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Asymmetric nuclear matter in a parity doublet model with hidden local symmetry
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We construct a model to describe dense hadronic matter at zero and finite temperatures, based on the parity
doublet model of DeTar and Kunihiro [C. E. DeTar and T. Kunihiro, Phys. Rev. D 39, 2805 (1989)], including
the isosinglet scalar meson σ as well as ρ and ω mesons. We show that, by including a six-point interaction of
the σ meson, the model reasonably reproduces the properties of normal nuclear matter with the chiral invariant
nucleon mass m0 in the range from 500 to 900 MeV. Furthermore, we study the phase diagram based on the
model, which shows that the value of the chiral condensate drops at the liquid-gas phase transition point and
at the chiral phase transition point. We also study asymmetric nuclear matter and find that the first-order phase
transition for the liquid-gas phase transition disappears in asymmetric matter and that the critical density for the
chiral phase transition at nonzero density becomes smaller for larger asymmetry.
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I. INTRODUCTION

With the advent of the next generation radioactive beam
facilities, isospin asymmetric nuclear matter claims much
attention in contemporary nuclear physics. At those facilities
we could create terrestrial environments to study dense matter
with a large neutron or proton excess through nuclear reactions
with radioactive nuclei.

Studying nuclear matter is also important to understand
the structure of neutron stars [1]. In 2010 and 2013, two
neutron stars with twice solar mass were found [2,3] and
many models yielding the soft equation of states (EOS) were
excluded. Neutron stars offer very cold and asymmetric dense
environments and may have hyperons in the core of the stars.
If there are hyperonic degrees of freedom, it is expected that
the EOS becomes softer and the neutron star mass becomes
lighter. Another important astrophysical site for nuclear matter
is a hybrid star whose center has quark matter [4].

The properties of asymmetric matter have been investigated
in various approaches [5–14]. Very recently the liquid-gas
and chiral phase transition have been studied in a parity
doublet model with a six-point scalar interaction in which
mesonic fluctuations are included by means of the functional
renormalization group [15]. Several studies on the isospin
asymmetric dense matter have been done in the framework
of the parity doublet model (mirror assignment) [16,17]:
The properties of symmetric dense matter such as chiral
phase transition have been extensively studied in the parity
doublet models at zero or finite temperatures [18–27]. In
Refs. [18–27], the authors discussed the chiral invariant mass
and the incompressibility K of nuclear matter and they repro-
duce the empirical value K = 240 ± 20 MeV (taken from, for
example, Refs. [28,29]) only when the chiral invariant mass is
close to the nucleon’s mass, m0 ∼ 900 MeV. On the other hand,
in Ref. [17] the authors determined m0 from the decay width
of N∗ → Nπ to be m0 = 270 MeV, while in Ref. [22] they
used the decay modes of N∗ → Nπ and a1 → πγ to obtain
m0 ∼ 500 MeV. Though m0 may change in dense matter, it is
hard to understand why the value of m0 is in such variety,
which motivates us to seek how to reproduce the normal

nuclear matter properties with a medium chiral invariant
mass.

In this paper, we extend the parity doublet model by
including ρ and ω mesons through the hidden local symmetry.
For earlier works on this extension, we refer the reader to
Refs. [30–32]. We extend this model further by adding a
six-point interaction of a scalar meson, which allows us to
vary the value of the chiral invariant mass in the range of m0 �
500 MeV. Here, as a first step, we do not consider hyperonic
matter and work within the mean-field approximation. Then,
we determine our model parameters, except the chiral invariant
mass (m0), by performing global fitting to physical inputs
(masses and pion decay constants in free space and nuclear
matter properties). We then study the EOS and the phase
diagram of dense matter at finite temperature. We find that
the predicted slope parameter at the saturation density meets
the constraint from heavy ion experiments and neutron star
observations (see, e.g., Refs. [33,34]) and observe that the
chiral condensate drops at the chiral and liquid-gas transition
points. It is also seen that smaller m0 values prefer smaller
critical densities for the chiral phase transition. The study
of asymmetric matter reveals that the first-order nature of
the liquid-gas transition disappears in asymmetric matter and
the critical densities for the chiral transition become smaller
with increasing asymmetries, which is consistent with previous
studies.

