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The cluster approach, which allows us to take into account both shape deformation parameters and cluster
degrees of freedom, is developed to describe alternating-parity rotational bands. The important ingredient of the
model is the dinuclear system concept in which the wave function of the nucleus is treated as a superposition of a
mononucleus and two-cluster configurations. The model is applied to describe the multiple positive and negative
parity rotational bands in 240Pu. The observed excitation spectrum and the angular momentum dependences of
the parity splitting and of the electric E1 and E2 transition moments are explained. Special emphasis is made
on the investigation of the recently measured positive parity 0+

2 rotational band of reflection-asymmetric nature.
The results suggest that this band might be understood as being built on the lowest excited state in the mass
asymmetry degree of freedom. The B(E1)/B(E2) branching ratios between the reduced transition probabilities
of decay from the states of the 0+

2 band to the first negative parity band and to the groundstate band, respectively,
are calculated and compared with experimental data.
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I. INTRODUCTION

One of the distinctive properties of low-energy spectra of
actinides is an appearance of the negative parity states at
energies lower than the two-quasiparticle limit. Since the first
observation of negative parity states near the ground state [1,2],
a large amount of experimental data has been accumulated. An
extensive review of experimental and theoretical achievements
can be found in Refs. [3,4]. The lowest negative parity states
form the rotational or quasivibrational bands which mainly
decay via collective E1 transitions into the ground-state
band. This picture has been understood as the possibility of
strong reflection-asymmetric correlations in the vicinity of the
ground state [5,6]. These correlations can be microscopically
associated with the appearance of orbital pairs with �j =
�l = 3 near the Fermi surface. Besides the actinides, a
similar situation occurs in nuclei with masses near A ∼ 56
and A ∼ 134 (rare-earth mass region) that is in agreement
with the experimental data. The results of calculations within
the shell-corrected liquid drop models [7,8] and mean-field
models [9–11] show that nuclei in these mass regions are
either soft with respect to the octupole deformation or even
octupole-deformed.

An alternative explanation is suggested by the cluster
approach in which long-range multipole correlations might
lead to the formation of light clusters on the surface of a heavy
nucleus. The contribution of such bicluster configurations to
the nuclear wave function naturally leads to an appearance of
a reflection-asymmetric deformation. The strength of this de-
formation is determined by the relative weight of the bicluster
configuration. Although well established for light nuclei [12],
the justification of the cluster approach to the description of the
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structure of heavy nuclei is cumbersome. However, there exists
evidence which supports the idea of clustering. First of all, the
nuclei whose spectra exhibit the strong reflection-asymmetric
correlations are good α emitters. Thus, there is a significant
probability to form an α cluster in the surface region of
the nucleus. It is also known from the Nillson-Strutinsky-
type calculations for light nuclei that nuclear configurations
corresponding to the minima of the potential energy contain
particular symmetries which are related to certain cluster
structures [13,14]. Several calculations performed for heavy
nuclei [15–17] have shown that configurations with large
quadrupole deformations and low-lying collective negative
parity states are strongly related to clustering. The potential
energies of cluster configurations with an α particle are close
to or even lower than the binding energies for these nuclei
[18]. Therefore, bicluster configurations with an α particle are
expected to be important in the structure of actinides.

The idea of clustering has been used to describe the
excitation spectra of actinides and rare-earth elements [18–26].
In the algebraic model [19–22], the corresponding wave
functions of the ground and excited states consist of the
components without and with dipole bosons in addition to
the quadrupole bosons, which are related to mononucleus
and alpha-cluster components, respectively. In Refs. [23,24],
a cluster configuration with a lighter cluster heavier than
4He was used in order to describe the properties of the
low-lying positive and negative parity states. Within the cluster
approach of the dinuclear system (DNS) model [18,25,26]
the existing experimental data on the angular-momentum
dependence of the parity splitting in the excitation spectra
and the multipole transition moments (E1, E2, E3) of the
low-lying alternating-parity states are well described in odd
and even actinides 220–228Ra, 223,225,227Ac, 222–232Th, 231Pa,
232–238U, and 240,242Po, and medium mass nuclei 144,146,148Ba,
151,153Pm, 146,148Ce, 153,155Eu, and 146,148Nd.
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As found in the recent experimental study of short-living
Ra and Rn isotopes [27], the strength of E3 transitions opposes
the trend predicted by the cluster model [18,25,26]. The reason
for this disagreement is related to the disregard of the relative
rotation of the DNS nuclei that is an oversimplification in the
case of light Ra isotopes. The structure of the wave functions of
the ground-state band and lowest negative parity states change
drastically in nuclei with small or almost zero quadrupole
deformation.

In Refs. [18,25,26], only the lowest negative parity bands
(Kπ = 0−) have been considered. However, there is experi-
mental evidence of negative parity collective states with K �= 0
[28]. The structure of the positive parity bands seems to be
strongly influenced by reflection-asymmetric deformation. In
the recent experiment [29], the positive parity band built upon
excited 0+

2 state has been measured up to high spins in 240Pu.
Moreover, the reduced transition probabilities from this band
to the lowest negative parity band have been observed. The
collective character of these transitions shows a significant
contribution of the reflection-asymmetric degree of freedom.
The abundant experimental information on the E1 transition
rates between the members of the first negative parity band
and ground-state band [30–32] and the recent results on 240Pu
[29] require theoretical analysis.

The description of the multiband structure of the excitation
spectra of heavy nuclei is a difficult task in the frame of the
microscopic models. So, it is useful to develop the semiphe-
nomenological models which are based on the introduction
of the collective coordinates related to the violation of the
reflection symmetry. Based on a microscopic understanding
of the nature of the reflection-asymmetric deformation, the
phenomenological models can be divided in two groups: the
models with the quadrupole-octupole collective Hamiltonian
[33,34] and the models with cluster degrees of freedom. One
can also mention the approaches based on the interacting boson
model [19–22] and based on the idea of aligned octupole
phonons [35,36].

