

where |j 〉 is the single-nucleon wave function of the j th
nucleon of the target. The antisymmetrization A of the
nucleon-nucleus system is done by taking into account explic-
itly the knock-on exchange effects. As a result, the exchange
term of Uτ becomes nonlocal in the coordinate space [55].
An accurate local approximation is usually made by treating
the relative motion locally as a plane wave [19,54], and the
local energy dependent folded potential (34) is obtained as an
explicit function of the nucleon-nucleus distance R and local
momentum k(R) of the incident nucleon.

At the low incident energies, the pair-wise interaction be-
tween the incident nucleon and the nucleons bound in the target
can induce certain rearrangement of the SP configurations of
the target nucleons that can be observed experimentally in
the nucleon removal reactions [35]. In terms of the nucleon-
nucleus interaction, such a rearrangement effect is expected to
affect also the shape and strength of the nucleon-nucleus OP
(34), constructed in the folding model on the HF level from
the SP wave functions of the target nucleons. On the other
hand, if we make a local density approximation (LDA) for the
SP potential (20) by replacing the plane waves |k′σ ′τ ′〉 by the
SP wave functions |j 〉 of the target nucleons, then the resulted
potential is just the HF-type folded potential (34) added by a
rearrangement term, through the contribution of the vc term.
Thus, the total (central) nucleon OP now becomes

Uτ (E,R) = UHF
τ (E,R) + URT

τ (E,R)

=
∑
j∈A

〈kτ ,j |vc(ρ,E) + vc(ρ)|kτ ,j 〉A, (35)

with URT originating from the explicit density dependence of
the CDM3Yn interaction (11). In the standard HF formalism
for the nucleon mean-field potential, the HF potential for
an unbound (scattering) nucleon has been assumed years
ago [57,58] as the first-order term of the microscopic OP
for the low-energy elastic nucleon scattering, in about the
same scheme as that of the Feshbach’s microscopic OP [56].
Applying the variational HF method to obtain the scattering
equation for the nucleon-nucleus system, a rearrangement
contribution to the HF potential appears naturally if the
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effective NN interaction is density dependent [59]. Given
the rearrangement contribution to the density dependence
of the CDM3Yn interaction determined above in the HF
study of the NM, it is now possible to consistently include
the RT into the folding calculation of the nucleon-nucleus
potential (34).

Making explicit the neutron and proton SP wave functions
in Eq. (35) and using the same isospin-dependent CDM3Yn
interactions (11), we obtain the real nucleon OP explicitly in
terms of the (energy dependent) isoscalar and isovector parts
as

Uτ (E,R) = UIS(E,R) ± UIV(E,R), (36)

where the (−) sign pertains to the proton OP and the (+) sign
to the neutron OP,

UIS(E,R) = g(k(E,R))
∫

[F0(ρ(r)) + F0(ρ(r))]

× {
[ρn(r) + ρp(r)]vD

00(s) + [ρn(R,r)

+ ρp(R,r)]vEX
00 (s)j0(k(E,R)s)

}
d3r, (37)

UIV(E,R) = g(k(E,R))
∫

[F1(ρ(r)) + F1(ρ(r),Tz(r))]

× {
[ρn(r) − ρp(r)]vD

01(s) + [ρn(R,r)

− ρp(R,r)]vEX
01 (s)j0(k(E,R)s)

}
d3r. (38)

Here, ρτ (r,r ′) is the nonlocal SP density matrix of the target
with ρτ (r) ≡ ρτ (r,r), and k(E,R) is the local momentum
of the incident nucleon determined self-consistently from the
total real nucleon OP as

k(E,R) =
√

2μ

�2
[Ec.m. − Uτ (E,R)]. (39)

Similarly to the expression of the nucleon OP in the NM
limit (27), the folded nucleon-nucleus potential (36) also
depends explicitly on the momentum (39) of the incident
nucleon through the (localized) exchange term. To estimate
properly the contribution of the rearrangement effects, the
IS and IV density dependencies of the RT in Eqs. (37)
and (38) are determined in the LDA from the F0(ρ)
and F1(ρ,δ) values given by the HF study of the NM
(18), accurately interpolated for the local nuclear density
ρ = ρ(r) = ρn(r) + ρp(r) and the neutron-proton asymmetry
δ = Tz(r) = [ρn(r) − ρp(r)]/ρ(r).