In Sec. II we extend the parity doublet model, and in Sec. III
we fix the model parameters. Our results on the bulk properties
of nuclear matter and density dependence of chiral condensate
and nucleon mass are given in Sec. IV. We present the phase
diagram of dense (asymmetric) matter in Sec. V. Finally, the
conclusion and discussion follow in Sec. VI.

II. EXTENDED PARITY DOUBLET MODEL

We construct a chiral effective model based on the parity
doublet model [16,17], in which a nucleon with positive parity
is regarded as a chiral partner to the one with negative parity
and they belong to the same multiplet. The transformation
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properties of the positive- and negative-parity nucleon fields
are given by

ψ1r → gRψ1r , ψ1l → gLψ1l , (2.1)

ψ2r → gLψ2r , ψ2l → gRψ2l , (2.2)

where gR (gL) is an element of the SU(2)R [SU(2)L] chiral
symmetry group, and ψ1r and ψ2r (ψ1l and ψ2l) are the right-
handed (left-handed) fields projected as

ψ1r,2r = PR ψ1,2, ψ1l,2l = PL ψ1,2,

PR,L = 1 ± γ5

2
. (2.3)

To construct a linear σ model including these nucleon fields,
we introduce the following field:

M = σ + i �π · �τ , (2.4)

where σ denotes an isosinglet scalar field, �π the pion field,
and �τ the Pauli matrices. The chiral transformation property
of M is given by

M → gLMg
†
R. (2.5)

By using these fields, the Lagrangian of a linear σ model type
is expressed as1

LN = ψ̄1r iγ
μDμψ1r + ψ̄1l iγ

μDμψ1l

+ ψ̄2r iγ
μDμψ2r + ψ̄2l iγ

μDμψ2l

−m0[ψ̄1lψ2r − ψ̄1rψ2l − ψ̄2lψ1r + ψ̄2rψ1l]

− g1[ψ̄1rM
†ψ1l + ψ̄1lMψ1r ]

− g2[ψ̄2rMψ2l + ψ̄2lM
†ψ2r ], (2.6)

where m0 is the chiral invariant mass, g1 and g2 are the coupling
constants, and the covariant derivatives include the external
gauge fields Rμ and Lμ as

Dμψ1r,2l = (∂μ − iRμ)ψ1r,2l ,

Dμψ1l,2r = (∂μ − iLμ)ψ1l,2r . (2.7)

The meson part of the Lagrangian is given by

LM = 1
4 tr[∂μM∂μM†] − VM − VSB, (2.8)

where the meson potential VM and the explicit chiral symmetry
breaking potential VSB are

VM = − 1
4 μ̄2tr[MM†] + 1

16λ{tr[MM†]}2 − 1
48λ6{tr[MM†]}3,

(2.9)

VSB = − 1
4ε(tr[M†M] + tr[MM†]). (2.10)

1This Lagrangian is rewritten into a more familiar form in the
literatures as

LN = ψ1iγ
μ∂μψ1 + ψ̄2iγ

μ∂μψ2 − m0(ψ̄1γ5ψ2 − ψ̄2γ5ψ1)

− g1ψ̄1(σ + iγ5 �π · �τ )ψ1 − g2ψ̄2(σ − iγ5 �π · �τ )ψ2.

Here M is the quark mass matrix given as

M =
(

mu 0
0 md

)
(2.11)

and ε is a constant of mass dimension two. In the present
analysis, we neglect the isospin breaking effect due to the mass
difference of up and down quarks and take mu = md = m̄. It
should be noticed that the potential VM includes the dimension-
six term, which will play a very important role in reproducing
the properties of the normal nuclear matter with a rather wide
range of the chiral invariant nucleon masses. (See next section.)
When λ6 > 0, the potential VM + VSB is not bounded from
below. In the present analysis, we determine the vacuum in the
following way: We first solve the stationary condition of the
potential. When there is more than one solution, we choose
the one with the lowest energy at the stationary point.