This work is devoted to the development of the phenomeno-
logical cluster approach which is based on the assumption
that the intrinsic nuclear wave function can be taken as a
superposition of the mononucleus and various bicluster con-
figurations. The interaction between the degrees of freedom
describing the motion of the clusters causes the complex
multiband structure in the nuclear excitation spectrum. The
most important degree of freedom is the mass asymmetry.
The nuclear wave function in the mass asymmetry coordinate
determines the relative weight of the cluster components and,
thus, the strength of reflection-asymmetric deformation. It is
worth noting that in the frame of this approach the 0+

2 state,
measured in 240Pu, is simply described as an excited state in the
mass asymmetry degree of freedom. In Ref. [37], we applied
a similar approach to treat the properties of 220Th, which has a
strong reflection-asymmetric deformation and relatively small
quadrupole deformation [38]. The present aim is to treat the
situation when the nucleus, 240Pu, has both strong quadrupole
and strong reflection-asymmetric deformations.

The paper is organized as follows. In Sec. II the theoretical
background is presented. The parameters of the Hamiltonian
are derived with the DNS model in Sec. III. Section IV is

devoted to the application of the model to the structure and
electromagnetic transitions in 240Pu.

II. MODEL

A. The Hamiltonian

Instead of parametrization of the nuclear shape in terms of
multipole deformation parameters [39,40], we use the degrees
of freedom related to the DNS or cluster system [41]. The
DNS is understood as the system of two nuclei (A1, Z1)
and (A2, Z2) kept together in touching configuration by the
nucleus-nucleus potential. As a mononucleus, we consider a
unified nuclear system with charge Z1 + Z2 = Z and atomic
number A1 + A2 = A. The degrees of freedom describing the
collective excitations are related to the rotation of the DNS
as a whole, to the relative motion of the DNS fragments,
to the intrinsic excitations of the fragments, and to the
transfer of nucleons between the DNS fragments. The latter
process is described here with mass asymmetry ξ = A2/A
and charge asymmetry ξZ = Z2/Z coordinates. The values of
ξ = 0 or ξ = 1 correspond to the mononucleus configurations
(A1 = A,A2 = 0) or (A1 = 0,A2 = A), respectively.

The motion in ξ destroys the reflection-symmetric shape
of the nuclear system. The main idea of our approach is
that the intrinsic nuclear wave function can be described as
a superposition of the mononucleus and different dinuclear
configurations, which are realized with certain probabilities.
The mononucleus is taken to be quadrupole deformed. The
mass asymmetry ξ is described as a continuous variable.

We presume that the main source of the reflection-
asymmetric deformation is the contribution of the DNS
|α〉 × |(A − 4,Z − 2)〉 with an α particle as a light cluster.
This idea is supported by the observation that the actinides
are good α emitters. Thus, there is a significant probability
to form an α cluster in the surface region of the nucleus.
Moreover, our calculations show that the potential energy
of a DNS with an α cluster (ξ = ξα) is close to or even
lower than the binding energy for these nuclei, while the
energies of configurations with a light cluster heavier than
an α rapidly increase with ξ [18]. Therefore, in order to treat
the ground-state properties of actinides, one can consider the
region of mass asymmetry in the vicinity of the mononucleus
and α-cluster DNS configuration. The contribution of the
configurations with ξ > ξα are negligibly small.

In the region of interest, the dinuclear systems, which
are produced by the motion in mass asymmetry, consist of
a light spherical fragment (A2, Z2) and a heavy deformed
(with an axially symmetric quadrupole deformation β20 = β0)
or spherical fragment (A1, Z1). In addition to the motion in
ξ , we consider the relative rotation of the DNS fragments,
described by the angles �R = (θR,φR), and rotation of the
heavy fragment, described by the angles �h = (θh,φh). Angles
(θR,φR) and (θh,φh) are measured in the laboratory system
(Fig. 1). One can introduce the plain angle ε between the
symmetry axis of the heavy fragment and the vector of the
relative distance R. The classical expression for the kinetic
energy of the system with the chosen degrees of freedom
is written as a sum of terms describing the motion in mass
asymmetry, relative rotation of the DNS fragments, and
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FIG. 1. The schematic picture of the dinuclear system with the
indicated degrees of freedom used. The orientation of the vector R
connecting the centers of nuclei is defined by the angles �R =
(θR,θR) in the laboratory frame OxR . The orientation of the intrinsic
coordinate system Ohxh related to the quadrupole deformed heavy
fragment is defined by the angles �h = (θh,φh).

rotation of the heavy fragment:

T = 1
2B(ξ )ξ̇ 2 + 1

2μ(ξ )R2
m(ξ )

(
θ̇2
R + θ2

Rφ̇2
R

)
+�h(ξ )

(
θ̇2
h + θ2

h φ̇2
h

)
. (1)

Here, μ = m0
A1A2

A
≈ m0Aξ is the reduced mass of the nuclear

system (ξ � 1) where m0 is the nucleon mass. The value
of the relative distance R = Rm corresponds to the touching
configuration for a certain value of ξ . The quantities B(ξ )
and �h(ξ ) are the effective mass for the motion in mass
asymmetry and the moment of inertia of the heavy fragment (or
mononucleus). The method of calculation of B(ξ ) is described
in Ref. [42]. In this work, however, we replace the effective
mass parameter for the motion in mass asymmetry by its value
B(ξ0) at average mass asymmetry ξ0, 0 < ξ0 < ξα:

B(ξ ) = B(ξ0). (2)

The value B(ξ0) = B is then treated as a parameter of the
model. In our calculation we take B(ξ0) = 14 × 105m0 fm2.
This value is larger than the one used in our previous
calculations [18,26] because the additional degrees of freedom
considered here result in the renormalization of the mass
tensor. In Ref. [37], a similar value of B was used to describe
the excitation spectra in 220Th.

Because ξ � 1, in the quantization of expression (1) we
leave only the terms of the lowest order in ξ . As a result,
the following expression is obtained for the quantum kinetic
energy operator:

T = − �
2

2B

1

ξ

∂

∂ξ
ξ

∂

∂ξ
+ �

2

2μ(ξ )R2
m(ξ )

L2
R + �

2

2�h(ξ )
L2

h, (3)

where the angular momentum operators have the form

L2
i = − 1

sin θi

∂

∂θi

sin θi

∂

∂θi

− 1

sin2 θi

∂2

∂φ2
i

(i = R,h). (4)

The potential energy of a nuclear system with mass
asymmetry ξ is written as

U (ξ,ε) = U0(ξ ) + Uε(ξ ) sin2 ε, (5)

where ε is related to �R and �h by the expression

sin2 ε = 2

3

(
1 − 4π√

5
[Y2(�h) × Y2(�R)]00

)
. (6)

The dependence of the potential on ε is approximated by the
second-order expansion. In (5), the potential energy has a
minimum which corresponds to the pole-to-pole orientation
(ε = 0).