It can be seen from Eqs. (37) and (38) that the energy
dependence of the real nucleon OP (36) is determined entirely
by the local momentum of the incident nucleon k(E,R)
appearing in the exchange potential as well as in the g(k(E,R))
function. Given the g(k) function determined above in the HF
study of the NM based on the observed energy dependence
of the nucleon OP, each local scaling factor g(k(E,R)) of
the folded potential is interpolated from the g(k) function
(see Fig. 3) at the local momentum k = k(E,R). As a result,
g(k(E,R)) can now be considered as the explicit energy (or
momentum) dependence of the density dependent CDM3Yn
interaction (11), locally consistent with the nucleon mean-field

potential (36). This is an essential improvement of the present
formulation of the single-folding model, compared to the
earlier applications of the folding model (see, e.g., Ref. [19])
where a constant factor g(E) ≈ 1 − 0.0026E was used to
scale the CDM3Y6 interaction. Because of the self-consistent
determination of the g(k(E,R)) function and contribution of
the RT through F0(ρ(r)) and F1(ρ(r),Tz(r)), the single-
folding calculation (37) and (38) becomes more cumbersome
and time consuming compared with the earlier version [19] of
the folding model.

Although a comprehensive folding model study of the elas-
tic nucleon-nucleus scattering based on the new formulation
of the model should be the subject of a separate study, we
have considered selectively in the present work the data of
the elastic neutron scattering on the lead target, measured at
the incident energies of 30.4 and 40 MeV [29]. Given no
Coulomb interference and the energies close to the Fermi
energy (EF ≈ 38.7 MeV obtained with the Fermi momentum
kF ≈ 1.36 fm−1), the considered elastic neutron scattering data
should be a good test ground for the improved single-folding
approach suggested in the present work, with the rearrange-
ment effects consistently taken into account. For the 208Pb
target we have used the empirical neutron and proton densities
deduced from the high-precision elastic proton scattering at
800 MeV by Ray et al. [60,61]. These densities are available
in the analytical form, and they have been used recently in our
folding model analysis [62] of the charge-exchange (3He,t)
scattering to the isobar analog state of the target, to determine
the thickness of the neutron skin in 208Pb.

From the folded n +208Pb potentials shown in Fig. 17
one can see that the standard folding method [19] gives a
rather deep HF-type folded potential. After the RT is taken
properly into account, the HF+RT folded potential becomes
substantially shallower, much closer to the empirical Woods-
Saxon potential given by the global CH89 parametrizations of
the nucleon OP [38], which was proven to be accurate for the
elastic nucleon scattering from medium and heavy targets at
the incident energies below 100 MeV. The agreement of the
HF+RT folded potential with the empirical CH89 potential
becomes better, especially at the neutron energy of 40 MeV,
when the scaling g(k(E,R)) function is consistently taken into
account. To further test the folded n +208 Pb potentials shown
in Fig. 17, they were used (without any further renormalization
of their strength) as the real OP in the standard optical model
(OM) calculation of the elastic n +208 Pb scattering at 30.4
and 40 MeV using the code ECIS06 written by Raynal [63],
with the imaginary and spin-orbital parts of the OP taken from
the global systematics CH89 [38]. From the comparison of the
calculated cross sections with the measured data [29] in Fig. 18
one can see that a very good OM description of the data has
been obtained with the real folded OP after the RT is included.
Although the OM fit is marginally improved after the HF+RT
folded potential is scaled with the scaling function g(k(E,R)),
it is important to note that this scaling function is resulted
from the realistic momentum dependence of the SP potential
in the NM discussed in Sec. II. The local momentum k(E,R)
of the incident neutron is largest in the center, and approaches
its asymptotic value at the potential surface (determined for a
free neutron whose kinetic energy is equal the incident energy)
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FIG. 17. (Color online) Real n +208 Pb optical potential at the
neutron incident energies of 30.4 and 40 MeV predicted by the single-
folding calculation (37) and (38) using the CDM3Y6 interaction, with
and without the contributions of the RT and the scaling g(k(E,R))
function. CH89 is the phenomenological OP taken from the global
systematics by Varner et al. [38].

