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Swelling of nuclei embedded in neutron-gas and consequences for fusion

A. S. Umar,1,* V. E. Oberacker,1,† C. J. Horowitz,2,‡ P.-G. Reinhard,3,§ and J. A. Maruhn4,‖
1Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA

2Department of Physics and CEEM, Indiana University, Bloomington, Indiana 47405, USA
3Institut für Theoretische Physik, Universität Erlangen, D-91054 Erlangen, Germany

4Institut für Theoretische Physik, Goethe-Universität, D-60438 Frankfurt am Main, Germany
(Received 12 May 2015; revised manuscript received 13 August 2015; published 28 August 2015)

Fusion of very neutron rich nuclei may be important to determine the composition and heating of the crust
of accreting neutron stars. We present an exploratory study of the effect of the neutron-gas environment on the
structure of nuclei and the consequences for pycnonuclear fusion cross sections in the neutron drip region. We
studied the formation and properties of oxygen and calcium isotopes embedded in varying neutron-gas densities.
We observe that the formed isotope is the drip-line nucleus for the given effective interaction. Increasing the
neutron-gas density leads to the swelling of the nuclear density. We have used these densities to study the effect
of this swelling on the fusion cross sections using the São Paulo potential. At high neutron-gas densities the cross
section is substantially increased but at lower densities the modification is minimal.
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I. INTRODUCTION

Recent advances in radioactive beam technologies have
opened up new experimental possibilities to study fusion
of neutron rich nuclei [1]. Furthermore, near barrier fusion
cross sections are relatively large so experiments are feasible
with modest beam intensities. In addition, measurements
are possible at the TRIUMF ISAC facility and in the near
future at the NSCL ReA3-6 reaccelerated beam facility. Other
radioactive ion beam facilities include ATLAS-CARIBU at
Argonne National Laboratory, SPIRAL2 at GANIL (France),
and RIBF at RIKEN (Japan). Note that the dynamics of the
neutron rich skin of these nuclei can enhance the cross section
over that predicted by a simple static barrier penetration model.
For example, neutrons may be transferred from the neutron rich
beam to the stable target. Fusion of very neutron rich nuclei,
near the drip line, raise very interesting nuclear structure and
nuclear dynamics questions.

Neutron stars, in binary systems, can accrete material
from their companions. This material undergoes a variety
of nuclear reactions [2]. First at low densities, conventional
thermonuclear fusion takes place, see for example [3]. Next
at higher densities, the rising electron Fermi energy induces a
series of electron captures [4] to produce increasingly neutron
rich nuclei. Finally at high densities, these very neutron rich
nuclei can fuse via pycnonuclear reactions. Pycnonuclear
fusion is induced by quantum zero point motion [5,6]. The
energy released, and the densities at which these reactions
occur, are important for determining the temperature and
composition profile of accreting neutron star crusts. The
existence of the inner neutron-star crust, in which very neutron
rich nuclei are immersed in a gas of neutrons raises the
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question, what is the impact of this neutron gas on nuclear
fusion rates? This neutron drip region is believed to occur
for densities in the approximate range of a few ×1011 to
8×1013 g/cm3. One of the early studies of the inner crust,
consisting of drip-line nuclei combined with the background
neutron gas, had been done by Negele and Vautherin [7].
Therefore understanding fusion reactions of neutron rich
isotopes near the drip line are important. Horowitz et al. [8]
calculate the enhancement in fusion rates from strong ion
screening using molecular dynamics simulations, and find that
24O + 24O can fuse near 1011/g/cm3, just before neutron drip.
Extensive studies of the astrophysical S(E) factors have been
done using densities emanating from microscopic calculations
and a barrier penetration model for fusion [9,10]. Furthermore,
this fusion can take place in the background neutron gas that is
present in the inner crust of a neutron star. The possible effect
of the neutron gas background was discussed in Ref. [10] by
empirically changing the barrier height and width. Here, we
study this effect by considering the presence of the background
neutron gas microscopically by directly including the neutron
gas and the nucleus in the same framework. We explicitly
calculate the self-consistent proton and neutron densities of a
single nucleus in equilibrium with the background neutron gas.
Furthermore, for astrophysical applications, it seems clear that
this adiabatic approach is the one that is relevant for calculating
fusion rates in the inner crust. The neutron gas should have
plenty of time to adjust to the presence of a nucleus.

