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Resonance parameters (pole masses and residues) associated with the excited states of hyperons, �∗ and �∗,
are extracted within a dynamical coupled-channels model developed recently by us [Phys. Rev. C 90, 065204
(2014)] through a comprehensive partial-wave analysis of the K−p → K̄N,π�,π�,η�,K� data up to invariant
mass W = 2.1 GeV. We confirm the existence of resonances corresponding to most, if not all, of the four-star
resonances rated by the Particle Data Group. We also find several new resonances, and in particular propose
a possible existence of a new narrow J P = 3/2+ � resonance that couples strongly to the η� channel. The
J P = 1/2− � resonances located below the K̄N threshold are also discussed. Comparing our extracted pole
masses with the ones from a recent analysis by the Kent State University group, some significant differences
in the extracted resonance parameters are found, suggesting the need of more extensive and accurate data of
K−p reactions including polarization observables to eliminate such an analysis dependence of the resonance
parameters. In addition, the determined large branching ratios of the decays of high-mass resonances to the
π�∗ and K̄∗N channels also suggest the importance of the data of 2 → 3 reactions such as K−p → ππ� and
K−p → πK̄N . Experiments on measuring cross sections and polarization observables of these fundamental
reactions are highly desirable at hadron beam facilities such as J-PARC for establishing the �∗ and �∗ spectrum.
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I. INTRODUCTION

The spectra and structure of the excited baryons with
light valence quarks (u,d,s) contain the information for
understanding the nonperturbative aspects, confinements, and
chiral symmetry breaking of Quantum Chromodynamics. The
excited baryons are unstable and couple with meson-baryon
continuum states to form nucleon resonances (N∗,�∗) with
strangeness S = 0 and hyperon resonances (Y ∗ = �∗,�∗)
with S = −1. Thus the extraction of these baryon resonances
from the data of hadron-, photon-, and electron-induced
meson-production reactions has long been an important task
in hadron physics. However, the hyperon resonances are much
less understood than the nucleon resonances. This can be
seen, for example, from the fact that only the Breit-Wigner
masses and widths of the �∗ and �∗ resonances were listed
by the Particle Data Group (PDG) before 2012 [exceptions
are �(1385)3/2+ and �(1520)3/2−] [1]. In contrast, the pole
positions and residues of the N∗ and �∗ resonances have been
well determined by many analysis groups through detailed
partial-wave analyses of πN and γN reaction data. To improve
the situation, a first comprehensive and systematic partial-
wave analysis of K−p reaction data to extract Y ∗ resonance
parameters defined by poles of scattering amplitudes was
made in 2013 by the Kent State University (KSU) group
using an energy-independent approach [2], and subsequently
they extracted the pole masses of Y ∗ resonances by making
an energy-dependent fit to their determined single-energy
amplitudes [3]. Recently, we have also made an extensive
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partial-wave analysis of K−p reactions within a dynamical-
model approach [4]. In this work, we present pole masses
as well as residues of the Y ∗ resonances extracted from our
amplitudes determined in Ref. [4].

Our approach in Ref. [4] is based on a dynamical coupled-
channels (DCC) formulation that was developed in Ref. [5]
and applied extensively to the study of N∗ and �∗ resonances
[6–15]. Schematically, we solve the following coupled integral
equations for the T -matrix elements in each partial wave with
strangeness S = −1:

Tβ,α(pβ,pα; W )

= Vβ,α(pβ,pα; W ) +
∑

δ

∫
p2dpVβ,δ(pβ,p; W )

×Gδ(p; W )Tδ,α(p,pα; W )

(1)

with

Vβ,α(pβ,pα; W ) = vβ,α(pβ,pα) +
∑
Y ∗

�
†
Y ∗,β (pβ)�Y ∗,α(pα)

W − M0
Y ∗

,

(2)
where W is the invariant mass of the reaction; the subscripts
α,β,δ denote the K̄N , π�, π�, η�, and K� channels as
well as the quasi-two-body π�∗ and K̄∗N channels that sub-
sequently decay to the three-body ππ� and πK̄N channels;
Gδ is the Green’s function of channel δ; M0

Y ∗ is the mass of a
bare excited hyperon state; vα,β is defined by hadron-exchange
mechanisms; and the bare vertex interaction �Y ∗,α defines the
α → Y ∗ transition. By fitting the data of both unpolarized and
polarized observables of the K−p → K̄N,π�,π�,η�,K�
reactions over the wide energy range from the threshold to
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invariant mass W = 2.1 GeV, we have constructed two models,
called Model A and Model B [4]. The partial-wave amplitudes
and the S-wave threshold parameters such as scattering lengths
and effective ranges were then extracted from the constructed
two models. The main objective of this paper is to present
the �∗ and �∗ resonance parameters extracted from these
two models and compare them with the results of the KSU
analysis [3].

It is useful to mention here that the extracted resonance
parameters are related to the data through the mechanisms
defined in the Hamiltonian of our model. Thus it is possible
to develop a theoretical understanding of the properties and
structure of the extracted resonances in our approach. Such
a feature is not available in the KSU approach and other
similar approaches, in which the K matrix or potential
are parametrized purely phenomenologically by using some
polynomials, and so on.

In Sec. II, we summarize notations, definitions, and for-
mulas of the resonance parameters. In Sec. III, the resonance
parameters (mass spectrum, residues, branching ratios, etc.)
extracted from our DCC models are presented for the Y ∗
resonances located above the K̄N threshold, and the extracted
mass spectra are compared with the one extracted from the
KSU analysis. We then give a prediction for the S-wave �
resonances located below the K̄N threshold in Sec. IV, which
would be interesting in relation to �(1405), though it is a bit off
the region of our current analysis. Summary and discussions
on future developments are given in Sec. V.

II. RESONANCE PARAMETERS

Since the method for extracting the resonance parameters
within the considered dynamical model has been explained in

detail in Refs. [12,14,16], here we just summarize formulas
that are needed for the presentations in this paper.

Consider the MB → M ′B ′ reactions in the center-of-mass
system, where MB and M ′B ′ are the initial and final meson-
baryon states. With the normalization 〈�k|�k′ 〉 = δ(�k − �k′

) for
plane waves, the on-shell S-matrix elements at the total
scattering energy W are given for each partial wave by

SM ′B ′,MB(W ) = δM ′B ′,MB + 2iFM ′B ′,MB (W ). (3)

Here the index MB (M ′B ′) also specifies quantum numbers
associated with the channel MB (M ′B ′), namely, the orbital
angular momentum (L), total spin (S), total angular momen-
tum (J ), parity (P ), and isospin (I ). The values of these
quantum numbers for the considered meson-baryon channels
are summarized in Table I. The on-shell scattering amplitudes
FM ′B ′,MB(W ) are related to the T -matrix elements [Eq. (1)] as

FM ′B ′,MB(W ) = −[
ρM ′B ′

(
kon
M ′B ′ ; W

)]1/2

× TM ′B ′,MB

(
kon
M ′B ′ ,k

on
MB ; W

)
× [

ρMB

(
kon
MB ; W

)]1/2
(4)

with

ρMB(k; W ) = π
kEM (k)EB(k)

W
, (5)

where Ea(k) = √
m2

a + k2 is the energy of a particle a with the
mass ma and the three-momentum �k (k ≡ |�k|). For a given W ,
which can be complex, the on-shell momentum for the channel
MB, kon

MB , is defined by

W = EM

(
kon
MB

) + EB

(
kon
MB

)
. (6)

TABLE I. The orbital angular momentum (L) and total spin (S) of each MB channel allowed in a given partial wave. In the first column,
partial waves are denoted with the conventional notation lI2J as well as (I,J P ).

lI2J (I,J P ) (L,S) of the considered partial waves

K̄N π� π� η� K� π�∗ K̄∗N

(π�∗)1 (π�∗)2 (K̄∗N )1 (K̄∗N )2 (K̄∗N )3

S01 (0, 1
2

−
) (0, 1

2 ) (0, 1
2 ) – (0, 1

2 ) (0, 1
2 ) (2, 3

2 ) – (0, 1
2 ) (2, 3

2 ) –

S11 (1, 1
2

−
) (0, 1

2 ) (0, 1
2 ) (0, 1

2 ) – (0, 1
2 ) (2, 3

2 ) – (0, 1
2 ) (2, 3

2 ) –

P01 (0, 1
2

+
) (1, 1

2 ) (1, 1
2 ) – (1, 1

2 ) (1, 1
2 ) (1, 3

2 ) – (1, 1
2 ) (1, 3

2 ) –

P03 (0, 3
2

+
) (1, 1

2 ) (1, 1
2 ) – (1, 1

2 ) (1, 1
2 ) (1, 3

2 ) (3, 3
2 ) (1, 1

2 ) (1, 3
2 ) (3, 3

2 )