(see upper panel of Fig. 19). As a result, the g(k(E,R)) value is
ranging smoothly from about 0.96 at small radii to unity at the
potential surface, which is a rather mild mean-field effect on
the shape of the folded nucleon-nucleus potential. In any case,
such a scaling function is physically much more consistent
compared to a constant g(E) factor used in the earlier version
of the folding model [19] at each nucleon incident energy.
The standard HF folded potential is too deep in the center and
cannot deliver a good OM description of the data (see Fig. 18)
unless its strength is renormalized by a factor NR ≈ 0.85. A
renormalization factor NR < 1 of the real folded OP was often
obtained in the earlier folding model analyses of the elastic
nucleon scattering [20], and the lack of the contribution from
the RT is likely the main reason.

With a very good OM description of the considered elastic
neutron scattering data by the HF+RT folded potential, the
reliability of the folding model in predicting the nucleon-
nucleus OP seems much improved. In view of the new folding
formalism suggested in the present work, a systematic folding
model analysis of the elastic and inelastic nucleon-nucleus

FIG. 18. (Color online) Elastic n +208 Pb scattering cross sec-
tions at the neutron incident energies of 30.4 and 40 MeV obtained
with the real OP’s shown in Fig. 17, in comparison with the data
measured by DeVito et al. [29]. The imaginary and spin-orbital parts
of the OP taken from the global systematics CH89 [38] were used in
the OM calculation.

FIG. 19. Local momentum k(E,R) of the incident neutron (upper
panel) and the scaling function g(k(E,R)) (lower panel) determined
self-consistently from the HF+RT real folded n +208 Pb potential
obtained with the CDM3Y6 interaction at the neutron energy E =
30.4 MeV.
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scattering over a wide range of energies should be of high
interest.

VI. SUMMARY

A consistent HF study of the asymmetric NM has been
done using the CDM3Y3 and CDM3Y6 density dependent
versions of the M3Y-Paris interaction, with the focus on
the rearrangement term of the SP potential that arises nat-
urally when the Hugenholtz–Van Hove theorem is applied
to calculate SP energy from the total NM energy. Based on
the exact expression of the RT of the isospin dependent SP
potential given by the HVH theorem at each NM density
and the empirical energy dependence of the nucleon OP
observed over a wide range of energies, a simple method
has been proposed to account effectively for the momentum
dependence of the RT of the SP potential in the standard
HF scheme, with an explicit contribution of the RT added to
the density dependence of the CDM3Yn interaction (11). The
HF+RT SP potentials obtained at the different NM densities
and neutron-proton asymmetries agree reasonably with those
predicted by the microscopic BHF calculations of the NM that
have the higher-order rearrangement term properly included
[3,41].

Given a direct link between the SP potential in the NM
and the nuclear symmetry [4,7], we have determined anew
the parameters of the isovector density dependence of the
CDM3Yn interaction (11) by matching our HF+RT results
for the IV part of the nucleon OP in the NM with those
of the BHF calculation by the JLM group [31,32]. Using
these new parameters, the calculated nuclear symmetry energy
S(ρ) agrees nicely with the latest empirical constraints at
ρ � ρ0 as well as the results of the ab initio calculations
of the asymmetric NM at ρ > ρ0. With the high-momentum
part of the SP potential modified based on the observed
energy dependence of the nucleon OP, the nuclear symmetry
energy S(ρ) obtained in the parabolic approximation from
the difference between the neutron and proton SP energies
turns out to be in very good agreement with that given by the
ab initio calculations over a wide range of the NM densities.
This result indicates that one might indirectly learn about the

density dependence of the nuclear symmetry energy from the
extensive OM studies of the elastic nucleon-nucleus scattering
at low, medium, and intermediate energies.

The momentum dependence of the SP potential obtained
in the HF+RT calculation has a very well defined linear
δ dependence of the NP effective mass splitting (33), with
m∗

n−p(ρ0,δ) ≈ (0.26 ± 0.01)δ that agrees well with the empir-
ical constraint from the recent analysis of the terrestrial nuclear
physics experiments and astrophysical observations [44]. The
m∗

n−p(ρ,δ) value was found to be readily increased with the
increasing NM density up to 2ρ0, while retaining its linear δ
dependence. Although there is no empirical constraint for the
NP effective mass splitting at the high NM densities to compare
with, we have shown here that a proper treatment of the RT
and a realistic momentum dependence of the single-nucleon
potential are prerequisites for the determination of m∗

n−p(ρ,δ)
at the different NM densities that can be of interest for the
nuclear astrophysical studies.