The paper is organized as follows. Our computational
approach to consider the presence of neutron gas together
with the nucleus and the model for calculating the fusion cross
sections is discussed in Sec. II. Computational results for the
oxygen and calcium systems are described in Sec. III. Finally,
these results are discussed and we conclude in Sec. IV.

II. COMPUTATIONAL DETAILS

A. Computational setup

Hartree-Fock (HF) calculations were done in a
three-dimensional Cartesian geometry with no symmetry
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assumptions and using the Skyrme effective nucleon-nucleon
interaction [11]. The infinite neutron star crust environment
is simulated by using a three-dimensional Cartesian box
with periodic boundary conditions for both the bound and
neutron gas states as well as the solution of the Poisson
equation for the Coulomb potential, which is performed using
fast-Fourier transform (FFT) techniques [12]. The Coulomb
solution assumes global neutrality which means that the
proton charges are compensated by a homogeneous negative
electron gas cloud. In practice, this is achieved by setting the
zero-momentum part of the Coulomb field in Fourier space to
zero. The code uses the basis-spline collocation method for the
lattice discretization of the HF equations using periodic bound-
ary conditions as described in Refs. [13–15]. The HF equations
are solved using the damped gradient iteration method. The
Skyrme parametrization used was SLy4 [16]. In addition to
providing a good description of nuclei this interaction has been
used to produce an equation of state for neutron stars [17].

For the choice of initial states to be used in HF minimization
we have tried a number of choices, which all resulted in the
same identical solution. One can first generate any isotope of
the desired nucleus by solving the HF equations as described
above and subsequently combine these states with a large
number of free neutron gas states and minimize the entire
system again. Alternately, one can simply choose a number
of free proton states together with a large number of free
neutron states and minimize this system. Both methods
result in exactly the same numerical solution with a drip-line
isotope corresponding to the nucleus with the given number
of protons embedded in a given density of neutron gas states.
Initial states, ψ , are spinors with a nonzero upper component
in case of time-reversal invariance. In case of no time-reversal
invariance the number of states are doubled by adding spinors
having nonzero lower components as well. They satisfy the
periodicity condition

ψn(r + L) = ψn(r) , (1)

where n = (nx,ny,nz) and na taking on integer values
−Na, . . . , + Na . Free states satisfying the above periodicity
condition are simple plane-wave states with the appropriate
normalization

ψn(r) = 1√
LxLyLz

eı(knx x+kny y+knz z)χn , (2)

where kna
= 2πna/La and χn is an up or down spinor. The

initial neutron and proton densities are perfectly uniform
filling the entire numerical box. These initial states comprise
the total number of states used in the self-consistent HF
problem using the Skyrme interaction. For even number
of states time-reversal is valid and the HF single-particle
Hamiltonian only depends on particle density, ρ, kinetic
energy density. τ , and the spin-orbit pseudotensor J through
the single-particle states [16]

h({φμ})φλ = ελφλ λ = 1, . . . ,N. (3)

As the HF iterations proceed (preserving orthogonality for
the entire system) some states evolve to form a bound nuclear
system while the others remain as gas states showing some
nonuniformity due to the presence of shell effects.

B. Fusion cross sections

The São Paulo model of fusion calculates an effective nu-
clear potential based on the density overlap between colliding
nuclei [18,19]. Sub-barrier fusion cross sections can then be
calculated via tunneling. The model can be easily applied to
a very large range of fusion reactions and qualitatively repro-
duces many experimental cross sections [20,21]. Recently this
model was used to tabulate astrophysical S factors describing
fusion of many carbon, oxygen, neon, and magnesium isotopes
for use in astrophysical simulations [9], see also Ref. [22].