P11 (1, 1
2

+
) (1, 1

2 ) (1, 1
2 ) (1, 1

2 ) – (1, 1
2 ) (1, 3

2 ) – (1, 1
2 ) (1, 3

2 ) –

P13 (1, 3
2

+
) (1, 1

2 ) (1, 1
2 ) (1, 1

2 ) – (1, 1
2 ) (1, 3

2 ) (3, 3
2 ) (1, 1

2 ) (1, 3
2 ) (3, 3

2 )

D03 (0, 3
2

−
) (2, 1

2 ) (2, 1
2 ) – (2, 1

2 ) (2, 1
2 ) (0, 3

2 ) (2, 3
2 ) (2, 1

2 ) (0, 3
2 ) (2, 3

2 )

D05 (0, 5
2

−
) (2, 1

2 ) (2, 1
2 ) – (2, 1

2 ) (2, 1
2 ) (2, 3

2 ) (4, 3
2 ) (2, 1

2 ) (2, 3
2 ) (4, 3

2 )

D13 (1, 3
2

−
) (2, 1

2 ) (2, 1
2 ) (2, 1

2 ) – (2, 1
2 ) (0, 3

2 ) (2, 3
2 ) (2, 1

2 ) (0, 3
2 ) (2, 3

2 )

D15 (1, 5
2

−
) (2, 1

2 ) (2, 1
2 ) (2, 1

2 ) – (2, 1
2 ) (2, 3

2 ) (4, 3
2 ) (2, 1

2 ) (2, 3
2 ) (4, 3

2 )

F05 (0, 5
2

+
) (3, 1

2 ) (3, 1
2 ) – (3, 1

2 ) (3, 1
2 ) (1, 3

2 ) (3, 3
2 ) (3, 1

2 ) (1, 3
2 ) (3, 3

2 )

F07 (0, 7
2

+
) (3, 1

2 ) (3, 1
2 ) – (3, 1

2 ) (3, 1
2 ) (3, 3

2 ) (5, 3
2 ) (3, 1

2 ) (3, 3
2 ) (5, 3

2 )

F15 (1, 5
2

+
) (3, 1

2 ) (3, 1
2 ) (3, 1

2 ) – (3, 1
2 ) (1, 3

2 ) (3, 3
2 ) (3, 1

2 ) (1, 3
2 ) (3, 3

2 )

F17 (1, 7
2

+
) (3, 1

2 ) (3, 1
2 ) (3, 1

2 ) – (3, 1
2 ) (3, 3

2 ) (5, 3
2 ) (3, 1

2 ) (3, 3
2 ) (5, 3

2 )
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The formulas and procedures to calculate the T -matrix
elements within our DCC model are fully explained in Ref. [4],
and thus we will not repeat them here.

As the energy W approaches a pole position MR in the
complex W plane, the scattering amplitudes take the following
form:

FM ′B ′,MB(W → MR) = −RM ′B ′,MB

W − MR

+ BM ′B ′,MB, (7)

where RM ′B ′,MB is the residue of FM ′B ′,MB(W ) at the resonance
pole MR , and BM ′B ′,MB is the “background” contribution.
Both RM ′B ′,MB and BM ′B ′,MB are constant and in general
complex. The pole position (MR) and the residue (RM ′B ′,MB )
are fundamental quantities that characterize the resonance.
In fact, within the resonance theory based on the Gamow
vectors (see, e.g., Ref. [18]), MR is equivalent to a complex
energy eigenvalue of the total Hamiltonian of the considered
system under the outgoing wave boundary conditions, and the
(square-root of) residues can be associated with the strength of
the transition from the resonance to a scattering state of MB
and/or M ′B ′ channel.

Practically, within our approach the value of MR for a
resonance can be obtained as a solution of the following
equation with respect to W [12,14,16]:

det[D−1(W )] = 0 (8)

with D−1(W ) being the inverse of the dressed Y ∗ resonance
propagators. It is defined by [4]

[D−1(W )]n,m = Wδn,m − [MY ∗(W )]n,m. (9)

The resonance mass matrix MY ∗ (W ) is given by

[MY ∗ (W )]n,m = M0
Y ∗

n
δn,m + [�Y ∗(W )]n,m, (10)

where M0
Y ∗

n
is the mass of the nth bare Y ∗ state in a given

partial wave, and �Y ∗ (W ) is the matrix for the Y ∗ self-energy
[4]. Solving Eq. (8) is nothing but searching for poles of
the resonance propagator in the complex W plane. The
nonlinearity and multivaluedness of �Y ∗ (W ) originating from
the multichannel reaction dynamics make the relation between
bare states and physical resonances highly nontrivial. In fact,
as has been demonstrated in Ref. [11], a naive one-to-one
correspondence between bare states and physical resonances
does not hold in general within a multichannel reaction system.

It is noted [11] that Eqs. (8)–(10) give the exact resonance
pole masses of the full scattering amplitudes (4) as far as the
bare Y ∗ state(s) is introduced for the considered partial wave.
Otherwise, one must search for resonance poles in the complex
W plane directly from the original full scattering amplitudes
(4). Since at least one bare Y ∗ state has been introduced for
each partial wave in our two models, Model A and Model
B constructed in Ref. [4], we just use Eq. (8) to search for
resonance poles.

The residues RM ′B ′,MB defined in Eq. (7) can be calculated
by using the definition

RM ′B ′,MB = 1

2πi

∮
CMR

dW [−FM ′B ′,MB(W )], (11)

where CMR
is an appropriate closed path in the neighborhood

of the point W = MR , circling W = MR in a counterclockwise
manner.

As for the partial waves for which bare Y ∗ state(s) is
introduced, however, RM ′B ′,MB can also be calculated with
[12,14,16]

RM ′B ′,MB = [
ρM ′B ′

(
kon
M ′B ′ ; MR

)]1/2
�̄R

M ′B ′,Y ∗
(
kon
M ′B ′ ; MR

)
× �̄R

Y ∗,MB

(
kon
MB ; MR

)[
ρMB

(
kon
MB ; MR

)]1/2
. (12)

Here �̄R
MB,Y ∗ (k; W ) and �̄R

Y ∗,MB(k; W ) are the dressed Y ∗ →
MB and MB → Y ∗ vertices, respectively, given by

�̄R
MB,Y ∗ (k; W ) =

∑
n

χn�̄MB,Y ∗
n
(k; W ), (13)

�̄R
Y ∗,MB(k; W ) =

∑
n

χn�̄Y ∗
n ,MB(k; W ), (14)

where �̄MB,Y ∗
n
(k; W ) and �̄Y ∗

n ,MB(k; W ), of which expressions
are explicitly given in Ref. [4], are the dressed vertices for the
nth bare Y ∗ state; and the coefficient χn satisfies

[D(W )]n,m = χnχm

W − MR

+ (regular terms at W = MR),

(15)
in the neighborhood of the point W = MR , and∑

m

[D−1(MR)]n,mχm = 0. (16)

We have confirmed that Eq. (12) indeed gives exactly the same
value as calculated from using Eq. (11).

It should be emphasized here that the coefficient χn

represents the nth bare-state component of the fully dressed
Y ∗ resonance. In other words, it indicates the meson-baryon
contents of a resonance within the dynamical reaction models
[17]. For example, for the case that one bare state is contained,
the coefficient χ ≡ χ1 is given explicitly as

χ =
(

1 − d�Y ∗ (W )

dW

∣∣∣∣
W=MR

)−1/2

. (17)

This is nothing but the square root of the (complex) wave
function renormalization constant Z for the bare state [17].

III. �∗ AND �∗ RESONANCES ABOVE THE K̄ N
THRESHOLD

With the formulas described in Sec. II and the analytic
continuation method developed in Refs. [12,16], we have
extracted the parameters of the �∗ and �∗ resonances from
Model A and Model B constructed in Ref. [4]. In this section,
we present the results for the resonances found in the energy
region above the K̄N threshold.

A. Resonance masses

The resonance masses (pole positions), MR , are the so-
lutions of Eq. (8) on the complex W plane. In general, the
physical observables are less influenced by the resonances with
very large widths, and thus the information for such resonances
extracted from fitting the data are less reliable. Therefore,

025205-3



H. KAMANO, S. X. NAKAMURA, T.-S. H. LEE, AND T. SATO PHYSICAL REVIEW C 92, 025205 (2015)

TABLE II. Extracted complex pole masses (MR) for the �∗

and �∗ resonances found in the energy region above the K̄N

threshold. The masses are listed as [Re(MR), − Im(MR)] together
with their deduced uncertainties. The resonance poles are searched
in the complex W region with mK̄ + mN � Re(W ) � 2.1 GeV and
0 � −Im(W ) � 0.2 GeV, and all of the resonances listed are located
in the complex W Riemann surface nearest to the physical real W

axis.