A very important milestone of the present work is that the
proper treatment of the rearrangement effects and momentum
dependence of the nucleon mean-field potential in the HF
calculation of the NM has led us to the important physics
inputs that enable a consistent inclusion of the RT into the
HF-type folding model calculation of the nucleon OP of the
finite nuclei in the same mean-field manner. The contribution
of the RT has been shown, in an application of the extended
folding model to study the elastic n +208Pb scattering, to be
vital in obtaining the realistic shape and strength of the real
nucleon OP. The predicting power of the folding model for
the nucleon OP seems much improved. A systematic folding
model analysis of the elastic and inelastic nucleon-nucleus
scattering over a wide range of energies is now planned with
the extended folding formalism.

ACKNOWLEDGMENTS

We thank B. A. Li and C. Xu for their helpful communica-
tions. The present research has been supported by the National
Foundation for Scientific and Technological Development
(NAFOSTED Project No. 103.04-2014.76).

[1] C. Mahaux, P. F. Bortignon, R. A. Broglia, and C. H. Dasso,
Phys. Rep. 120, 1 (1985).

[2] I. Bombaci and U. Lombardo, Phys. Rev. C 44, 1892 (1991).
[3] W. Zuo, I. Bombaci, and U. Lombardo, Phys. Rev. C 60, 024605

(1999).
[4] W. Zuo, I. Bombaci, and U. Lombardo, Eur. Phys. J. A 50, 12

(2014).
[5] C. Xu, B. A. Li, and L. W. Chen, Phys. Rev. C 82, 054607

(2010).
[6] R. Chen, B. J. Cai, L. W. Chen, B. A. Li, X. H. Li, and C. Xu,

Phys. Rev. C 85, 024305 (2012).
[7] C. Xu, B. A. Li, and L. W. Chen, Eur. Phys. J. A 50, 21 (2014).
[8] C. J. Horowitz, E. F. Brown, Y. Kim, W. G. Lynch, R. Michaels,

A. Ono, J. Piekarewicz, M. B. Tsang, and H. H. Wolter, J. Phys.
G 41, 093001 (2014).

[9] B. A. Li, L. W. Chen, and C. M. Ko, Phys. Rep. 464, 113
(2008).

[10] M. Baldo and C. Maieron, J. Phys. G 34, R243 (2007).
[11] G. Bertsch, J. Borysowicz, H. McManus, and W. G. Love,

Nucl. Phys. A 284, 399 (1977).
[12] N. Anantaraman, H. Toki, and G. F. Bertsch, Nucl. Phys. A 398,

269 (1983).
[13] D. T. Khoa and W. von Oertzen, Phys. Lett. B304, 8 (1993).
[14] D. T. Khoa and W. von Oertzen, Phys. Lett. B342, 6 (1995).
[15] D. T. Khoa, W. von Oertzen, and A. A. Ogloblin, Nucl. Phys. A

602, 98 (1996).
[16] H. S. Than, D. T. Khoa, and N. V. Giai, Phys. Rev. C 80, 064312

(2009).
[17] D. T. Loan, N. H. Tan, D. T. Khoa, and J. Margueron, Phys. Rev.

C 83, 065809 (2011).