In this section we describe the São Paulo barrier penetration
model to calculate fusion cross sections. This starts with the
double folding potential VF (R) [18,19],

VF (R) =
∫

d3r1d
3r2ρ1(r1)ρ2(r2)V0δ(r1 − r2 − R) . (4)

Here ρ1 and ρ2 are the densities of the two nuclei and V0 =
−450 MeV fm3. From VF a nonlocal potential VN (R,E) is
constructed, VN (R,E) = VF (R)e−4v2/c2

, where v is the local
relative velocity [18,19] between the two nuclei at separation
R (c is the speed of light)

v2(R,E) = 2

μ
[E − VC(R) − VN (R,E)]. (5)

Here μ is the reduced mass and VC(R) is the Coulomb potential
at R. In practice, we use FFT techniques to calculate VF (R)
as well as the Coulomb potential VC(R) (instead of using the
point Coulomb formula). The velocity equation (5) has to be
solved by iteration at each value of R and E.

Note that the neutron gas background could behave differ-
ently for two nuclei in close proximity then it does for only a
single nucleus. However for simplicity, in this first study, we
consider only a single nucleus in the background gas at a time
in order to get the density profiles shown in Fig. 2. We then
use these profiles in Eq. (4) and assume they are unmodified
by the presence of the second nucleus.

The fusion barrier penetrabilities TL(Ec.m.) are obtained by
numerical integration of the two-body Schrödinger equation[−�

2

2μ

d2

dR2
+ L(L + 1)�2

2μR2
+ V (R,E) − E

]
ψ = 0, (6)

using the incoming wave boundary condition (IWBC) method
[23]. The potential V (R,E) is the sum of nuclear and
Coulomb potentials. IWBC assumes that once the minimum
of the potential is reached fusion will occur. In practice,
the Schrödinger equation is integrated from the potential
minimum, Rmin, where only an incoming wave is assumed, to
a large asymptotic distance, where it is matched to incoming
and outgoing Coulomb wave functions. The barrier penetration
factor, TL(Ec.m.) is the ratio of the incoming flux at Rmin

to the incoming Coulomb flux at large distance. Here, we
implement the IWBC method exactly as it is formulated for
the coupled-channel code CCFULL described in Ref. [23]. This
gives us a consistent way for calculating cross sections at above
and below the barrier via

σf (Ec.m.) = π

k2

∞∑
L=0

(2L + 1)TL(Ec.m.). (7)
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III. RESULTS

All the calculations presented here were done using a three-
dimensional cubic Cartesian box with 31 fm sides and 1.0 fm
lattice spacing. With the basis-spline method this gives highly
accurate results for the HF problem [13]. We studied two
systems with Z = 8 and Z = 20 protons inside a neutron gas.
The resulting nuclei are always spherical and density profiles
can be obtained by taking a cut along a particular axis. Our
mesh includes the origin in all directions. We have repeated
some of these calculations in a cubic box with 41 fm sides and
for the same neutron-gas density the results were numerically
indistinguishable.

A. Z = 8 system

In these calculations we start with eight proton states and a
number of neutron states ranging from 50–1020. The Skyrme
SLy4 force gives 28O as the slightly bound drip-line nucleus
in free space. For the above range of neutron states we also
find the 28O to be the bound part of the system. As the number
of neutron states is increased an overall negative potential
is developed permeating the entire box. Figure 1 shows the
neutron and proton mean-field potentials (solid lines) for Z =
8 and 520 neutrons. The dashed lines indicate the energies
of the bound single-particle states with degeneracies shown
in brackets. We define Nbound as the highest neutron s.p. state
below the continuum threshold. Consequently, the bound and
gas densities become

ρbound =
Nbound∑
λ=1

|φλ|2, (8)

ρfree =
∑

λ>Nbound

|φλ|2. (9)
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FIG. 1. (Color online) Mean-field potentials for neutrons and
protons (solid lines) for the system with Z = 8 and 520 neutrons.
The dashed lines indicate the energies of the bound single-particle
states with degeneracies shown in brackets.