MR (MeV)

J P (lI2J ) Model A Model B

� baryons 1/2−(S01) (1669+3
−8, 9+9

−1) (1512+1
−1,185+1

−2)

(1667+1
−2,12+3

−1)

1/2+(P01) (1544+3
−3, 56+6

−1) (1548+5
−6, 82+7

−7)

(2097+40
−1 , 83+32

−6 ) (1841+3
−4, 31+3

−2)

3/2+(P03) (1859+5
−7, 56+10

−2 ) (1671+2
−8, 5+11

−2 )

3/2−(D03) (1517+4
−4, 8+5

−4) (1517+4
−3, 8+6

−6)

(1697+6
−6, 33+7

−7) (1697+6
−5, 37+7

−7)

5/2−(D05) (1766+37
−34,106+47

−31) (1924+52
−24, 45+57

−17)

(1899+35
−37, 40+50

−17)

5/2+(F05) (1824+2
−1, 39+1

−1) (1821+1
−1, 32+1

−1)

7/2+(F07) (1757, 73) (2041+80
−82,119+57

−17)

� baryons 1/2−(S11) (1704+3
−6, 43+7

−2) (1551+2
−9,188+6

−1)

(1940+2
−2, 86+2

−2)

1/2+(P11) (1547+111
−59 , 92+43

−39) (1457+5
−1, 39+1

−4)

(1706+67
−60, 51+79

−42) (1605+2
−4, 96+1

−5)

(2014+6
−13, 70+14

−1 )

3/2−(D13) (1607+13
−11,126+15

−9 ) (1492+4
−7, 69+4

−7)

(1669+7
−7, 32+5

−7) (1672+5
−10, 33+3

−3)

5/2−(D15) (1767+2
−2, 64+2

−1) (1765+2
−1, 64+3

−1)

5/2+(F15) (1890+3
−2, 49+2

−3) (1695+20
−77, 97+50

−44)

7/2+(F17) (2025+10
−5 , 65+3

−12) (2014+12
−1 ,103+3

−9)

following our previous study of N∗ and �∗ resonances [14],
we examine only the resonances with total width less than
400 MeV [the total width is defined as �tot = −2Im(MR)]. We
also do not search for resonances with Re(MR) > 2.1 GeV.
With these criteria, 18 (20) resonances with the spin-parity
JP = 1/2±,3/2±,5/2±,7/2+ are extracted within the Model
A (Model B) in the energy region above the K̄N threshold. All
of these resonances are located in the Riemann surface which
is nearest to the physical real W axis. The extracted resonance
masses MR are listed in Table II.

Because of the “incompleteness” of the current database
of the K−p reactions, as discussed in Ref. [4], there are
expected to be different solutions of partial-wave analysis with
similar χ2 minima. We indicate in Table II our estimates of the
uncertainties of the extracted resonance masses originating
from such “indistinguishable” solutions within the available
K−p reaction data. Similar uncertainties also occur in the
analyses of the πN and γN reactions, as discussed, for
example, in Ref. [19]. In principle, the uncertainties in a
dynamical coupled-channels analysis, such as this work,
should be evaluated by varying all parameters of the starting

Hamiltonian simultaneously in wide ranges around the values
determined in the χ2 fits. Such a procedure is however
practically not feasible since solving the coupled-channels
integral equations (1) and (2) is rather time consuming and
the parameter space of the constructed models is rather large.

Instead, we take a more tractable procedure described as
follows. For each partial wave listed in Table I, additional
parameters, δMY ∗

n
, are added to the diagonal elements of the

mass matrix [Eq. (10)]:

[MY ∗(W )]n,m → [MY ∗ (W )]n,m + δMY ∗
n
δn,m, (18)

where δMY ∗
n

are taken to be complex. We then refit the
K−p reaction data listed in Table II of Ref. [4] by choosing
randomly the initial values of δMY ∗

n
. By keeping the model

parameters in the Hamiltonian fixed and varying only the
additional δMY ∗

n
parameters with a gradient minimization

procedure, we obtain a set of δMY ∗
n

values for the chosen
initial values. This minimization procedure is repeated about
105 times for a wide range of initial δMY ∗

n
values. We then pick

up the solutions that give almost the same χ2 values as the
original one (χ2

org) from Model A or B by setting the condition
|(χ2 − χ2

org)/χ2
org| � 1%. About 20% of the solutions meet

this condition. Note that this procedure of determining the
range of allowed δMY ∗

n
values, i.e., Monte Carlo sampling

combined with gradient minimization, is motivated by the one
taken in Ref. [20] in determining the multipole amplitudes of
the γp → K+� reaction. The uncertainties of the resonance
masses are then determined from the range of pole values
found by solving Eq. (8) in which δMY ∗

n
is varied over the

allowed range. The resulting uncertainties are listed in Table II.
Overall, the magnitude of our estimated uncertainties are
consistent with the one listed in PDG [21].1 One exception
is the mass for the JP = 7/2+ � resonance in Model A,
for which the uncertainty is not assigned because it is too
large to be meaningful. Several resonances, e.g., JP = 3/2−
� resonances, appear in both Models A and B to have almost
the same central value and uncertainty for MR . Resonances
that are found in only either of Model A or B basically have
large uncertainty in their masses. However, some exceptions
also exist, for example, the first JP = 1/2− � resonance in
Model B, for which the counterpart is not found in Model A
but the uncertainty for its mass is rather small. The existence of
such exceptions implies that the dynamical contents of our two
models are rather different from each other, yet they are hard to
be distinguished with the current K−p reaction data included
in our fits due to its “incompleteness” mentioned above and
explained in Ref. [4].

The �∗ and �∗ mass spectra extracted from Models A
and B are compared with the results from the KSU analysis
[3] in Figs. 1 and 2, respectively. In the same figures, we also
indicate the mass spectra of the four- and three-star resonances
assigned by PDG [21]. It should be noted that the mass spectra

1A direct comparison of our uncertainties with those listed in PDG
may not be well justified because the former is associated with the
pole masses whereas the latter is associated with the Breit-Wigner
masses and widths.
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+
 (F
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)
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−
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−
 (S

01
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−
 (D

05
)

PDG
(BW) A B KSU

FIG. 1. (Color online) Mass spectrum of �∗ resonances above the K̄N threshold. For each �∗, Re(MR) together with the Re(MR) ±
[−Im(MR)] band is plotted, where the length of the band, −2Im(MR), corresponds to the total width of the resonance. The spin and parity of
the resonances are denoted as J P with P = ±, and also specified by the quantum number (lI2J ) of the associated K̄N partial-wave amplitudes.
The horizontal dotted lines represent the K̄N threshold. The results from Models A and B constructed in Ref. [4] are compared with the ones
from the KSU analysis [3]. The so-called Breit-Wigner masses and widths of the four- and three-star resonances rated by PDG [21] are also
presented.
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FIG. 2. (Color online) Mass spectrum of �∗ resonances above the K̄N threshold. See the caption of Fig. 1 for the description of the figure.
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FIG. 3. (Color online) The K−p → K−p and K−p → K̄0n total cross sections at the energies near W ∼ 1.67 GeV. Red solid (blue
dashed) curves are the full results from Model A (Model B), while red dotted (blue dashed-dotted) curves are the results for which the S01

resonance contributions are turned off.

listed by PDG [21] are evaluated using the masses and widths
from the the Breit-Wigner parametrization of the scattering
amplitudes. It is now well recognized that the resonance
parameters obtained with the Breit-Wigner parametrizations
are not trivially related to the ones determined at the resonance
pole positions. Thus the PDG values given in Figs. 1 and 2
are just for an additional reference in assessing the model
dependence of the analyses.

We see in Figs. 1 and 2 that the results from our two
models and the KSU analysis show an excellent agreement
for several resonances. However, large discrepancies are also
seen between the three results, and those need to be resolved.
This of course reflects the fact that the existing K−p reaction
data are not sufficient to constrain the mass spectrum of Y ∗
resonances (see Ref. [4] for the current situation of the world
data for the K−p reactions). More extensive and accurate data
including polarization observables are highly desirable to get
convergent results.