Using Eqs. (3) and (5) for the kinetic and potential energies,
respectively, and the expression (6) we obtain the Hamiltonian
of the model in the form

H = Hξ + Hrot + Vint(ξ,�R,�h),

Hξ = − �
2

2B

1

ξ

∂

∂ξ
ξ

∂

∂ξ
+ U0(ξ ) + 2

3
Uε(ξ ),

(7)

Hrot = �
2

2μ(ξ )R2
m(ξ )

L2
R + �

2

2�h(ξ )
L2

h,

Vint(ξ,�R,�h) = − 8π

3
√

5
Uε(ξ ){Y2(�h) × Y2(�R)}00,

where Hξ describes the motion in mass asymmetry, Hrot

describes the rotational motion of the heavy fragment and
the relative rotation of the fragments, and Vint describes the
interaction between the rotational degrees of freedom.

B. Wave functions and symmetries

The Hamiltonian (7) is diagonalized on the set of basis
functions

�
l1,l2,n
LM,π = Fn(ξ )

[
Yl1 (�h) × Yl2 (�R)

]
LM

, (8)

where n = 0,1,2, . . . , l1 = 0,2,4, . . . , l2 = 0,1,2, . . . . Be-
cause the heavy fragment is assumed by the axially symmetric
quadrupole rotator, the quantum number l1 can take only even
values. Thus, the wave function does not change under the
transformation θh → π − θh, φh → π + φh. The angular part
of the wave function (8) is given by the bipolar spherical
harmonics which provide the proper transformation with
respect to the rotation and space inversion. The parity of the
state is then determined as π = (−1)l2 .

C. Multipole moments

The reduced transition probability for the transition from
the initial state |i〉 to the final state |f 〉 is calculated as

B(Eλ; i → f ) = 1

2Ii + 1
|〈f ‖Qλ‖i〉|2, (9)

where the multipole operator Qλμ is defined as

Qλμ =
∫

ρZ(r)rλYλμ(�)dr. (10)

To obtain the expression for the multipole operator in the DNS,
we substitute the charge density operator ρZ(r) into (10) by

ρZ(r) = ρZ1 (r) + ρZ2 (r), (11)

where ρZi
(r) (i = 1,2) are the charge densities of the DNS

fragments. Using (11), we rewrite the expression of the electric
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multipole moments for the DNS as

Qλμ =
∑

λ1,λ1+λ2=λ

√
4π (2λ + 1)!

(2λ1 + 1)!(2λ2 + 1)!
qλ1λ2 (ξ )

× {
Yλ1 (�h) × Yλ2 (�R)

}
λμ

, (12)

where

qλ1λ2 =
√

4π

2λ1 + 1

[(
A1

A

)λ2

Q
(2)
λ1

+ (−1)λ2

(
A2

A

)λ2

Q
(1)
λ1

]
Rλ2 .

(13)

Here, Q
(i)
λ (i = 1,2) are the intrinsic multipole operators

of the DNS fragments. Because we assume that the light
fragment (A2,Z2) is spherical and cannot be excited in the
considered energy range, the only nonzero moment for it is
Q

(2)
0 = Z2/

√
4π . The heavy fragment is quadrupole deformed

and has nonzero moments: Q(1)
0 = Z1/

√
4π and Q

(1)
2 = Q0 ≈

3Z1R
2
01

4π
β0.

The explicit expressions for the dipole, quadrupole, and
octupole operators of the DNS are written in the form

Q1μ = ε1

√
4π

A1Z2 − A2Z1

A
R{Y0(�h) × Y1(�R)}1μ,

Q2μ = ε2

√
4π

A2
1Z2 + A2

2Z1

A2
R2{Y0(�h) × Y2(�R)}2μ

+ 4π√
5
Q0{Y2(�h) × Y0(�R)}2μ, (14)

Q3μ = ε3

√
4π

A3
1Z2 − A3

2Z1

A3
R3{Y0(�h) × Y3(�R)}3μ

− 4π

√
7

5
Q0

A2

A
R{Y2(�h) × Y1(�R)}3μ,

where εi (i = 1,2,3) are the effective charges introduced for
dipole, quadrupole, and octupole transitions.

III. DEFINITION OF PARAMETERS WITH
THE DINUCLEAR SYSTEM MODEL

The collective model with Hamiltonian (7) considers the
motion in mass asymmetry in addition to the rotational motion.
The ingredients of the Hamiltonian, such as potential energy
functions U0(ξ ) and Uε(ξ ), effective mass parameter B(ξ0),
and the moment of inertia of the heavy fragment �(ξ ) can be
treated as parameters or calculated with the DNS model.

To find U0(ξ ) and Uε(ξ ), we use the following method.
For a DNS with an α particle and Li as light fragments, we
calculate the potential energy (5) as

U (ξi,ε) = B1(ξi) + B2(ξi) + V (R = Rm(ε),β0,ξi,ε)

+ �ωR(ξi)

2
(i = α,Li). (15)

Here, B1 and B2 are the binding energies of the fragments.
The experimental ground-state masses [43], if available, are
used in the calculations. If not, the predictions of [44] are used.
The shell effects and pairing correlations are included in the
binding energies.

The nucleus-nucleus potential

V (R,ξ,β0,ε) = VC(R,ξ,β0,ε) + VN(R,ξ,β0,ε) (16)

in (15) is the sum of the Coulomb potential

VC(R,ξ,β0,ε) = e2Z1Z2

R
+ 3

5

e2Z1Z2R
2
01

R3
β0Y20(ε,0) + · · ·

(17)

and the nuclear interaction potential

VN(R,ξ,β0,ε) =
∫

ρ1(r1)ρ1(Rm − r2)F (r1 − r2)dr1dr2,

(18)

where F (r1 − r2) is the Skyrme-type density dependent effec-
tive nucleon-nucleon interaction, known as the Migdal forces
[45]. The nucleon densities ρi are approximated by Fermi
distributions with the radius parameter r0 = 1.15 fm for heavy
fragments and r0 = 1.0 fm for light ( 4He, 7Li) fragments.
The diffuseness parameter of the density distribution of a
light cluster is taken as 0.48 fm. For heavy cluster, we set
a = 0.56

√
B(0)

n /Bn where B(0)
n and Bn are the neutron binding

energies of the studied nucleus and of the heaviest isotope
of the considered element. The details of calculations are
presented in Refs. [18,46].