We next include ρ and ω mesons into the model based on
the hidden local symmetry (HLS) theory [35–37]. The HLS is
introduced by performing the polar decomposition of the field
M as

M = ξLσξR = σξ
†
LξR = σU, (2.12)

where σ is a scalar meson field and ξL and ξR transform as

ξL,R → hωhρξL,Rg
†
L,R, (2.13)

with hω ∈ U(1)HLS and hρ ∈ SU(2)HLS. In the unitary gauge,
ξR and ξL are parametrized as

ξR = ξ
†
L = exp(iπaT a/fπ ), (2.14)

where T a = τa/2 (a = 1,2,3), with τa being the Pauli matrix.
In the HLS, the vector mesons are introduced as the gauge
bosons of the HLS which transform as

ωμ → hωωμh†
ω + i

gω

∂μhωh†
ω, (2.15)

ρμ → hρρμh†
ρ + i

gρ

∂μhρh
†
ρ, (2.16)

where gω and gρ are the corresponding gauge coupling
constants.

To construct a model Lagrangian with the HLS, it is
convenient to introduce the following one-forms:

α̂
μ
⊥ ≡ 1

2i
[DμξRξ

†
R − DμξLξ

†
L],

α̂
μ
‖ ≡ 1

2i
[DμξRξ

†
R + DμξLξ

†
L], (2.17)

where the covariant derivatives are given as

DμξL = ∂μξL + igρρ
μξL + igωωμξL + iξLLμ,

DμξR = ∂μξR + igρρ
μξR + igωωμξR + iξRRμ. (2.18)
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Now, the mesonic part of the Lagrangian extended by the HLS
is expressed as

LM = 1

2
∂μσ∂μσ + σ 2tr[α̂⊥μα̂

μ
⊥] − Vσ − VSB

+ m2
ρ

g2
ρ

tr[α̂‖μα̂
μ
‖ ] +

(
m2

ω

2g2
ω

− m2
ρ

2g2
ρ

)
tr[α̂‖μ]tr[α̂μ

‖ ]

− 1

2g2
ρ

tr[ρμνρ
μν] −

(
1

4g2
ω

− 1

4g2
ρ

)
tr[ωμν]tr[ωμν],

(2.19)

where the first line is from Eq. (2.8) with the following form
of the potential:

Vσ = − 1
2 μ̄2σ 2 + 1

4λσ 4 − 1
6λ6σ

6, (2.20)

VSB = − 1
4 m̄εσ tr[U + U †]. (2.21)

The second and third lines contain the mass and kinetic terms
of vector mesons, respectively.

We also rewrite the nucleon part of the Lagrangian as

LN = ψ̄1r iγ
μDμψ1r + ψ̄1l iγ

μDμψ1l

+ ψ̄2r iγ
μDμψ2r + ψ̄2l iγ

μDμψ2l

−m0[ψ̄1lψ2r − ψ̄1rψ2l − ψ̄2lψ1r + ψ̄2rψ1l]

− g1σ [ψ̄1rU
†ψ1l + ψ̄1lUψ1r ]

− g2σ [ψ̄2rUψ2l + ψ̄2lU
†ψ2r ]

− aρNN [ψ̄1lγ
μ(ξ †

Lα̂‖μξL)ψ1l + ψ̄1rγ
μ(ξ †

Rα̂‖μξR)ψ1r ]

− aρNN [ψ̄2lγ
μ(ξ †

Rα̂‖μξR)ψ2l + ψ̄2rγ
μ(ξ †

Lα̂‖μξL)ψ2r ]

− a0NN tr[α̂‖μ] (ψ̄1lγ
μψ1l + ψ̄1rγ

μψ1r

+ ψ̄2lγ
μψ2l + ψ̄2rγ

μψ2r ). (2.22)

The vacuum expectation value (VEV) of the σ field,
denoted by σ0, is determined by the stationary condition for
the potential, as we explained above. The nonzero σ0 breaks
the chiral symmetry spontaneously and generates the masses
of nucleons as

Lmass = −(ψ̄1 ψ̄2)

(
g1σ0 m0γ5

−m0γ5 g2σ0

)(
ψ1

ψ2

)
. (2.23)

We obtain the masses of the positive-parity and negative-parity
nucleons by diagonalizing the mass matrix. Here, we write the
mass eigenstates as N+ and N−, which are related to ψ1 and

TABLE I. Determined model parameters for given m0. Here
mω = 783 MeV, mρ = 776 MeV, and m̄ε = m2