It is interesting to see that our two models and the
KSU analysis have low-lying �∗ resonances with Re(MR) <
1.6 GeV in S11, P11, and D13. They may correspond to one- and
two-star resonances assigned by PDG (but are not indicated
in Fig. 2). To establish such low-lying resonances, more data
near the K̄N threshold are definitely needed.

In the following, we further discuss each of resonances
shown in Figs. 1 and 2:

S01[�(1/2−)]: Our two models, Models A and B, and the
KSU analysis all give a narrow resonance with Re(MR) ∼
1.67 GeV (Fig. 1). It can be identified with the four-star
�(1670)1/2− of PDG (narrow black bar in the left-most
column). As discussed in our previous paper [4], this resonance
is responsible for the sharp peak in the K−p → η� total
cross section near the threshold. This strong near-threshold
effect is similar to that of N∗(1535)1/2− resonance on the
πN → ηN reaction. The �(1670)1/2− is also found to be
responsible for a dip2 in the K−p → K̄N total cross sections

2Note that a resonance can appear also as a dip in the cross
sections, depending on the interference with background and/or other
resonance contributions [22].

at W ∼ 1.67 GeV. This is presented in Fig. 3. Other than the
agreement in extracting the �(1670)1/2− resonance between
the three analyses, a broad resonance at Re(MR) ∼ 1.5 GeV
is found in Model B and two additional resonances are found
at higher energies in the KSU analysis.

P01[�(1/2+)]: The lowest resonance at Re(MR) ∼
1.55 GeV shows an agreement between the three analyses.
This resonance would correspond to �(1600)1/2+, a three-star
resonance rated by PDG. Clearly, the higher resonances are not
well determined.

P03[�(3/2+)]: A resonance at Re(MR) ∼ 1.86 GeV is
found in Model A and the KSU analysis, but not in Model
B. Thus the current data are not sufficient to establish this
state model independently. If this resonance corresponds to
the four-star �(1890)3/2+ of PDG, then this is one example
indicating that a four-star resonance rated by PDG using the
Breit-Wigner parameters is not confirmed by the analyses in
which the resonance parameters are extracted at pole positions.

The main feature of Model B is to have a new narrow
� resonance with MR = 1671+2

−8 − i(5+11
−2 ) MeV. It locates in

the energy region close to the S01 resonance �(1670)1/2−
discussed above. As already discussed in our previous paper
[4], the evidence of this new narrow resonance could be seen
from the K−p → η� cross sections near the threshold. To
see this, we compare the contributions from this resonance
and the S01 resonance �(1670)1/2− to the cross sections.
As shown in Fig. 4(a), the peak of the K−p → η� total
cross section near the threshold calculated from Model A is
completely dominated by the contribution from the S01 partial
wave that is almost entirely due to the �(1670)1/2− resonance.
On the other hand, we see in Fig. 4(b) that the contribution
of the S01 partial wave in Model B is just about 60%, and the
remaining 40% come almost entirely from the P03 partial wave
that contains this new narrow resonance. Since both models
reproduce the total cross section very well, the existence of this
new narrow JP = 3/2+ � resonance cannot be established
only by considering the total cross sections. To get a deeper
insight, it is necessary to at least examine its effects on the
differential cross sections. The K−p → η� differential cross
section data near the threshold (W ∼ 1.67 GeV) show a clear
concave-up angular dependence that cannot be described by
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FIG. 4. (Color online) Total cross section near the threshold (upper panels) and differential cross section at W = 1672 MeV (lower panels)
for the K−p → η� reaction. Left panels (right panels) are the results from Model A (Model B). Solid curves are the full results, while the
dashed curves are the contribution from the S01 partial wave only. For Model B, the difference between the solid and dashed curves almost
comes from the P03 partial wave dominated by the new narrow J P = 3/2+ � resonance with MR = 1671+2

−8 − i(5+11
−2 ) MeV.

the S-wave amplitudes. We see in Fig. 4(c) that the results
(solid curve) from Model A, which is mainly the S01 wave
(dashed curve), do not reproduce the angular dependence well.
On the other hand, the new narrow JP = 3/2+ � resonance
extracted within Model B is found to be responsible for the
reproduction of the differential cross section data. This is
shown in Fig. 4(d), suggesting that the angular dependence
of the data seems to favor the existence of this new resonance.

D03[�(3/2−)]: The first and second resonances in the
D03 partial wave extracted from Models A and B and KSU
analysis agree very well. Compared with the PDG values (the
left-most column), the first resonance can be identified with the
well-known four-star �(1520)3/2−, and the second resonance
could correspond to the four-star �(1690)3/2−. The KSU
analysis gives an additional “new” resonance with the pole
mass 1985 − i223.5 MeV. We are not able to confirm this since
the imaginary part of this resonance pole would correspond to
a very large total width and this resonance is perhaps outside
the complex energy region considered in our search.

D05[�(5/2−)]: Model A finds two resonances for this
partial wave, while only one resonance is found in Model
B and the KSU analysis. Although the values of resonance
masses from the three analyses are fluctuating, the resonances
found in Model B and the KSU analysis and the narrower
second resonance in Model A might correspond to the four-star
�(1830)5/2− of PDG (left-most column).

F05[�(5/2+)]: The first resonance extracted from the three
analyses agree very well. This resonance could correspond to
the four-star �(1820)5/2+ listed by PDG. We however do not
find the broad resonance with Re(MR) ∼ 1.97 GeV found in
the KSU analysis.

F07[�(7/2+)]: All of the three analyses find one resonance
below Re(MR) = 2.1 GeV. However, the real part of its pole
mass in Model A is about 250 MeV lower than that of Model B
and the KSU analysis. Since the resonances found in Models
A and B have large uncertainties as shown in Table II, at this
stage it is difficult to make a conclusion for the resonances in
this partial wave.

S11[�(1/2−)]: A sizable analysis dependence of the ex-
tracted resonance spectrum is seen in this partial wave. A
resonance at Re(MR) ∼ 1.7 GeV is found in Model A and
the KSU analysis, which may correspond to �(1750)1/2−
rated as three-star in PDG. However, this resonance is not
found in Model B. This may be understood from the fact
that the energy dependence of the S11 partial-wave amplitudes
for K̄N → K̄N,π�,π� have rapid changes at W ∼ 1.7
GeV in Model A and the KSU single energy solution, but
are rather smooth in Model B (see Figs. 24, 26, and 27
in Ref. [4]). It is interesting to see that Model B and the
KSU analysis give a low-lying resonance with Re(MR) � 1.6
GeV. This might correspond to �(1620)1/2− rated as two-star
by PDG.
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P11[�(1/2+)]: Similar to the S11 case, the extracted
resonance spectrum in this partial wave also varies sizably
between the three analyses. It is worthwhile to mention
that a resonance with a low mass Re(MR) < 1.55 GeV is
found in both Models A and B. This might correspond to
�(1480) or �(1560) in PDG, whose evidence is still poor and
spin-parity has not been determined (and thus not shown in
Fig. 2).

P13[�(3/2+)]: It is well known that the decuplet
�(1385)3/2+ exists below the K̄N threshold in this partial
wave. To account for the existence of this well-established
resonance, we set a pole with MR = 1381 − i20 MeV (not
shown in Fig. 2) in this partial wave as an “input data” to
constrain parameters of our model Hamiltonian [4]. The re-
sulting Models A and B, however, do not have any resonances
above the K̄N threshold. [Note that the resonance parameters
for all of the resonances other than the decuplet �(1385)3/2+
are purely the “output” of our reaction models.] In contrast,
the KSU analysis finds two “new” resonances as seen in the
panel for “3/2+(P13)” of Fig. 2. This analysis dependence is
perhaps due to the fact that the K−p → K̄N,π�,π�,K�
reaction data included in our fits are not sensitive to the
P13 wave. Data for 2 → 3 reactions such as K−p → ππ�
and K−p → πK̄N may be needed to resolve the analysis
dependence.

D13[�(3/2−)]: All three analyses find a resonance at
Re(MR) ∼ 1.67 GeV, which would correspond to the four-
star �(1670)3/2− of PDG. It has been suggested that there
exists another � resonance with the same mass and quantum
numbers as �(1670)3/2− and, in contrast to �(1670)3/2−,
this resonance has a large branching fraction to π�(1405) →
ππ� (see the discussions in pp. 1481–1482 of Ref. [21], and
references therein). Although the three analyses do not find
such an additional resonance, its existence can be examined
conclusively only when the π�(1405) channel and the data
associated with the three-body ππ� production reactions are
accounted for in the analysis. In addition to �(1670)3/2−, a
resonance with lower Re(MR) is found in Models A and B.
This resonance may correspond to �(1580)3/2− that is rated
as one star in PDG.