The nucleus–nucleus potential in (15) is calculated at R =
Rm that corresponds to the minimum of the potential pocket in
relative distance coordinate R [46]. The last term in (15) repre-
sents the energy of zero point vibration in this pocket. In agree-
ment with the assumption (5), the potential energy (15) as a
function of relative orientation of the fragments has a minimum
which corresponds to the pole-to-pole orientation (ε = 0).

The values Uα and ULi calculated with Eq. (15) are used to
interpolate the ξ dependence of the potential energy smoothly
by the polynomial. The value of the potential energy U0(ξ = 0)
for the mononucleus configuration, which is also required for
the interpolation, is fitted to reproduce the value of the nuclear
binding energy corresponding to the lowest eigenstate. To
parametrize the angular dependence in (5), we set Uε(ξ ) =
Cξ/2 and fix the value of C by fitting the ε dependence of the
potential energy of the α-particle DNS.

For the potential energy of the α and Li DNS, the
calculations give U (ξα,ε = 0) = 2.58 MeV and U (ξLi,ε = 0)
= 20.05 MeV, respectively. The values of �ωR(ξα,ε) = 6.02
MeV and �ωR(ξLi,ε) = 4.85 MeV are calculated by solving
the Schrödinger equation in R in the potential pocket around
R = Rm(ε), for each value of angle ε. For simplicity, the
potential pocket in the vicinity of the R = Rm is fitted by
the Morse potential. As found, the dependence of the �ωR on
ε is rather weak. For example, for the α-particle DNS, when
ε varies from 0 to π/2, the frequency �ωR increases by only
220 keV. The calculated angular dependence of the energy of
the α-particle DNS is shown in Fig. 2. Fitting this dependence
with the expression (5), we get Uε(ξ ) = 2.58 MeV.

Another quantity required to determine the energy spectrum
with the Hamiltonian (7) is the moment of inertia of the heavy
fragment. As shown in Ref. [17], the highly deformed states
are well described, as the cluster systems and their moments of
inertia are about 85% of the rigid-body limit. Microscopically
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FIG. 2. Potential energy of the alpha-particle DNS as a function
of angle ε. The values calculated with (15) are shown by dots. The
line represents the fit of calculated points with the expression (5).

this effect can be related to the fact that the formation of
the cluster in the surface region of the nucleus destroys the
pairing correlations and leads to the increase in the moment
of inertia. Thus, if we assume a pure cluster superposition
(the weight of configurations with ξ � ξα is negligible) the
moment of inertia of the heavy fragment must be taken as
�h(ξ ) = 0.85�(rig)

h (ξ ), where the rigid body moment of inertia
�(rig)

h (ξ ) is calculated with the deformation parameters from
[43]. However, this procedure cannot be applied at ξ < ξα . To
overcome this difficulty, we assume the moment of inertia of
the heavy fragment in the form

�h(ξ ) = c(ξ )�(rig)
h (ξ ), (19)

where

c(ξ ) =
{

0.85, ξ > ξα,

c0 + (0.85 − c0) ξ
ξα

, ξ < ξα.
(20)

The quantity c0 is a scaling parameter which is fixed by the
calculation of the energy of the 2+ state of the ground-state
band. If the long spin bands are considered, the effect of
centrifugal stretching must be included by adding smooth
dependence of c0 on I . In the calculation of the energy
spectrum for 240Pu presented below, the scaling parameter c0

is taken in the form c0 = 0.42[1 + 4.8 × 10−4I (I + 1)]. So,
the values of c0 and B(ξ0) are the only parameters in our model
which are not determined within the cluster approach. Other
values are calculated and can be used for describing many
nuclei. However, the value of B(ξ0) can be crudely estimated
as in Ref. [42].

IV. CALCULATED RESULTS

A. Energy spectrum

The energy spectrum of 240Pu, calculated by diagonalizing
the Hamiltonian (7), is presented in Fig. 3. In the calculation
we use the parameter set defined in the DNS approach (see
Sec. III). One can see that the lowest excited states can be

FIG. 3. Low-lying states of 240Pu obtained by the diagonalization
of the Hamiltonian (7). They can be gathered into the rotational bands
marked as A, B, C, D, and E. Using the asymptotic solution for large
angular momenta (see Appendix), the approximate value of quantum
number K can be assigned to each band. For the bands A and D, we
get Kπ = 0+, for the bands B and E, Kπ = 0−, and for the band C,
Kπ = 1−.

gathered into the rotational bands, according to which basis
function from the set (8) mostly contributes to the wave
function of the state.

For the qualitative analysis of the structure of the spectrum,
one can approximate the wave function by separating the
motion in the mass asymmetry degree of freedom from the
angular motion. Then we see that the rotational bands A, B,
and C are built on the lowest state, whereas the bands D and
E are built on the first excited state in the mass asymmetry
coordinate. In this work, we are mainly interested in the
structure and transitions involving states of bands A, B, and
D. The results of calculations show that the wave functions
of these bands, for not too large angular momentum, can be
approximately written in the form

�A
IM = φ0(ξ,I ){γA(I )[I × 0]IM + δA(I )[(I − 2) × 2]IM},

�B
IM = φ0(ξ,I ){γB(I )[(I − 1) × 1]IM

+ δB(I )[(I + 1) × 1]IM + εB(I )[(I − 3) × 3]IM},
�D

IM = φ1(ξ,I ){γD(I )[I × 0]IM + δD(I )[(I − 2) × 2]IM},
(21)
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where φ0(ξ,I ) and φ1(ξ,I ) are the lowest and first excited states
in the mass asymmetry coordinate, respectively. For the basis
states in angular degrees of freedom, we use the shorthand
notation

[l1 × l2]IM ≡ [
Yl1 (�h) × Yl2 (�R)

]
IM

. (22)

The amplitudes γi(I ), δi(I ), and εi(I ), (i = A,B,D) are the
functions of angular momentum. At low angular momenta
γi(I )  δi(I )  εi(I ). With increasing angular momentum,
however, their values approach each other. In principle,
Eqs. (21) can be used as a variational wave functions to
find the approximate solutions of the Hamiltonian (7). This
procedure is only valid for relatively small angular momenta.
With increasing angular momenta more basis states start to
contribute to the wave functions.