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16

ρ to
t (

x,
0,

0)
 (

fm
-3

)

0 2 4 6 8 10 12
x (fm)

0

0.02

0.04

0.06

0.08

0.1

0.12

ρ n,
p (

x,
0,

0)
 (

fm
-3

)

n=20

n=520

n=1020

(a)

external gas (n=500)

(b)n=20

n=520

n=1020

FIG. 2. (Color online) (a) Total density profiles for bound states;
(b) density profiles for bound neutrons (solid lines) and protons
(dashed lines), for the system with Z = 8 and n = 20,520, and 1020
neutrons.

In this case the asymptotic value of the neutron potential
is about −8 MeV. As it is the case in free -space increasing
neutron number leads to deepening of the proton potential. In
Fig. 2 we show the density profiles for neutrons and protons as
well as the total density as a function of the number of neutron-
gas states. The top frame shows the total density behavior
as the neutron-gas density is increased. The curves labeled
n = 20 correspond to free-space 28O nucleus. As the external
neutron-gas density is increased the bound system swells up
in a way similar to a density scaling ρ(r) → ρ(sr) with s < 1
as discussed in Ref. [24]. While the peak of the total density
decreases from the free-space value of 0.16 fm−3 to as low
as 0.068 fm−3 for the 1000 external neutron-gas state case,
the tail region flattens and develops a larger spatial extent,
since the total integral remains to be 28. The density profiles
are symmetric about x = 0 and the numerical box extends to
larger values then shown in the figure.

Using these densities in Eq. (4) we have calculated the cor-
responding ion-ion folding potentials as well as the Coulomb
potential. In Fig. 3 these potentials are plotted for a range of
external neutron-gas densities. What is observed is that for
neutron-gas densities in the range ρgas = 2−4×1012 gm/cm3

the effect of the gas is not changing the ion-ion potential
in comparison to the free-space case in a considerable
way. However, for gas densities above 1013 gm/cm3 a very
significant change is observed.

The free-space barrier has a peak value of 7.87 MeV located
at R = 10.7 fm. As the external gas density is increased the
corresponding barrier height is reduced to 7.69, 7.23, and
6.39 MeV with the peak location moving outward at 10.8,
11.7, and 13.3 fm. This behavior is very similar to what is
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FIG. 3. (Color online) Ion-ion potentials VSP (R) = VF (R) +
VC(R) for 28O isotope as a function of the external neutron-gas
density. Also shown is the point-Coulomb interaction. Densities are
in units of gm/cm3.

observed in free space as one goes up in the oxygen isotope
chain [25]. Unfortunately, the dynamical density constrained
time-dependent Hartree-Fock (DC-TDHF) method [26–28]
used in Ref. [25] is not applicable in this situation since it
requires a fully dynamical calculation.

These together with the calculation of the energy depen-
dence from Eq. (5) allows the calculation of fusion cross
sections as a function of external neutron-gas density, using
the IWBC method discussed in the previous section. Figure 4
demonstrates the effect of neutron-gas seen in the potentials on
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FIG. 4. (Color online) Astrophysical S factor versus center of
mass energy for fusion of 28O isotope as a function of external
neutron-gas density. Cross-sections are calculated using the São Paulo
barriers and the IWBC method.
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FIG. 5. (Color online) The cross-sectional density (y = 0 plane)
profile of the 28O + 500n system. The neutron density is low enough
to have shell structures leading to the formation of neutron arms.

the astrophysical S factor. The S factor for different external
neutron-gas densities start to deviate from each other as soon as
the center-of-mass energy falls below the barrier. Even for the
lowest gas density of 2.9×1012 gm/cm3 the difference with the
free-space value is about a factor of two at the center-of-mass
energy of 2 MeV. The difference at higher gas densities are
about 1–3 orders of magnitude larger then the free-space values
at sub-barrier energies.