D15[�(5/2−)]: Only one resonance at Re(MR) ∼ 1.77
GeV in this partial wave is found in Models A and B and
the KSU analysis. This resonance could correspond to the
four-star �(1775)5/2− of PDG. This excellent agreement
between the three analyses strongly suggests that the resonance
spectrum of this partial wave is well established up to
Re(MR) ∼ 1.8 GeV, since the D15 partial-wave amplitudes
for K̄N → K̄N,π�,π� are well determined [4].

F15[�(5/2+)]: All three analyses find one resonance below
Re(MR) = 2.1 GeV. The real parts of the resonance pole
masses are Re(MR) ∼ 1.89 GeV for Model A and the KSU
analysis, while Re(MR) ∼ 1.7 GeV for Model B, showing
a clear analysis dependence for the extracted pole masses.
If the resonances found in Model A and the KSU analysis
correspond to the four-star �(1915)5/2+ of PDG, then this is
another example indicating that a four-star resonance rated by
PDG using the Breit-Wigner parameters is not confirmed by
the analyses in which the resonance parameters are extracted
at pole positions.

F17[�(7/2+)]: Only one resonance at Re(MR) ∼ 2.02 GeV
is found in all three analyses. This resonance could correspond
to the four-star �(2030)7/2+ of PDG.

Before closing this subsection, it is worthwhile to mention
that the S-wave resonance poles located near the threshold of
a two-body channel have a strong correlation with the values
of the scattering length and effective range of the channel, as
discussed in Ref. [23]. We can examine this by making use
of the S01 �(1670)1/2− resonance that locates close to the
η� threshold. Near the threshold, the S-wave η� scattering
amplitudes can be written as

FSwave
η�,η�(k) 
 k ×

(
1

aη�

− ik + rη�

2
k2

)−1

, (19)

where the O(k4) terms are neglected in the denominator; and
aη� and rη� are the scattering length and effective range for the
η� scattering, respectively. These threshold parameters have
been extracted in our previous paper [4], and their values are

aη� =
{

1.35 + i0.36 fm (Model A),

0.97 + i0.51 fm (Model B),
(20)

rη� =
{

−5.67 − i2.24 fm (Model A),

−5.82 − i3.32 fm (Model B).
(21)

Substituting the above values to Eq. (19), we find that the
approximated scattering amplitude (19) has a pole in the
nearest Riemann energy surface at the on-shell momentum
with k = 73.81 − i57.65 MeV for Model A and with k =
72.03 − i72.87 MeV for Model B. This means that the
amplitude has a pole at the complex W with

W = Eη(k) + E�(k) =
{

1667 − i12 MeV (Model A),

1664 − i14 MeV (Model B).
(22)

These values indeed show a good agreement with the exact
pole values: MR = 1669+3

−8 − i(9+9
−1) MeV for Model A and

MR = 1667+1
−1 − i(12+3

−1) MeV for Model B.

B. Residues and branching ratios

Within the Hamiltonian formulation [5] of the dynamical
model employed in our analysis, it can be shown
that the residues defined by Eq. (7) can be written as
RM ′B ′,MB = √

ρM ′B ′(kon
M ′B ′ ; MR)〈M ′B ′|H ′|ψR

Y ∗ 〉〈ψR
Y ∗ |H ′|MB〉√

ρMB(kon
MB ; MR), where H ′ is the interaction Hamiltonian,

and |ψR
Y ∗ 〉 is an eigenstate of the total Hamiltonian

H |ψR
Y ∗ 〉 = MR|ψR

Y ∗ 〉 with the outgoing wave boundary
condition. Since 〈ψR

Y ∗ |H ′|MB〉 is related to the strength for
the transition between a resonance Y ∗ and a meson-baryon
continuum state MB, these resonance parameters contain
important information on the structure of the extracted
resonances. The residues RMB,K̄N extracted from the
K̄N → MB amplitudes within Model A (Model B) are listed
in Tables III and IV (Tables V and VI). Here, each resonance
is specified by its quantum numbers and the value of the
real part of its pole mass MR . The residues for the stable
channels, MB = K̄N,π�,π�,η�,K�, can be evaluated

025205-8



DYNAMICAL COUPLED- . . . . II. EXTRACTION OF . . . PHYSICAL REVIEW C 92, 025205 (2015)

TABLE III. Residues RMB,K̄N for the stable channels MB = K̄N,π�,π�,η�,K�. The values presented are of the resonances extracted
from Model A. The magnitude [R (MeV)] and phase [φ (degree), taken to be −180◦ < φ � 180◦] of RMB,K̄N ≡ Reiφ are listed. Each resonance
is specified by the real part of the pole mass Re(MR) and its quantum numbers.

RK̄N,K̄N Rπ�,K̄N Rη�,K̄N RK�,K̄N

Particle J P (lI2J ) R φ R φ R φ R φ

�(1669)1/2−(S01) 3.33 164 3.10 125 4.49 59 – –
�(1544)1/2+(P01) 5.86 −80 12.98 108 – – – –
�(2097)1/2+(P01) 17.05 −63 2.70 29 12.91 165 7.80 −64
�(1859)3/2+(P03) 13.62 −23 5.70 104 2.74 −54 3.17 −85
�(1517)3/2−(D03) 3.29 −11 3.32 −10 – – – –
�(1697)3/2−(D03) 8.19 3 10.28 −173 0.19 81 – –
�(1766)5/2−(D05) 1.50 −116 10.42 102 1.27 91 – –
�(1899)5/2−(D05) 0.20 −80 0.23 179 0.38 −65 1.91 94
�(1824)5/2+(F05) 21.48 −13 13.74 168 0.71 −3 0.04 70
�(1757)7/2+(F07) 0.01 −77 0.81 120 0.06 −100 – –

RK̄N,K̄N Rπ�,K̄N Rπ�,K̄N RK�,K̄N

Particle J P (lI2J ) R φ R φ R φ R φ

�(1704)1/2−(S11) 4.25 178 8.32 137 8.93 169 – –
�(1547)1/2+(P11) 2.27 168 14.68 78 5.63 −84 – –
�(1706)1/2+(P11) 1.35 91 7.35 −171 5.90 −76 – –
�(1607)3/2−(D13) 0.98 51 7.90 −6 7.46 156 – –
�(1669)3/2−(D13) 4.13 −20 7.97 −21 2.61 −7 – –
�(1767)5/2−(D15) 23.78 −32 7.36 −24 20.85 157 – –
�(1890)5/2+(F15) 1.90 −15 7.64 157 3.67 166 0.10 −88
�(2025)7/2+(F17) 14.32 −38 5.24 135 8.96 −24 2.26 129

TABLE IV. Residues RMB,K̄N for the unstable channels MB = π�∗,K̄∗N . The values presented are of the resonances extracted from
Model A. The magnitude [R (MeV)] and phase [φ (degree), taken to be −180◦ < φ � 180◦] of RMB,K̄N ≡ Reiφ are listed. Each resonance
is specified by the real part of the pole mass Re(MR) and its quantum numbers. The quantum numbers for the (π�∗)i (i = 1,2) and (K̄∗N )i
(i = 1,2,3) channels for a given J P are presented in Table I.

R(π�∗)1,K̄N R(π�∗)2,K̄N R(K̄∗N)1,K̄N R(K̄∗N)2,K̄N R(K̄∗N)3,K̄N

Particle J P (lI2J ) R φ R φ R φ R φ R φ

�(1669)1/2−(S01) 0.94 −104 – – – – – – – –
�(1544)1/2+(P01) 10.21 77 – – – – – – – –
�(2097)1/2+(P01) 20.32 −103 – – 13.24 −97 4.14 2 – –
�(1859)3/2+(P03) 16.65 −40 3.61 127 10.63 −160 11.80 15 0.79 129
�(1517)3/2−(D03) 3.29 −123 0.11 122 – – – – – –
�(1697)3/2−(D03) 4.37 168 10.42 −22 – – – – – –
�(1766)5/2−(D05) 8.50 87 0.43 −109 – – – – – –
�(1899)5/2−(D05) 0.95 113 0.03 127 1.11 −177 1.02 3 0.31 −17
�(1824)5/2+(F05) 13.11 161 7.75 151 0.29 41 6.58 −139 0.02 161
�(1757)7/2+(F07) 0.33 −82 0.002 −128 – – – – – –

R(π�∗)1,K̄N R(π�∗)2,K̄N R(K̄∗N)1,K̄N R(K̄∗N)2,K̄N R(K̄∗N)3,K̄N

Particle J P (lI2J ) R φ R φ R φ R φ R φ

�(1704)1/2−(S11) 2.31 73 – – – – – – – –
�(1547)1/2+(P11) 4.71 −44 – – – – – – – –
�(1706)1/2+(P11) 3.65 −128 – – – – – – – –
�(1607)3/2−(D13) 4.65 −18 1.31 123 – – – – – –
�(1669)3/2−(D13) 7.30 167 2.93 141 – – – – – –
�(1767)5/2−(D15) 25.05 137 0.83 −58 – – – – – –
�(1890)5/2+(F15) 3.51 161 0.79 −163 0.23 4 2.40 51 0.02 16
�(2025)7/2+(F17) 5.78 −23 1.59 132 12.54 38 20.76 37 0.23 22
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TABLE V. Residues RMB,K̄N for the stable channels MB = K̄N,π�,π�,η�,K�. The values presented are of the resonances extracted
from Model B. See the caption of Table III for the description of the table.