034304-15

http://dx.doi.org/10.1016/0370-1573(85)90100-0
http://dx.doi.org/10.1016/0370-1573(85)90100-0
http://dx.doi.org/10.1016/0370-1573(85)90100-0
http://dx.doi.org/10.1016/0370-1573(85)90100-0
http://dx.doi.org/10.1103/PhysRevC.44.1892
http://dx.doi.org/10.1103/PhysRevC.44.1892
http://dx.doi.org/10.1103/PhysRevC.44.1892
http://dx.doi.org/10.1103/PhysRevC.44.1892
http://dx.doi.org/10.1103/PhysRevC.60.024605
http://dx.doi.org/10.1103/PhysRevC.60.024605
http://dx.doi.org/10.1103/PhysRevC.60.024605
http://dx.doi.org/10.1103/PhysRevC.60.024605
http://dx.doi.org/10.1140/epja/i2014-14012-3
http://dx.doi.org/10.1140/epja/i2014-14012-3
http://dx.doi.org/10.1140/epja/i2014-14012-3
http://dx.doi.org/10.1140/epja/i2014-14012-3
http://dx.doi.org/10.1103/PhysRevC.82.054607
http://dx.doi.org/10.1103/PhysRevC.82.054607
http://dx.doi.org/10.1103/PhysRevC.82.054607
http://dx.doi.org/10.1103/PhysRevC.82.054607
http://dx.doi.org/10.1103/PhysRevC.85.024305
http://dx.doi.org/10.1103/PhysRevC.85.024305
http://dx.doi.org/10.1103/PhysRevC.85.024305
http://dx.doi.org/10.1103/PhysRevC.85.024305
http://dx.doi.org/10.1140/epja/i2014-14021-2
http://dx.doi.org/10.1140/epja/i2014-14021-2
http://dx.doi.org/10.1140/epja/i2014-14021-2
http://dx.doi.org/10.1140/epja/i2014-14021-2
http://dx.doi.org/10.1088/0954-3899/41/9/093001
http://dx.doi.org/10.1088/0954-3899/41/9/093001
http://dx.doi.org/10.1088/0954-3899/41/9/093001
http://dx.doi.org/10.1088/0954-3899/41/9/093001
http://dx.doi.org/10.1016/j.physrep.2008.04.005
http://dx.doi.org/10.1016/j.physrep.2008.04.005
http://dx.doi.org/10.1016/j.physrep.2008.04.005
http://dx.doi.org/10.1016/j.physrep.2008.04.005
http://dx.doi.org/10.1088/0954-3899/34/5/R01
http://dx.doi.org/10.1088/0954-3899/34/5/R01
http://dx.doi.org/10.1088/0954-3899/34/5/R01
http://dx.doi.org/10.1088/0954-3899/34/5/R01
http://dx.doi.org/10.1016/0375-9474(77)90392-X
http://dx.doi.org/10.1016/0375-9474(77)90392-X
http://dx.doi.org/10.1016/0375-9474(77)90392-X
http://dx.doi.org/10.1016/0375-9474(77)90392-X
http://dx.doi.org/10.1016/0375-9474(83)90487-6
http://dx.doi.org/10.1016/0375-9474(83)90487-6
http://dx.doi.org/10.1016/0375-9474(83)90487-6
http://dx.doi.org/10.1016/0375-9474(83)90487-6
http://dx.doi.org/10.1016/0370-2693(93)91391-Y
http://dx.doi.org/10.1016/0370-2693(93)91391-Y
http://dx.doi.org/10.1016/0370-2693(93)91391-Y
http://dx.doi.org/10.1016/0370-2693(93)91391-Y
http://dx.doi.org/10.1016/0370-2693(94)01393-Q
http://dx.doi.org/10.1016/0370-2693(94)01393-Q
http://dx.doi.org/10.1016/0370-2693(94)01393-Q
http://dx.doi.org/10.1016/0370-2693(94)01393-Q
http://dx.doi.org/10.1016/0375-9474(96)00091-7
http://dx.doi.org/10.1016/0375-9474(96)00091-7
http://dx.doi.org/10.1016/0375-9474(96)00091-7
http://dx.doi.org/10.1016/0375-9474(96)00091-7
http://dx.doi.org/10.1103/PhysRevC.80.064312
http://dx.doi.org/10.1103/PhysRevC.80.064312
http://dx.doi.org/10.1103/PhysRevC.80.064312
http://dx.doi.org/10.1103/PhysRevC.80.064312
http://dx.doi.org/10.1103/PhysRevC.83.065809
http://dx.doi.org/10.1103/PhysRevC.83.065809
http://dx.doi.org/10.1103/PhysRevC.83.065809
http://dx.doi.org/10.1103/PhysRevC.83.065809


DOAN THI LOAN, BUI MINH LOC, AND DAO T. KHOA PHYSICAL REVIEW C 92, 034304 (2015)

[18] D. T. Khoa, G. R. Satchler, and W. von Oertzen, Phys. Rev. C
56, 954 (1997).

[19] D. T. Khoa, E. Khan, G. Colò, and N. V. Giai, Nucl. Phys. A
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