For the ground-state rotational band A, the angular part
of the wave-function of the state with angular momentum I is
roughly described by the function [Yl1=I (�h) × Yl2=0(�R)]IM .
Because π = (−1)l2 , the ground-state band contains only
the states of positive parity with even angular momen-
tum I . The wave functions of the lowest negative par-
ity states of the band B have the dominant component
[Yl1=I−1(�h) × Yl2=1(�R)]IM . They form a rotational band
which contains the states of odd angular momentum and
negative parity. This band can be interpreted as the Kπ =
0− band. One should note that each eigenfunction of the
Hamiltonian (7) is a superposition of the states with different
K values and, thus, K can be considered as a quantum number
only approximately. The next lowest band C of negative
parity is formed from the states with the main contribution
of [Yl1=I+1(�h) × Yl2=1(�0)]IM component for odd angular
momentum and [Yl1=I (�h) × Yl2=1(�0)]IM component for
even angular momentum. This band can be assigned to Kπ =
1−. In this case the angular momentum carried by the relative
rotation is oppositely directed to the total angular momentum,
thus shifting up the energy of this rotational band with respect
to the 0− band.

The first excited 0+ state corresponds to the lowest
excitation in the mass-asymmetry coordinate. Treating this 0+
state similar to the ground state, all the constructions above can
be repeated. So, the bands D and E are analogous to the bands
A and B but built on the first excited state in ξ . This explanation
of the nature of the excited reflection-asymmetric 0+ band is
different from that in Ref. [33], where it is considered as a
two-octupole boson excited state. As seen in the Appendix,
the chosen K values corresponds to the asymptotic quantum
numbers of the bands for large angular momentum values,
when the reflection-asymmetric deformation becomes stable
and the rotational reflection-asymmetric bands are formed. So,
the assignment of K values to the bands is quite justified.

Note that the spectrum given in Fig. 3 is typical for
the quadrupole-deformed actinides [47]. The structure of
the spectra changes for the actinides with small or almost
zero quadrupole deformation (see, for example, 220Th in
Refs. [37,38]) because the relative rotation of the clusters starts
to play a role. The disregard of this rotation in Ref. [18] causes
the disagreement, which was pointed in Ref. [27], between the
predictions and the recent measurement of the strength of E3
transitions in the light Ra and Rn isotopes.

The excitation spectra and the structure of the wave
functions of the excited states strongly depend on the ratio
of the frequency ωh = �

2/[2�(ξ̄ )] of the rotation of heavy
fragment to the frequency ωR = �

2/[2μ(ξ̄ )R2
m(ξ̄ )] of the

relative rotation of the clusters. Here, ξ̄ is the average mass
asymmetry for a certain state. When the nucleus has strong
quadrupole deformation, ωh/ωR � 1 and only a small fraction
of the angular momenta contributes to the relative rotation. In
this case, the states [Yl1=I±1(�h) × Yl2=1(�R)]IM significantly
contribute to the structure of the lowest negative parity
states [γB  δB  εB in Eqs. (21)]. For weakly deformed
or transitional nuclei, ωh/ωR ∼ 1 and the contribution of the
state [Yl1=I−3(�h) × Yl2=3(�R)]IM becomes important as well
(γB ∼ εB  δB).

As seen from Eqs. (14), the expression for the octupole
moment has two terms of opposite signs. The first term selects
the basis states with (�l1 = 0,�l2 = 3), whereas the second
term selects the states with (�l1 = 2,�l2 = 1). Because the
amplitude εB is negligible for a strongly deformed nucleus,
the first term of the operator Q3μ gives almost no contribution
to the octupole transition strength. In a weakly deformed
nucleus, γB ∼ εB , and we expect that two terms of the
operator Q3μ negate each other and, thus, the strength of the
octupole transition remains small. This qualitative discussion
suggests that the recent experimental data on the strength of
E3 transitions in the transitional and vibrational Ra and Rn
isotopes [27] can be described in the frame of the model
proposed. A detailed quantitative analysis with the proper
intrinsic Hamiltonian for heavy fragments will be done in
future.

The bands presented in Fig. 3 exhaust the lowest states
of the Hamiltonian (7). All other solutions lie at sufficiently
higher excitation energies. However, there are bands assigned
to Kπ = 0+, 2+, and 2− which are absent in the calculated
spectrum. The possible reason for this is that the present
version of the model disregards the β and γ vibrations of
the heavy fragment with stable axially symmetric quadrupole
deformation. With these vibrations the calculated spectra of
actinides would contain additional 0+ and 2+ rotational bands,
built on the β and γ vibrational excitations, respectively. We
can also expect the appearance of additional low-lying 0−
and 2− bands, as a negative parity doublets to the β and γ
vibrational bands. Note that the alternative explanation of the
appearance of the low-lying 2− bands in actinides is based on
the concept of tetrahedral deformation [48,49].

The energies of the lowest rotational bands with the angular
momentum up to I = 30 are given in Table I together with the
available experimental data [32]. The agreement between the
calculated and experimental excitation spectra is rather good
for all rotational bands considered.

B. Parity splitting

The ground state band A and the first negative parity
band B are usually treated as a unified alternating parity
rotational band. In the case of stable reflection-asymmetric
deformation, the alternating parity band contains positive and
negative parity states, forming the smooth rotational band
0+,1−,2+,3−, . . . . In actinides, however, the negative parity
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TABLE I. Calculated (calc.) and experimental (exp.) energies of the members of the lowest positive and negative parity bands in 240Pu.
Experimental data are taken from Ref. [32].