In Fig. 5 we plot the cross-sectional density (y = 0 plane)
profile of the 28O + 500n system. In general we see a higher
gas density in the vicinity of the nucleus as can also be seen
as the dotted line in Fig. 2(a). The energy of this low density
neutron gas is so low that even very small “shell effects” can
lead to nonuniform densities. In some of the cases we studied
the neutron density is low enough to have shell structures
leading to the formation of neutron arms seen in Fig. 5. If we
replicate this cubic box in three-dimensions one sees a lattice
like structure linked by these neutron arms. These effects
are driven mainly by the periodic boundary conditions here.
Irregularities in the grid of nuclei will produce more irregular
structures of these arms. Since the density in the arms is of the
order of free density such that they do not affect the analysis
of the bound part.

B. Z = 20 system

We have repeated the same study by starting with 20 proton
states and a number of neutron states ranging from 140–1040.
Using the Skyrme SLy4 we get 60Ca as the slightly bound
drip-line nucleus in free space. For the above range of neutron
states we also find the 60Ca to be the bound part of the system.
As the number of neutron states is increased an overall negative
potential is developed permeating the entire box. Figure 6
shows the neutron and proton mean-field potentials (solid
lines) for Z = 20 and 540 neutrons. The dashed lines show the
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FIG. 6. (Color online) Mean-field potentials for neutrons and
protons (solid lines) for the system with Z = 20 and 540 neutrons.
The dashed lines show the mean-field potential of 60Ca in free space.

mean-field potentials in free space. In this case the asymptotic
value of the neutron potential is about −6.5 MeV. At higher
neutron densities we do observe the tendency for 72Ca to be
the drip-line nucleus but the tendency is very weak and for
practical purposes considering 60Ca is sufficient for the general
purposes of this study.

In Fig. 7 we plot the density profiles for neutrons and
protons as well as the total density as a function of the number
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FIG. 7. (Color online) (a) Total density profiles for bound states;
(b) density profiles for bound neutrons (solid lines) and protons
(dashed lines), for the system with Z = 20 and n = 40,540, and
1040 neutrons.

2 4 6 8 10 12 14 16 18
R (fm)

-100

-80

-60

-40

-20

0

20

40

60

80

100

120

V
S

P
(R

) 
 (

M
eV

)

ρ
gas

 = 0

ρ
gas

 = 5.6x10
12

ρ
gas

 = 2.8x10
13

ρ
gas

 = 5.6x10
13

Point Coulomb

60
Ca + 

60
Ca

V=31x31x31 fm
3

FIG. 8. (Color online) Ion-ion potentials VSP (R) = VF (R) +
VC(R) between two 60Ca isotopes as a function of the external
neutron-gas density. Also shown is the point-Coulomb interaction.
Densities are in units of gm/cm3.

of neutron-gas states. The top frame shows the total density
behavior as the neutron-gas density is increased. The curves
labeled n = 40 correspond to free-space 60Ca nucleus. As the
external neutron-gas density is increased the bound system
swells up as in the Z = 8 case. While the peak of the total
density decreases from the free-space value of 0.165 fm−3 to
as low as 0.048 fm−3 for the 1000 external neutron-gas state
case, the tail region flattens and develops a larger spatial extent,
since the total integral remains to be 60. The density profiles
are symmetric about x = 0 and the numerical box extends to
larger values then shown in the figure. Corresponding ion-ion
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lated for changing external neutron-gas density. Cross sections are
calculated using the São Paulo barriers and the IWBC method.
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folding potentials calculated by using these densities in Eq. (4)
are plotted in Fig. 8 for a range of external neutron-gas
densities. Again what we observe is that for neutron-gas
densities in the range ρgas = 2–4×1012 gm/cm3 the effect
of the gas in changing the ion-ion potential compared to the
free-space case is not significant. However, for gas densities
above 1013 gm/cm3 a very significant change is observed. The
free-space barrier has a peak value of 47.4 MeV located at
R = 11.3 fm. As the external gas density is increased the
corresponding barrier height is reduced to 46.3, 42.9, and
37.4 MeV with the peak location moving outward at 11.6,
12.5, and 14.3 fm.

Figure 9 shows the fusion cross sections calculated using
the ion-ion potentials shown in Fig. 8. The dramatic rise of the
cross section is obvious as the neutron gas density becomes
significantly higher than the minimum neutron drip density.