πfπ .

m0 (MeV) 500 600 700 800 900

g1 15.4 14.8 14.2 13.3 12.3
g2 8.96 8.43 7.76 6.94 5.92
gωNN 11.4 9.12 7.31 5.67 3.54
gρNN 8.05 6.97 7.46 7.75 8.75
μ̄ (MeV) 435 434 402 316 109
λ 40.5 39.4 34.5 22.5 4.26
λ6 16.3 15.4 13.5 8.66 0.607

TABLE II. Physical inputs in vacuum (MeV).

m+ m− mω mρ fπ mπ

939 1535 783 776 93 140

ψ2 as (
N+
N−

)
=

(
cos θ γ5 sin θ

−γ5 sin θ cos θ

)(
ψ1

ψ2

)
, (2.24)

where θ is the mixing angle given by

tan 2θ = 2m0

(g1 + g2)σ0
. (2.25)

The mass eigenvalues are determined as

m± = 1
2

(√
(g1 + g2)2σ 2

0 + 4m2
0 ∓ (g1 − g2)σ0

)
, (2.26)

where m+ and m− are the masses of positive- and negative-
parity baryons, respectively.2 From this expression, one can
easily see that the spontaneous chiral symmetry breaking is
responsible for the mass differences of the parity partners.

III. DETERMINATION OF MODEL PARAMETERS

In this section, we determine the ten unknown parameters in
this model by performing a global fit with chosen m0 to masses
and the pion decay constant in free space and to normal nuclear
matter properties. In this global fitting we have used m0 = 900,
800, 700, 600, and 500 MeV because we have found that with
m0 = 400 MeV or less we cannot reproduce the normal nuclear
matter properties such as incompressibility.

The determined parameters are summarized in Table I.
Now, we describe how we fix the model parameters and what
the inputs are.

First, we determine six parameters by using the physical
inputs listed in Table II. We choose the mass of positive-
parity (negative-parity) nucleons as m+ = 939 MeV (m− =
1535 MeV). As in some literatures, one may also try m− =
1200 MeV, but we have chosen the lightest and observed one.
The pion mass and decay constant are mπ = 140 MeV and
fπ = 93 MeV.

Next, the remaining parameters are fixed by the saturation
density, the binding energy, the incompressibility, and the
symmetry energy for the normal nuclear matter at zero
temperature. The normal nuclear matter properties for the
fit are discussed below, and empirical values of them are
summarized in Table III.

2As we l explain in the next section, we use m+ = 939 MeV and
m− = 1535 MeV as inputs to determine the values of g1 and g2 for
given m0. When we take m+ as the mass of the negative-parity baryon
and m− as that of the positive-parity baryon, i.e., m− = 939 MeV and
m+ = 1535 MeV, the determined values of g1 and g2 are exchanged.
One can verify that this exchange does not cause any physical
difference by swapping ψ1 with ψ2.
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TABLE III. Physical inputs. μ∗
B = 923 MeV. We took the values

of incompressibility and symmetry energy from Refs. [38] and [33],
respectively.

ρ0(μ∗
B ) (fm−3) E/A(μ∗

B ) − m+ (MeV) K (MeV) Esym (MeV)

0.16 −16 240 31

The typical values of the nuclear saturation density and
the binding energy are 0.16 fm−3 and −16 MeV, respectively.
With m+ = 939 MeV we have

ρ(μ∗
B = 923 MeV) = ρ0 = 0.16 fm−3, (3.1)

[
E

A
− m+

]
ρ0

=
[

ε

ρB

− m+

]
ρ0

= −16 MeV. (3.2)

We can consider another property of nuclear matter, the
incompressibility, which is given by the curvature of binding
energy at saturation density and corresponds to the “hardness”
of the matter:

K = 9ρ2
0
∂2(E/A)

∂ρ2

∣∣∣∣
ρ0

= 9ρ0
∂μB

∂ρ

∣∣∣∣
ρ0

. (3.3)

The symmetry energy per nucleon is from the difference of
proton and neutron and is given as

Esym(ρB) = 1

2!

∂2(E/A)

∂δ2

= 1

2!