RK̄N,K̄N Rπ�,K̄N Rη�,K̄N RK�,K̄N

Particle J P (lI2J ) R φ R φ R φ R φ

�(1512)1/2−(S01) 21.11 −146 32.36 44 – – – –
�(1667)1/2−(S01) 3.26 160 3.30 131 4.40 53 – –
�(1548)1/2+(P01) 9.58 −120 21.82 101 – – – –
�(1841)1/2+(P01) 3.90 −64 2.43 −24 1.64 92 3.62 −82
�(1671)3/2+(P03) 0.17 57 0.37 16 0.61 172 – –
�(1517)3/2−(D03) 4.06 −10 3.87 −9 – – – –
�(1697)3/2−(D03) 12.56 −3 11.45 −177 0.82 −47 – –
�(1924)5/2−(D05) 1.78 −77 0.43 −75 0.31 −53 0.59 69
�(1821)5/2+(F05) 18.74 −21 9.43 162 1.84 −23 0.03 163
�(2041)7/2+(F07) 1.30 −51 7.76 −49 1.34 −69 6.34 −79

RK̄N,K̄N Rπ�,K̄N Rπ�,K̄N RK�,K̄N

Particle J P (lI2J ) R φ R φ R φ R φ

�(1551)1/2−(S11) 45.58 131 23.59 7 48.08 −38 – –
�(1940)1/2−(S11) 43.48 57 22.00 54 7.29 29 8.61 −93
�(1457)1/2+(P11) 1.65 −45 1.30 172 8.19 137 – –
�(1605)1/2+(P11) 8.62 −43 14.35 131 17.43 81 – –
�(2014)1/2+(P11) 9.07 72 6.57 84 7.75 144 4.72 −6
�(1492)3/2−(D13) 0.02 −162 0.34 56 0.97 −121 – –
�(1672)3/2−(D13) 1.86 −20 7.16 −6 2.35 −37 – –
�(1765)5/2−(D15) 22.61 −35 7.58 −36 17.60 150 – –
�(1695)5/2+(F15) 0.40 −61 3.91 110 3.99 111 – –
�(2014)7/2+(F17) 22.78 −43 1.27 45 14.23 −42 4.41 116

TABLE VI. Residues RMB,K̄N for the unstable channels MB = π�∗,K̄∗N . The values presented are of the resonances extracted from
Model B. See the caption of Table IV for the description of the table.

R(π�∗)1,K̄N R(π�∗)2,K̄N R(K̄∗N)1,K̄N R(K̄∗N)2,K̄N R(K̄∗N)3,K̄N

Particle J P (LI2J ) R φ R φ R φ R φ R φ

�(1512)1/2−(S01) 3.52 16 – – – – – – – –
�(1667)1/2−(S01) 3.16 74 – – – – – – – –
�(1548)1/2+(P01) 16.39 51 – – – – – – – –
�(1841)1/2+(P01) 2.27 2 – – 1.05 −31 8.73 −5 – –
�(1671)3/2+(P03) 0.55 14 0.03 −168 – – – – – –
�(1517)3/2−(D03) 3.34 −123 0.18 125 – – – – – –
�(1697)3/2−(D03) 4.01 179 14.53 −26 – – – – – –
�(1924)5/2−(D05) 9.00 125 0.32 −61 1.61 −26 1.23 166 1.55 6
�(1821)5/2+(F05) 13.23 −24 2.51 144 0.28 −1 6.13 111 0.01 −175
�(2041)7/2+(F07) 3.59 103 0.27 112 1.66 9 1.86 −165 1.42 168

R(π�∗)1,K̄N R(π�∗)2,K̄N R(K̄∗N)1,K̄N R(K̄∗N)2,K̄N R(K̄∗N)3,K̄N

Particle J P (LI2J ) R φ R φ R φ R φ R φ

�(1551)1/2−(S11) 3.80 −176 – – – – – – – –
�(1940)1/2−(S11) 12.47 −163 – – 14.93 164 32.21 82 – –
�(1457)1/2+(P11) – – – – – – – – – –
�(1605)1/2+(P11) 14.84 87 – – – – – – – –
�(2014)1/2+(P11) 7.77 63 – – 10.70 137 14.83 −50 – –
�(1492)3/2−(D13) 0.23 −54 0.01 −16 – – – – – –
�(1672)3/2−(D13) 0.93 99 1.32 125 – – – – – –
�(1765)5/2−(D15) 25.51 131 0.42 −58 – – – – – –
�(1695)5/2+(F15) 0.39 97 0.06 88 – – – – – –
�(2014)7/2+(F17) 37.94 −51 3.68 114 5.38 22 7.50 18 8.05 −9
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FIG. 5. (Color online) Graphical comparison of RK̄N,K̄N between Models A and B for the well-established resonances (see text for the
details).

rather straightforwardly using the formulas in Sec. II.
However, an additional assumption is needed to present our
results for the quasi-two-body channels, MB = π�∗,K̄∗N .
These channels decay into three-body final states. Thus their
on-shell momenta, defined by two independent variables,
cannot be determined uniquely at the pole position W = MR .
Strictly speaking, the formulas in Sec. II cannot be used
straightforwardly for the quasi-two-body channels. Therefore,
we have taken the following approximate procedure for
MB = π�∗,K̄∗N . First we recall that the dressed �∗
(K̄∗) mass for the π�∗ (K̄∗N ) channel within our model
is 1381 − i20 MeV (899.3 − i29.7 MeV) [4]. Since the
imaginary parts of their masses are small, we assume that
�∗ and K̄∗ appearing in the π�∗ and K̄∗N channels are
“stable” particles with the masses 1381 MeV and 899.3 MeV,
respectively. The on-shell momentum for the π�∗ and K̄∗N
channels are then uniquely determined and the residues
associated with these two channels can be computed by using
the formulas in Sec. II. These results are listed in Tables
IV and VI. It is noted that a similar approximate procedure
was also taken in Ref. [24] for the evaluation of the residues
associated with πN → π�.

We see in Figs. 1 and 2 that the pole masses of eight
resonances, represented in the PDG notation by �(1670)1/2−,
�(1600)1/2+, �(1520)3/2−, �(1690)3/2−, �(1820)5/2+,
�(1670)3/2−, �(1775)5/2−, and �(2030)7/2+, agree very
well between our two models and the KSU analysis. The
residues RK̄N,K̄N of these resonances extracted from Models
A and B are compared3 in Fig. 5. They in general agree

3The KSU analysis did not provide their residues in Ref. [3].

well, while visible differences are seen for several resonances.
In particular, the pole mass for �(1670)3/2− agrees within
1% accuracy between Models A and B, but their residues
differ by a factor of about 2 in magnitude. This implies that
the residues are more sensitive to the analysis than the pole
masses.

We now turn to discussing the branching ratios of the decays
of the extracted resonances because it may provide us with an
intuitive understanding for the properties of the resonances.
The branching ratio for the Y ∗ → MB decay may be defined
as BMB = 2|RMB,MB |/�tot, where RMB,MB is the residue for
the MB scattering amplitude evaluated at the pole position of
the considered Y ∗ resonance and �tot = −2Im(MR) is the total
width of the resonance. However, it is known that the sum of
the branching ratios defined in this manner do not necessarily
equal to unity [14,24]. This would be somewhat problematic
as a notion of “ratio,” and will require further studies to
give a reasonable interpretation to this definition. Instead,
here we will follow the procedures developed in Ref. [15]
to present the branching ratios evaluated using the following
equations:

BMB = γMB∑
MB γMB

. (23)

Here, the “partial decay width” γMB is defined for the stable
meson-baryon channels (MB = K̄N,π�,π�,η�,K�) as

γMB = ρMB (k̄; M̄)
∣∣�̄R

MB(k̄; M̄)
∣∣2

, (24)

where M̄ = Re(MR), k̄ is given by M̄ = EM (k̄) + EB(k̄). For
the quasi-two-body channels π�∗ and K̄∗N that decay into
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TABLE VII. Branching ratios for the decays of �∗ and �∗ resonances extracted from Model A. Equations (23)–(26) are used for evaluating
the ratios. The quantum numbers for the (π�∗)i (i = 1,2) and (K̄∗N )i (i = 1,2,3) channels for a given J P are presented in Table I.