IV. SUMMARY AND DISCUSSION

To date almost all fusion cross-section calculations done for
reactions relevant to the neutron star crust have been done using
the São Paulo folding potential using frozen densities obtained
from HF, HFB, or RMF calculations, and without any back-
ground of neutrons. Naturally, the environment in which these
reactions take place are much more feature rich depending on
the location in the crust. As the first milestone in incorporating
this environment we have investigated pycnonuclear reactions
which are expected to occur between very neutron-rich nuclei
in a background of a neutron gas [10]. Here we focused on the
neutron drip region of the inner crust where most nuclei are
expected to be on the drip line. The basic new aspect which we
study here is the effect of the presence of a background neutron
gas environment on the nuclei in this coexistent phase between
the start of the neutron drip region and the melting region. For
our study we have used an approach that treats the nuclei and
the extra neutrons in a unified manner both packing them into
one Slater state for the whole system. The computations are
done in full 3D with periodic boundary conditions and a special
treatment of the Coulomb potential with periodic boundary
conditions. For the calculation of fusion cross sections we
have used the São Paulo model. In our calculations we observe
that for lower background densities the cross sections do not
change in a very significant manner. On the other hand as we
increase the neutron gas density we observe the swelling of
the nuclei that results in the lowering of the ion-ion potential
barriers and significant increase in the fusion cross sections.
At densities higher than the neutron-drip regime the melting
of the nuclei can be observed.

One of the major omissions in our approach is the absence
of pairing [29–31]. An extended treatment including pairing
constitutes the next milestone. Let us, nonetheless, briefly
comment on possible pairing effects. First is the pairing
interaction influencing the structure of the isolated nuclei.
Naturally for the examples studied here we do not have

any proton pairing. Pairing interaction could be present
among neutrons as we move to neutron rich isotopes. As
one approaches the drip-line nuclei the gap becomes smaller
and smaller and becomes negligible at the drip line but the
presence of pairing can influence the exact location of the
drip line (by at most 2 nucleon units) and may also lead to
a somewhat larger surface thickness. The primary influence
of pairing on fusion within the folding-potential model is
related to the initial structure of the nucleus. However, for
light nuclei, considered for the inner crust, the pairing effects
are expected to be small. The inclusion of pairing for the
combined system of a neutron gas and embedded nuclei is
somewhat more involved. Neutron matter at typical densities
for the inner crust is believed to show an s-wave neutron
superfluidity [32–38] with a gap of 1–2.5 MeV depending
on the used model. Perturbation by an immersed nucleus
will reduce superfluidity in its vicinity. However, we cannot
exclude that superfluidity further away in the surrounding
neutron background may influence the dynamics of fusion
in this region in a fully dynamical calculation. Still, we expect
the general observation of the swelling of nuclear density to
behave similar to the results obtained in this study.

Besides the pairing issue, calculation of fusion using frozen
densities is in itself a serious approximation. In recent past we
have used the DC-TDHF approach to actually use dynamical
densities, including neck formation and transfer, to calculate
such cross sections [25] relevant for the neutron star crust.
As it was shown the deformation effects and dynamics does
influence the sub-barrier fusion cross sections. However, some
of these effects are phenomenologically contained through the
energy dependence of the São Paulo potential. Unfortunately,
at this stage the numerical and conceptual issues prevent us
from using the DC-TDHF method in the presence of the
neutron gas background. However, work is on the way to study
the dynamics of nuclei moving inside the neutron gas.

It is clear from the above discussion that a fully dynamical
study of fusion in the presence of the full environment and
with the inclusion of pairing is the desirable goal. In a
dynamical calculation the movement of nuclei may cause
ripples and waves in the neutron background that can also
influence these results. However, in the adiabatic limit these
effects are not expected to be very large. While our methods
give us a good understanding of fusion under these conditions
more precise computations, including the full effects of
pairing and effective interactions tailored for neutron star
crust [39], may reduce some of the observed shell effects and
modify some of the results but the main effects observed here
are expected to remain the same.
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