∂2(ε/ρ)

∂δ2
, (3.4)

where the asymmetry parameter δ is defined as

δ ≡ ρp − ρn

ρB

= 2ρI

ρB

. (3.5)

We fit the remaining four parameters to the empirical values
shown in Table III.

We would like to stress that we can reproduce the value
of the incompressibility by the inclusion of the six-point
interaction of the scalar meson σ , in contrast to the previous
analyses by parity doublet models [19,23] where it seems
difficult to reproduce the small value of the incompressibility.

IV. EQUATION OF STATE

In this section, we study the EOS for cold nuclear matter
using the model constructed in the previous sections.

In Fig. 1, we show the dependence of the binding energy
(a) and the pressure (b) on the baryon number density for
m0 = 500 MeV as an example.

The red line in Fig. 1(a) shows the dependence of the
binding energy on the baryon number density of symmetric
matter. From this, one can easily see that the binding energy
is actually minimized at ρB = ρ0, which implies that the
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FIG. 1. (Color online) (a) Density dependence of the binding
energy. (b) The pressure for m0 = 500 MeV. ρB is the baryon number
density and ρn is the neutron number density: ρn/ρB = 0.5 implies
symmetric nuclear matter and ρn/ρB = 1 pure neutron matter.

existence of the bound nuclei and the saturation property are
actually reproduced.3

Figure 1(b) shows that the pressure for ρn/ρB = 0.5 is
negative in the low-density region, which means that the
liquid phase of hadron coexists with the gas phase. In
asymmetric matter, on the other hand, when the degree of
asymmetry, ρn/ρB , is around 0.6 ∼ 0.7, the coexistence phase
disappears and the pressure increases monotonically for larger
asymmetry, which implies that the bound nuclei do not exist for
ρn/ρB > 0.7.4 In the case of the pure neutron matter (ρn/ρB =
1), the energy density as well as the pressure monotonically
increases with the baryon number density. The EOS (pressure)
of asymmetric nuclear matter is also discussed in molecular
dynamics [39] and many-body perturbation [40]. Though our
analysis is done within the mean-field approximation, the

3We would like to stress that we do not use the minimization
condition as an input.

4Actually, the critical value of ρn/ρB depends on the chiral invariant
mass: ρn/ρB ∼ 0.7 for m0 = 500 MeV and ρn/ρB ∼ 0.8 for m0 =
900 MeV.
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TABLE IV. Predicted values of the slope pa-
rameter for m0 = 500 to 900 MeV.

m0 (MeV) L (MeV)

900 75
800 74
700 78
600 78
500 75

qualitative behaviors in symmetric and neutron matter from
Refs. [39,40] are similar to our result.

Next, we study the slope parameter, L, which is the gradient
of the symmetry energy at the saturation density:

L = 3ρ0
dEsym(ρB)

dρB

∣∣∣∣
ρB=ρ0

. (4.1)

The constraint for the value of L is obtained from some
experiments, for example, heavy-ion collision experiments,
nuclear masses, and so on [33,34]. In Table IV, we list our
calculated values of the slope parameters for several choices
of the chiral invariant mass m0. This shows that the slope
parameter hardly depends on m0, all of which are within the
allowed region shown in Refs. [33,34].

In Fig. 2, we show the dependence of the VEV of the σ field
[panel (a)] and the baryon number density ρB [panel (b)] on the
baryon number chemical potential μB for m0 = 500 MeV in
symmetric matter (red curves) and in the pure neutron matter
(green curves).

Figure 2(a) shows that there are two points, μB ∼ 900 MeV
and μB ∼ 1300 MeV, where the value of σ0 changes rapidly.
In the case of symmetric matter shown by the red curve,
the first jump for μB ∼ 900 MeV can be identified with the
first-order phase transition from the liquid phase to the gas
phase as the baryon number density (an order parameter of
the liquid-gas transition) undergoes sudden change around
μB ∼ 900 MeV [see Fig. 2(b)].5 Then, the phase transition
around μB ∼ 1300 MeV can be naturally identified as the
chiral phase transition. In symmetric nuclear matter (red
dashed line), the liquid-gas phase transition is first order and
there exists a coexistence phase. The existence of a coexistence
phase in the nuclear liquid-gas phase transition has been
confirmed in the experiments [41]. The coexistence phase
in symmetric matter disappears by increasing μI , and the
liquid-gas transition becomes second order as suggested in
Ref. [6].