Branching ratios (%)

Particle J P (lI2J ) BK̄N Bπ� Bη� BK� B(π�∗)1 B(π�∗)2 B(K̄∗N)1 B(K̄∗N)2 B(K̄∗N)3

�(1669)1/2−(S01) 31.8 28.9 37.3 – 1.9 – 0.0 0.0 –
�(1544)1/2+(P01) 6.4 85.1 – – 8.5 – – – –
�(2097)1/2+(P01) 22.5 0.9 11.1 5.1 47.0 13.0 0.3 – –
�(1859)3/2+(P03) 30.5 4.0 1.2 0.9 45.3 1.9 7.3 8.8 0.1
�(1517)3/2−(D03) 43.0 44.6 – – 12.1 0.3 – – –
�(1697)3/2−(D03) 23.9 38.7 0.0 – 6.2 30.8 0.0 0.3 0.0
�(1766)5/2−(D05) 4.6 62.1 0.7 – 32.4 0.1 0.1 0.1 0.0
�(1899)5/2−(D05) 0.6 1.7 2.4 56.2 13.4 0.0 13.4 11.5 0.9
�(1824)5/2+(F05) 54.7 21.8 0.1 0.0 17.3 5.5 0.0 0.6 0.0
�(1757)7/2+(F07) 0.0 89.1 0.2 – 10.5 0.0 0.0 0.1 0.0

Particle J P (lI2J ) BK̄N Bπ� Bπ� BK� B(π�∗)1 B(π�∗)2 B(K̄∗N)1 B(K̄∗N)2 B(K̄∗N)3

�(1704)1/2−(S11) 15.4 37.3 43.5 – 2.4 – 0.4 1.0 –
�(1547)1/2+(P11) 0.5 86.5 12.8 – 0.1 – – – –
�(1706)1/2+(P11) 1.6 59.5 28.3 – 10.3 – 0.4 0.0 –
�(1607)3/2−(D13) 0.3 38.7 49.0 – 12.0 0.1 0.0 0.0 0.0
�(1669)3/2−(D13) 12.1 46.5 5.8 – 30.9 4.4 0.1 0.2 0.1
�(1767)5/2−(D15) 40.2 4.2 24.4 – 30.9 0.0 0.0 0.3 0.0
�(1890)5/2+(F15) 3.6 67.8 12.7 0.0 11.2 0.4 0.1 4.2 0.0
�(2025)7/2+(F17) 26.9 3.7 8.0 0.6 3.0 0.3 15.4 42.2 0.0

ππ� and πK̄N , respectively, the γMB are given by

γπ�∗ = 1

2π

∫ M̄−mπ

mπ +m�

dMπ�

× −2Im(�π�∗ (k̄; M̄))
|M̄ − Eπ (k̄) − E�∗ (k̄) − �π�∗ (k̄; M̄)|2

× ρπ�∗ (k̄; M̄)
∣∣�̄R

π�∗ (k̄; M̄)
∣∣2

, (25)

for the case of MB = π�∗, and

γK̄∗N = 1

2π

∫ M̄−mN

mπ +mK̄

dMπK̄

× −2Im(�K̄∗N (k̄; M̄))
|M̄ − EK̄∗ (k̄) − EN (k̄) − �K̄∗N (k̄; M̄)|2

× ρK̄∗N (k̄; M̄)
∣∣�̄R

K̄∗N (k̄; M̄)
∣∣2

, (26)

for the case of MB = K̄∗N . Here �MB(k; W ) is the self-
energy for the MB Green’s function given in Ref. [4];

k̄ is defined by M̄ = Eπ (k̄) +
√

M2
π� + k̄2 [M̄ = EN (k̄) +√

M2
πK̄

+ k̄2] for MB = π�∗ [MB = K̄∗N ]; and the un-

dressed values listed in Table V of Ref. [4] are used for
the �∗ and K̄∗ masses. The integrals in Eqs. (25) and (26)
account for the phase space of the final three-body states.
As expected, Eqs. (25) and (26) are reduced to Eq. (24) for
the stable two-body channels in the limit of �π�∗ → 0 and
�K̄∗N → 0, respectively.

Summing up the branching ratios defined by Eqs. (23)–(26)
trivially results in unity. We have confirmed that the branching
ratios defined by Eqs. (23)–(26) are in good agreement with

the ones defined by BMB = 2|RMB,MB |/�tot if the sum of the
latter ratios is within the range between 0.9 and 1.1.

The resulting branching ratios and their graphical repre-
sentations are presented in Table VII and Fig. 6 (Table VIII
and Fig. 7) for Model A (Model B). Except few cases, the
low-mass resonances generally have large branching ratios
of their decays into the K̄N and π� channels. We also
note that the branching ratios to the η� channel of the
narrow S-wave � resonances at Re(MR) ∼ 1.67 GeV, namely
�(1669)1/2− for Model A and �(1667)1/2− for Model B,
are large and comparable. The new narrow P03 resonances,
�(1671)3/2+, found in Model B also has the same feature.
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FIG. 6. (Color online) Graphical representation of the branching
ratios for decays of �∗ and �∗ resonances found from Model A.
Equations (23)–(26) are used for evaluating the ratios.
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TABLE VIII. Branching ratios for the decays of �∗ and �∗ resonances extracted from Model B. Equations (23)–(26) are used for evaluating
the ratios. The quantum numbers for the (π�∗)i (i = 1,2) and (K̄∗N )i (i = 1,2,3) channels for a given J P are presented in Table I.

Branching ratios (%)

Particle J P (lI2J ) BK̄N Bπ� Bη� BK� B(π�∗)1 B(π�∗)2 B(K̄∗N)1 B(K̄∗N)2 B(K̄∗N)3

�(1512)1/2−(S01) 63.6 36.4 – – 0.0 – – – –
�(1667)1/2−(S01) 36.3 26.6 21.2 – 15.5 – 0.3 0.1 –
�(1548)1/2+(P01) 24.0 70.9 – – 5.0 – – – –
�(1841)1/2+(P01) 23.7 10.9 4.0 13.2 14.9 – 0.5 32.9 –
�(1671)3/2+(P03) 3.9 18.6 43.2 – 33.9 0.1 0.2 0.1 0.0
�(1517)3/2−(D03) 43.1 46.2 – – 10.1 0.6 – – –
�(1697)3/2−(D03) 31.8 29.8 0.1 – 2.9 34.3 0.0 1.1 0.0
�(1924)5/2−(D05) 5.4 1.3 0.1 0.4 85.7 0.1 2.4 1.4 3.1
�(1821)5/2+(F05) 56.5 15.3 0.5 0.0 25.2 0.8 0.0 1.7 0.0
�(2041)7/2+(F07) 1.6 56.5 1.7 26.4 9.5 0.1 1.5 1.9 0.9

Particle J P (lI2J ) BK̄N Bπ� Bπ� BK� B(π�∗)1 B(π�∗)2 B(K̄∗N)1 B(K̄∗N)2 B(K̄∗N)3

�(1551)1/2−(S11) 45.6 8.0 46.3 – 0.0 – – – –
�(1940)1/2−(S11) 53.4 20.4 1.9 4.0 3.3 – 3.2 13.9 –
�(1457)1/2+(P11) 1.2 2.1 96.7 – 0.0 – – – –
�(1605)1/2+(P11) 3.6 41.8 43.4 – 11.2 – 0.0 0.0 –
�(2014)1/2+(P11) 10.4 7.5 10.0 5.7 17.2 – 16.1 33.1 –
�(1492)3/2−(D13) 0.0 9.2 90.7 – 0.1 0.0 – – –
�(1672)3/2−(D13) 6.8 81.0 6.6 – 1.6 2.2 0.0 1.8 0.0
�(1765)5/2−(D15) 39.7 5.9 18.3 – 36.1 0.0 0.1 0.0 0.0
�(1695)5/2+(F15) 0.3 46.4 53.0 – 0.2 0.0 0.0 0.0 0.0
�(2014)7/2+(F17) 29.1 0.7 6.3 0.7 57.8 0.5 1.0 1.9 2.0