Band A Band B Band C Band D

I calc. exp. I calc. exp. I calc. exp. I calc. exp.
(MeV) (MeV) (MeV) (MeV)

0+ 0.000 0.000 1 − 0.602 0.597 1− 0.909 0.938 0+ 0.865 0.861
2+ 0.043 0.043 3 − 0.659 0.649 2− 0.934 0.959 2+ 0.900 0.900
4+ 0.143 0.142 5 − 0.763 0.742 3− 0.979 1.002 4+ 0.983 0.992
6+ 0.298 0.294 7 − 0.911 0.878 4− 1.025 1.038 6+ 1.112 1.138
8+ 0.505 0.497 9 − 1.103 1.057 5− 1.103 1.116 8+ 1.285 1.323
10+ 0.760 0.747 11− 1.327 1.278 6− 1.166 1.162 10+ 1.499 1.557
12+ 1.061 1.041 13− 1.610 1.540 7− 1.279 12+ 1.753 1.830
14+ 1.403 1.375 15− 1.920 1.842 8− 1.355 14+ 2.044 2.137
16+ 1.782 1.746 17− 2.264 2.183 9− 1.502 16+ 2.369 2.475
18+ 2.194 2.152 19− 2.641 2.561 10− 1.589 18+ 2.726 2.837
20+ 2.636 2.590 21− 3.048 2.974 11− 1.769 20+ 3.114 3.218
22+ 3.105 3.060 23− 3.484 3.421 12− 1.866 22+ 3.532 3.627
24+ 3.599 3.559 25− 3.947 3.901 13− 2.075 24+ 3.979 4.064
26+ 4.115 4.086 27− 4.439 4.411 14− 2.182 26+ 4.454 4.531
28+ 4.652 4.639 29− 4.958 4.950 15− 2.416 28+ 4.963 5.030
30+ 5.210 5.220 5.512 16− 2.535 30+ 5.505 5.559

6.096 17− 2.785
18− 2.922
19− 3.172
20− 3.340
21− 3.576
22− 3.790
23− 3.999
24− 4.266
25− 4.447
26− 4.770
27− 4.919
28− 5.301
29− 5.420
30− 5.860

states are shifted up with respect to their expected position.
This shift is quantitatively described by means of the parity
splitting defined as [50]

S(I−) = E(I−) − (I + 1)E+
(I−1) + IE+

(I+1)

2I + 1
. (23)

This expression provides a zero value of parity splitting for the
rotational band of a nucleus with rigid octupole deformation.
The experimental and calculated values of the parity splitting
in the ground state and the first negative parity bands of 240Pu
are shown in Fig. 4. Having maximum value in the beginning of
the band, the parity splitting decreases with increasing angular
momentum. The reason for this is the following. The moment
of inertia of the mononucleus is sufficiently smaller than the
rigid body moment of inertia. Due to this fact, the energies of
the cluster configurations decrease with respect to the energies
of the mononucleus with increasing angular momentum. As
a result, the average mass asymmetry increases with angular
momentum as well. The behavior of the mass asymmetry with
angular momentum for different rotational bands is illustrated
in Table II. According to Eq. (5) the barrier between left and

right positions of the light cluster with respect to the heavy
one increases with mass asymmetry. Thus, the motion of the

FIG. 4. Calculated (lines) and experimental (points) values of
parity splitting for 240Pu [see Eq. (23)]. Experimental values are taken
from the data of Ref. [32].
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TABLE II. Calculated average mass asymmetry ξ for the mem-
bers of the ground-state band A, the second excited positive parity
band D, and the lowest negative-parity band B in 240Pu.

I+
A,D ξA ξD I−

B ξB

0 0.196 0.396 1 0.333
2 0.197 0.397 3 0.335
4 0.200 0.400 5 0.338
6 0.203 0.404 7 0.343
8 0.209 0.410 9 0.350
10 0.215 0.417 11 0.359
12 0.224 0.426 13 0.369
14 0.235 0.435 15 0.381
16 0.247 0.445 17 0.394
18 0.263 0.455 19 0.409
20 0.282 0.464 21 0.425
22 0.305 0.469 23 0.442
24 0.333 0.474 25 0.459
26 0.367 0.473 27 0.478
28 0.407 0.469 29 0.498
30 0.453 0.464

system changes from the limit in which heavy fragment and
light fragments rotate almost independently of each other to
the limit in which the light fragment is localized at the pole of
the heavy fragment. In the former case, which is realized for
large angular momenta, the motion can be approximated as
the rotation of the nucleus with stable reflection-asymmetric
deformation.

C. Multipole transitions

With the wave functions obtained one can find the reduced
transition matrix elements of the electric dipole and quadrupole
moments defined in Eqs. (14). The results are summarized in
Tables III and IV. The effective charge for E2 transitions is
set to be unity, ε2 = e. For the E1 transition, the effective
charge is taken as ε1 = 0.1e. The reason to introduce this
renormalization is the following. As seen from Eqs. (14), the
results for the absolute values of the electric dipole moment are
sensitive to the difference in Z/A ratios of the fragments. In the
present calculations we do not consider the charge asymmetry
as an independent coordinate. Instead, we take the Z/A ratio
in the light fragment equal to 0.5 as in the α particle. This
consideration is, of course, oversimplified and requires the
introduction of the effective charge.

The calculated reduced matrix elements for the quadrupole
transitions are listed in Table III. The quadrupole moment
weakly depends on angular momentum. The quadrupole op-
erator is a sum of two terms. Even for the pure cluster system,
the dominate term of the quadrupole moment is generated by
the strongly deformed heavy fragment while the presence
of the light fragment gives only a small correction. Due to
this fact, the quadrupole moment for the pure mononucleus
is almost the same as for the pure cluster system with
an α particle. Thus, even though the relative weights of
the mononucleus and α-particle cluster system vary, the
quadrupole moment remains almost the same.

TABLE III. Calculated E2-transition matrix elements
〈I+

A ‖E2‖(I + 2)+A〉 and 〈I+
D ‖E2‖(I + 2)+D〉 between the members

of the ground-state band A and excited reflection asymmetric
positive parity band D, respectively, and the matrix elements
〈I+

A ‖E2‖(I + 2)+D〉 of the interband transitions in 240Pu.