5One may schematically understand why the chiral condensate
drops at the liquid-phase transition, where the baryon number density
jumps as we increase the baryon chemical potential, through the Pauli
exclusion principle. As the baryon density increases, the low-lying
phase space relevant for quark-antiquark condensates is occupied
by the fermions (quarks in nucleons in this case) that constitute the
Fermi sea; therefore, forming quark-antiquark condensates requires
much energy. At the liquid-gas transition point, there is a sudden
increase in the number density, and so we could expect that the chiral
(quark-antiquark) condensate changes drastically.
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FIG. 2. (Color online) (a) Baryon number chemical potential
dependence of σ0. (b) Chemical potential dependence of ρB for
m0 = 500 MeV and μI = 0 MeV.

Figure 3 shows the density dependence of the effective mass
of the positive-parity (negative-parity) nucleon, m+ (m−).
As ρB increases, m+ and m− gradually get close to the
chiral invariant mass. This is a feature from parity doublet
structure, and two nucleon masses degenerate to m0 when
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FIG. 3. (Color online) Density dependence of the effective nu-
cleon masses for m0 = 500 MeV at μI = 0 MeV.
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the chiral symmetry is completely restored. However, the
mass difference between the parity partners remains finite
in our model due to the current quark mass. The critical
density for chiral symmetry restoration depends also on the
chiral invariant mass, which is discussed in detail in the next
section.

V. PHASE DIAGRAM

In this section, we explore the phase structure of our model
at finite temperature and density with the isospin asymmetry.
Our primary interest here is to see how the onset of the
chiral and liquid-gas phase transition depends on the isospin
asymmetry and the chiral invariant nucleon mass m0. In this
study, we do not consider the charged pion condensation, and
so we take |μI | < mπ .

Figure 4(a) corresponds to the phase diagram at μI = 0,
where we have the first-order liquid-gas phase transition
(blue solid line) around μB = 900 MeV and the chiral phase
transition (red solid line) around μB = 1500 MeV at zero
and finite but small temperatures. The magenta dots are
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FIG. 4. (Color online) Phase diagrams for m0 = 900 MeV at
μI = 0 MeV (a) and μI = 100 MeV (b). The solid line is for the
first-order phase transition, the dashed line for the crossover, and the
point for the critical point (second order).
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FIG. 5. (Color online) The phase diagrams for m0 = 500 MeV.

second-order critical points, and the green dashed line shows
the crossover.

The two crossover lines meet at a point around (μB,T ) =
(700 MeV,100 MeV) as seen in a study with a parity doublet
model [23].

Figure 4(b) shows the phase diagram of asymmetric matter
with m0 = 900 MeV at μI = 100 MeV. The trend of the
liquid-gas and chiral phase transition is almost same as that
of Figure 4(a) (μI = 0); however, the liquid-gas transition
becomes second order even at zero temperature as briefly
mentioned in the previous section.

Now, we study how the chiral invariant mass affects the
phase diagram. We take m0 = 500 MeV as an example.

TABLE V. Critical values of the baryon chemical potential μB
c

at T = 0 and μI = 0 MeV.

m0 (MeV) μB
c
lg (MeV) ρB

c
lg (fm−3) μB

c
χ (MeV) ρB

c
χ (fm−3)

900 923 0.16 1540 2.98
800 923 0.16 1643 1.75
700 923 0.16 1554 1.09
600 923 0.16 1426 0.69
500 923 0.16 1305 0.44

025201-6



ASYMMETRIC NUCLEAR MATTER IN A PARITY DOUBLET . . . PHYSICAL REVIEW C 92, 025201 (2015)

TABLE VI. Critical values of the baryon chemical potential and
density at T = 0 and μI = 100 MeV.

m0 (MeV) μB
c
lg (MeV) ρB

c
lg (fm−3) μB

c
χ (MeV) ρB

c
χ (fm−3)

900 891 0.0 1537 2.98
800 891 0.0 1637 1.74
700 891 0.0 1543 1.09
600 888 0.0 1410 0.68
500 881 0.0 1285 0.43

Because the chiral invariant mass measures the amount of
spontaneous chiral symmetry breaking needed for the nucleon
masses and their mass splitting, we may expect that it mainly
affects chiral symmetry in the phase diagram. The results are
shown in Fig. 5. As expected, the nature of the liquid-gas
transitions does not change, while the first-order chiral phase
transition becomes second order.