This can be understood from their sizable contributions to the
K−p → η� total cross sections near the threshold. Also, the
low-lying �∗ resonances found in Model B, �(1457)1/2+
and �(1492)3/2−, largely decay into the π� channel. On the
other hand, the high-mass resonances are found to have large
branching ratios to π�∗ and K̄∗N channels, which decay
subsequently to the three-body ππ� and πK̄N channels,
respectively. For example, the JP = 7/2+ � resonance that
would correspond to the four-star �(2030)7/2+ of PDG,
namely �(2025)7/2+ for Model A and �(2014)7/2+ for
Model B, has a large breaching ratio to the three-body decay
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FIG. 7. (Color online) Graphical representation of the branching
ratios for decays of �∗ and �∗ resonances found from Model B.
Equations (23)–(26) are used for evaluating the ratios.

channels. Interestingly, the JP = 7/2+ � resonance of Model
A mainly decays into πK̄N , while that of Model B decays
into ππ�, revealing that our knowledge of the properties of
this four-star resonance is still poor. This implies a particular
importance of the data associated with three-body channels
for establishing the high-mass �∗ and �∗ spectrum and their
internal structures. This is quite similar to the case of the
N∗ and �∗ spectroscopy, where the data associated with the
three-body ππN channel are expected to play a crucial role
for establishing the high-mass N∗ and �∗ resonance mass
spectrum, see, e.g., Ref. [15].

IV. S-WAVE � RESONANCES BELOW THE K̄ N
THRESHOLD

The nature of the S-wave (JP = 1/2−) � resonances lying
below the K̄N threshold has long been an interesting subject
since they are closely related to the extensively discussed
�(1405) [25]. In this section, we discuss such S-wave �
resonances extracted from our models. However, here we add a
caveat that Models A and B were constructed by analyzing only
the K−p reactions, and hence the K̄N subthreshold region is
beyond the scope of our current analysis. Therefore, the results
presented below should be considered as the “predictions”
from our current models and are subject to change once our
analysis is extended to include the data in the K̄N subthreshold
region. For this reason, we do not evaluate the uncertainties of
the masses of these resonances.

Within our model, the S-wave � resonances found in the
region below the K̄N threshold are presented in Fig. 8. The red
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FIG. 8. (Color online) S-wave (J P = 1/2−) � resonances in
the K̄N subthreshold region. Red triangles (blue diamonds) are
resonance poles found from Model A (Model B).

triangles and the blue diamonds represent the pole positions
obtained from Models A and B, respectively. Both models
predict two resonance poles for the S-wave � resonances in
the K̄N subthreshold region, while their positions are rather
different. This indicates a need of extending our analysis to
include the data in the K̄N subthreshold region. Higher mass
poles (A1 and B1 in Fig. 8) seem to correspond to �(1405),
though the pole A1 has an imaginary part somewhat larger
than what is usually expected for �(1405). The existence of
another � resonance with lower mass (A2 and B2 in Fig. 8)
is similar to the result obtained in the so-called chiral unitary
models (see, e.g., Ref. [26]). In Table IX, we list the residues
for the JP = 1/2− � resonances presented in Fig. 8.

Since the poles A1 and B1 are located near the K̄N
threshold, it is interesting to examine the correlation between
their pole values and the S-wave threshold parameters for the
I = 0 K̄N scattering amplitude, as done for the �(1670)1/2−
resonance near the η� threshold (see Sec. III A). Similar to
Eq. (19), the S01 K̄N scattering amplitude near the threshold
can be written as

F
I=0,Swave
K̄N,K̄N

(k) 
 k ×
(

1

aI=0
K̄N

− ik + rI=0
K̄N

2
k2

)−1

, (27)

where aI=0
K̄N

and rI=0
K̄N

are the scattering length and effective
range for the I = 0 K̄N scattering, respectively. These

TABLE IX. Residues for π� → Y ∗ → π� amplitudes [Rπ�,π�

(MeV)] at the J P = 1/2− �∗ resonance pole positions found below
K̄N threshold. See the caption of Table III for the description of the
table.

Particle J P (lI2J ) Rπ�,π�

R φ

Model A �(1372)1/2−(S01) 118 − 68

�(1432)1/2−(S01) 177 144

Model B �(1397)1/2−(S01) 142 − 98
�(1428)1/2−(S01) 67 110

threshold parameters have been extracted in our previous paper
[4], and their values are

aI=0
K̄N

=
{

−1.37 + i0.67 fm (Model A),

−1.62 + i1.02 fm (Model B),
(28)

rI=0
K̄N

=
{

0.67 − i0.25 fm (Model A),

0.74 − i0.25 fm (Model B).
(29)

By performing the same procedure as done for the
�(1670)1/2− resonance in Sec. III A, we find that the
approximate amplitude (27) has a pole at the complex W with

W = EK̄ (k) + EN (k) =
{

1408 − i56 MeV (Model A),

1427 − i29 MeV (Model B).
(30)

We find that the above value for Model B agrees well with the
exact pole mass for the pole B1, while for Model A we find a
significant deviation from the pole A1. This can be understood
because the position of the pole A1, as indicated in Fig. 8, is a
bit far from the K̄N threshold and the approximated expression
(27) of the amplitude becomes less accurate than the case of
the pole B1. We also see in Fig. 8 that the poles A2 and B2 are
even farther from the K̄N threshold and hence they cannot be
well reproduced by the poles extracted from the approximate
amplitude defined by Eq. (27).

V. SUMMARY AND FUTURE DEVELOPMENTS

We have presented the parameters associated with the �∗
and �∗ resonances extracted from our DCC models that were
constructed via a comprehensive partial-wave analysis of the
K−p → K̄N,π�,π�,η�,K� data [4]. The extraction was
accomplished by searching for poles of scattering amplitudes
in the complex energy Riemann surface over the region
with mK̄ + mN < Re(W ) < 2.1 GeV and 0 < −2Im(W ) <
0.4 GeV. As a result, 18 (20) resonances are extracted
from Model A (Model B) above the K̄N threshold. The
residues and branching ratios for the extracted resonances
are also presented, and their values are found to be more
sensitive to differences between the analyses than the pole
values.

Among the extracted resonances, a new narrow JP =
3/2+ � resonance with MR = 1671+2

−8 − i(5+11
−2 ) MeV is of

particular interest. Currently, this resonance is only found in
Model B. However, the angular dependence of the K−p →
η� differential cross section data seems to favor the existence
of this resonance. Given the fact that this new resonance is
identified only through its contribution to the spin-averaged
differential cross section of the K−p → η� reaction near the
threshold, the polarization data would be highly desirable to
have a definitive conclusion on the existence of this resonance.
Also, establishing low-lying �∗ resonances in S11, P11, and
D13 waves would also be an important task for the Y ∗
spectroscopy.

By comparing the results from our two models and the KSU
analysis, we found that the extracted resonance parameters
have significant analysis dependence. This reflects the fact
that the kinematical (W and cos θ ) coverage and accuracy
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of the available K−p reaction data are far from “complete”
and not sufficient to eliminate analysis dependence on the
extracted resonance parameters. More extensive and accurate
data of the K−p reactions including the differential cross
sections as well as the polarization observables (the recoil
polarization P and the spin-rotation parameters β, R, and A)
are definitely needed to get convergent results. In fact, the
data of all observables are relevant to accomplish an accurate
extraction of amplitudes and resonance parameters with less
analysis dependence, as discussed in, for example, Ref. [20].
An impact of unmeasured observables of the K−p → MB
reactions for reducing analysis dependence has been explored
in our previous paper [4]. We have also found that the
high-mass �∗ and �∗ resonances have large branching ratios
to the quasi-two-body π�∗ and K̄∗N channels, suggesting that
the data for the 2 → 3 reactions such as K−p → ππ� and
K−p → πK̄N will also play an important role for establishing
the high-mass resonances. The experiments measuring these
fundamental observables at the hadron beam facilities, such as
J-PARC, will be essential for making progress in establishing
the �∗ and �∗ resonances.

As a byproduct of our K−p reaction analysis, we have given
“predictions” for the JP = 1/2− � resonances located below
the K̄N threshold. Both of our two models predict a resonance
pole just below the K̄N threshold, which would correspond
to �(1405)1/2−. Our two models also predict another JP =

1/2− � resonance pole with the mass ∼30–60 MeV lower
than �(1405)1/2− we found. This result is similar to what
is obtained within the chiral unitary models [26]. To make
a decisive examination for the JP = 1/2− � resonances,
however, we must extend our analysis to include the data in
the K̄N subthreshold region. Our effort, in conjunction with
the recent experimental initiatives [27,28] will be published
elsewhere.
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