I 〈I+
A ||E2||(I + 2)+A〉 〈I+

D ||E2||(I + 2)+D〉 〈I+
A ||E2||(I + 2)+D〉

(e b) (e b) (e b)

0 3.905 4.131 0.075
2 6.264 6.630 0.086
4 7.904 8.375 0.069
6 9.254 9.821 0.037
8 10.434 11.094 0.004
10 11.499 12.252 0.050
12 12.483 13.328 0.100
14 13.408 14.338 0.158
16 14.290 15.291 0.224
18 15.144 16.186 0.310
20 15.978 17.018 0.419
22 16.823 17.776 0.588
24 17.675 18.449 0.837
26 18.565 19.051 1.093
28 19.498 19.577 1.356

Another consequence of the fact that the quadrupole
moment weakly depends on the mass asymmetry is the
suppression of the interband transitions. Our calculations
suggest that the band D is built on the first excited state in
ξ . Therefore, the quadrupole transitions from the band D to
the ground state band A are expected to be weak. The reduced
matrix elements for these transitions are presented in the last
column of the Table III. The matrix elements for the interband
transitions are almost two orders of magnitude smaller than
those for the intraband transitions.

The calculated reduced matrix elements of dipole transi-
tions are listed in Table IV. Using the results of Table IV,
we extract the dipole moment as a function of the angular
momentum with the expression [3]

B(E1,Ii → If ) = 1

2Ii + 1
|〈Ii‖E1‖If 〉|2

= 3

4π

(
C

If 0
Ii0 10

)2
D2

0 . (24)

The results are shown in Fig. 5. The dipole moment is an
increasing function of angular momentum. Our model suggests
the following explanation of this effect. Due to different
N/Z ratios in the fragments, the dipole moment for the
α-particle cluster system is large (for the pure α-particle DNS,
D0 ≈ 4 e fm). With increasing angular momentum the weight
of the cluster configuration with an α particle increases as well
as the dipole moment. As seen, at Ii < 10 the dipole moment
for the transition between the ground-state band and the first
negative parity band lies in the range D0 ≈ (0.05–0.08) e fm.
It increases with angular momentum and achieves the value
∼0.15 e fm for Ii > 20. This result is in a good agreement
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TABLE IV. Calculated E1-transition matrix elements
〈I+

A ‖E1‖(I + 1)−B 〉 between the members of the ground-state
band A and the lowest negative-parity band B, and matrix elements
〈I+

D ‖E1‖(I + 1)−B 〉 between the members of excited positive parity
band D and the band B in 240Pu.

I+
i I+

f 〈I+
A ‖E1‖(I ± 1)−B 〉 〈I+

D ‖E1‖(I ± 1)−B 〉
(e fm) (e fm)

0 1 0.029 0.047
2 1 0.037 0.061
2 3 0.053 0.079
4 3 0.050 0.086
4 5 0.072 0.104
6 5 0.058 0.105
6 7 0.089 0.125
8 7 0.065 0.122
8 9 0.106 0.145
10 9 0.072 0.140
10 11 0.123 0.163
12 11 0.080 0.160
12 13 0.141 0.181
14 13 0.089 0.182
14 15 0.160 0.197
16 15 0.102 0.207
16 17 0.181 0.211
18 17 0.117 0.233
18 19 0.206 0.223
20 19 0.138 0.260
20 21 0.233 0.232
22 21 0.165 0.285
22 23 0.265 0.235
24 23 0.199 0.307
24 25 0.302 0.233
26 25 0.243 0.323
26 27 0.344 0.223
28 27 0.297 0.330
28 29 0.391 0.203
30 29 0.360 0.325

with the experiment which suggests D0 ∼ 0.2 e fm for
I � 21 [30].

For 240Pu, the calculated D0/Q0 ratio is presented in Fig. 6.
One can see a good agreement with the available experimental
data [30]. It is worth noting that our model predicts strong
increase of D0/Q0 ratio at Ii � 21. It is presently hard to
confirm this prediction because of the large experimental error
bars at large angular momentum.

As seen in Fig. 5, the dependence of the dipole moment
on angular momentum demonstrates a staggered behavior.
The dipole moment for the transition from state I of the
ground-state band A to state (I + 1) of the first negative
parity band B is generally larger than for the transition to
state (I − 1) of band B. To understand the reason of this
staggering, we use the approximate expressions for the wave
functions of various bands (21). The basis functions (8),
which mostly contribute to the state IA, have an angular
part [Yl1=I (�h) × Yl2=0(�R)]IAMA

. For the states (I + 1)B
and (I − 1)B of band B, the angular parts of the wave

FIG. 5. Transition dipole moment D0 for the transitions between
the first negative-parity band B and the ground-state band B (a), and
between the first negative parity band and the second excited 0+ band
D (b) as a function of the initial spin I .

functions are mainly defined by [Yl1=I (�h) × Yl2=1(�R)]I+1 M

and [Yl1=(I−2)(�h) × Yl2=1(�R)]I−1 M , respectively. As fol-
lows from expression (14), the dipole operator cannot change
the angular momentum of the heavy fragment. Thus, the
transition IA → (I − 1)B is hindered.

With increasing angular momentum the structure of the
states becomes more complicated. For example, at I � 15
the contribution of the basis states [Yl1=(I−2)(�h) ×
Yl2=2(�R)]IAMA

to the wave functions of the ground-state band
cannot be neglected. Because of this, the hindrance mechanism
described loses its significance. As seen in Fig. 5(a), the
staggering of D0 decreases at large values of angular mo-
mentum. One can expect that with further increase of angular
momentum the spectrum approaches its rotational limit (see
Appendix) and the staggering completely disappears.

The role of the structure of the wave functions is even
more pronounced in the behavior of the dipole moment ex-
tracted from the reduced matrix elements 〈I+

D ‖E1‖(I ± 1)−B 〉
for the E1 transitions from the 0+ band D to the first
negativeparity band B. This behavior is illustrated in Fig. 5(b).
The structure of the band D is more complicated than
the structure of the ground-state band. Even in the be-
ginning of the band the contribution of the basis function
[Yl1=(I−2)(�h) × Yl2=2(�R)]IDMD

is important. Thus, for small
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FIG. 6. Ratio of transition dipole and quadrupole moments ex-
tracted from the E1 and E2 branching ratio B(E1,I−

B → (I − 1)+A)/
B(E2,I−

B → (I − 2)−B ) as a function of IB . The experimental results
are extracted from Ref. [30].

angular momentum the staggering of D0 is weak. However,
with increasing angular momentum the staggering starts to
grow and change its pattern. From the approximate wave
functions (21) it is clear that this staggering appears due to the
contribution of the basis state [Yl1=(I−3)(�h) × Yl2=3(�R)]IBMB

to the wave function of the band B at large angular momenta.
In Table IV, the calculated values of the reduced ma-

trix elements 〈I+
D ‖E1‖(I − 1)−B 〉 and 〈I+

A ‖E1‖(I + 1)−B 〉 are
similar. This is in a good agreement with the experimental
observations [31]. In this experiment, the branching ratios
B(E1)/B(E2) were measured between the E1 transition from
band D to tband B and the E2 transition in band D. It was
found that the E1 transitions linking bands D and B are
similar to those linking bands B and A. The B(E1)/B(E2)
branching ratios between out-of-band and in-band transitions
are of the same magnitude within the error bars. The results
presented in Ref. [31] provide the value D0 � 0.2 e fm for
I > 25 both for transitions linking bands D and B and for
transitions linking bands B and A. In our calculations, we
obtain D0 ∼ (0.13–0.16) e fm, which agrees well with the
experimental data.

In the recent experiment [29], the branching B(E1,ID →
IB)/B(E2,ID → IA) ratios were investigated for the transi-
tions to the negative parity band B and to the ground-state
band. As seen in the Table V, the calculated results are in
overall agreement with the experimental data. The values
of B(E1,ID → IB)/B(E2,ID → IA) are of the order of ∼
10−6 fm−2, which is significantly larger than the branching
ratios B(E1,IB → IA)/B(E2,IBi

→ IBf
) ∼ 10−9 fm−2 even

at large spins. The reason for this is that the interband E2
transitions ID → IA are strongly suppressed.

V. SUMMARY

We suggested the cluster interpretation of the properties
of multiple negative parity bands in deformed even-even
actinides. The collective motion related to the cluster degree

TABLE V. Calculated rcalc. = B(E1,ID → IB )/B(E2,ID → IA)
ratios are compared with the experimental values (rexp.) for the
low-spin members of the Kπ = 0+

2 rotational band in 240Pu. The
experimental values are taken from Ref. [29].

Iπ
D Iπ

B,E1 Iπ
A,E2 rexp. rcalc.

(10−6 fm−2) (10−6 fm−2)

0+
2 1−

1 2+
1 13.7(3) 16.64

2+
2 1−

1 0+
1 99(15) 66.92

2+
2 1−

1 2+
1 26(2) 30.73

2+
2 1−

1 4+
1 5.9(3) 8.14

2+
2 3−

1 0+
1 149(22) 110.94

2+
2 3−

1 2+
1 39(2) 50.99

2+
2 3−

1 4+
1 8.9(5) 13.50

4+
2 3−

1 6+
1 4.4(11) 6.97

4+
2 5−

1 6+
1 4.7(13) 10.29

of freedom leads to the admixture of very asymmetric cluster
configurations to the intrinsic nucleus wave function. To take
into account the reflection asymmetric modes with K �= 0,
the rotational excitations of the heavy cluster are taken into
account. The resulting energy spectrum consists of the ground
state band, the excited 0+ band, and several negative parity
rotational bands which can be interpreted as Kπ = 0− and
Kπ = 1− bands. As an example, 240Pu was treated. The
angular momentum dependence of the parity splitting is well
described. The results of calculations support the cluster
feature of low-lying negative parity states and some excited
0+ bands. Comparing with our previous calculations for 220Th
[37], we note the weak variation of the parameters of the
model. So, the predictive power of the cluster approach seems
to be quite high.
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APPENDIX: BENDING MOTION

Let us consider the case of fixed mass asymmetry ξ0.
This corresponds to the potential in mass asymmetry with
an infinitely deep minimum at ξ = ξ0. The angular part of the
Hamiltonian (7) is

H = �
2

2�h

l2
1 + �

2

2μR2
m

l2
2

+Uε(ξ0)

(
2

3
− 8π

3
√

5
[Y2(θ1,φ1) ⊗ Y2(θ2,φ2)]00

)
. (A1)
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In the case of large Uε(ξ0), the problem is reduced to
the rotation of the DNS system as a whole and the angular
oscillations of the light cluster around its equilibrium position
at the pole of the heavy cluster (so-called bending oscillations).
The potential energy has a shape of two deep minima
divided by the high barrier. Neglecting the penetration of
the barrier, we can consider the oscillations in the vicinities
of ε = 0 and ε = π independently. The two states related
to these values are degenerate and the states of correct
parity are constructed as a superposition of these two states.
Thus, in this approximation the parity splitting is zero. The
Hamiltonian of bending motion can be rewritten in terms of
Euler angles � = (θ1,θ2,θ3) of the DNS rotation as a whole
and the bending angle ε as follows (sin ε ≈ ε or sin ε ≈
π − ε):

H = Hrot + Hbend + Vint,

Hrot = �
2

2μR2
m

(L2 − 2L′
3),

(A2)

Hbend = �
2

2�b

1

ε

∂

∂ε
ε

∂

∂ε
+ �

2

2�bε2
L′2

3 + C

2
ε2,

Vint = �
2

2μR2
m

[
1

ε
(L′

1L
′
3 + L′

3L
′
1) + 2iL′

2
1√
ε

∂

∂ε

√
ε

]
,

with �b = �hμR2
m

�h+μR2
m

. Neglecting Vint, the problem is analytically
solved and

�n,L,M,K = DL
MK (θ1,θ2,θ3)Ln,|K|

(
ε2/ε2

0

)
,

(A3)

EL,M,K,n = �
2

2μR2
m

[L(L+1)−2K2] + �
2

�bε
2
0

(2n + |K| + 1),

where ε2
0 = �/

√
C�b. Without Vint we get incorrect depen-

dence of energy on K . Because Uε(ξ0)  1 or ε0 � 1, the
Vint can be taken into account up to the zero order of ε0. The
corresponding correction provides

�n,L,M,K =
k=K+2∑
k=K−2

∑
n

a(n,k)DL
M,k(θ1,θ2,θ3)Ln,|k|

(
ε2

/
ε2

0

)
,

EL,M,K,n = �
2

2
(�h + μR2

m

) (L(L + 1) − K2)

+ �
2

�bε
2
0

(2n + |K| + 1). (A4)

The moment of inertia is now given as a total moment of inertia
and K becomes an approximate quantum number. The rotation
energy correctly depends on K . So, in the limit of stable
reflection asymmetric deformation, the excitation spectra of
the model Hamiltonian (7) is represented as a sequence of
rotational bands built upon the vibrational states with given n
and K values.
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