Furthermore, as m0 decreases, the critical density (chemical
potential) for chiral transition decreases monotonically as
summarized in Table V. Note that the saturation density is
an input, and so is the corresponding chemical potential, in
our study. This is why the critical density (chemical potential)
for the liquid-gas phase transition does not change.

When we employ m0 = 900 MeV, the critical density for
chiral transition is about 17ρ0. On the other hand, the critical
density becomes ∼ 3ρ0 with m0 = 500 MeV. Comparing
with a previous study in a parity doublet model with m0 =
800 MeV [23], we find that our result for the symmetric matter
is almost the same as the one from the previous study. Note,
however, that we can explore the phase diagrams with the
chiral invariant mass of the range 500 MeV < m0 < 900 MeV
because we introduced the six-point interaction.

Table VI shows the critical baryon chemical potential and
density for μI = 100 MeV; comparing with Table V, we
observe that the critical values become (slightly) smaller. Here
the liquid-gas phase transition is second order so that ρB

c
lg must

be 0.

VI. SUMMARY AND DISCUSSION

We have constructed a model for asymmetric nuclear matter
by extending the parity doublet model. We introduced vector
mesons (ρ and ω) through hidden local symmetry and also
included the six-point interaction of the σ meson. We fixed our
model parameters with chosen m0 by performing a global fit to
physical inputs (masses and pion decay constant in free space
and nuclear matter properties). With the six-point potential,
we were able to reproduce normal nuclear matter properties
with m0 in the range from 500 to 900 MeV.

We first studied the EOS and the phase diagram of dense
symmetric matter at finite temperature. We observed that the
slope parameter at the saturation density satisfies the constraint
from heavy-ion experiments and neutron star observations,
for instance, see Refs. [33,34], and found that the chiral
condensate changes drastically at the chiral and liquid-gas
transition points.

Then we considered asymmetric dense matter by adding
a nonzero isospin chemical potential. We showed that the
first-order nature of the liquid-gas transition disappears in
asymmetric matter and the critical densities for the chiral
transition become smaller with increasing isospin chemical
potentials, which are in agreement with the results from
existing literatures. We also showed that smaller chiral
invariant nucleon mass favors smaller critical density for chiral
phase transition in both symmetric and asymmetric dense
matter.

Now, we discuss the chiral invariant nucleon mass. In our
work, we chose the chiral invariant mass m0 = 500–900 MeV
to reproduce the properties of normal nuclear matter. However,
the choice of chiral invariant mass is different in various
studies. In Refs. [19,23], nuclear matter was studied in a
parity doublet model and a rather large value of the chiral
invariant mass was used, m0 ∼ 900 MeV. On the other hand,
in Ref. [17] the authors determined m0 from the decay width
of N∗ → Nπ to be m0 = 270 MeV, while in Ref. [22] they
used the decay modes of N∗ → Nπ and a1 → πγ to obtain
m0 ∼ 500 MeV. These two studies were done in free space, and
m0 values from these studies are different from the one from
nuclear matter studies as we mentioned in the Introduction.
Our model can reproduce the nuclear matter properties even if
m0 = 500 MeV, which may imply that there is some possibility
to reproduce vacuum and nuclear matter properties in a single
model.

Recently, the study of parity doublet structure using lattice
QCD [42] shows that the positive-parity nucleon mass changes
very little near the deconfinement transition, which may imply
that m0 does exist in nature and its value is close to the
positive-parity nucleon mass. The existence of chiral invariant
mass is also discussed in the context of a Skyrmion crystal
[43].

In this study, we do not consider interesting phenomena
in dense (asymmetric) matter such as transition from nuclear
matter to hyperonic matter (e.g., Refs. [25,26]), charged pion
condensation with large isospin chemical potential, constraints
from the neutron star mass-radius relation, and so on. These
will be relegated to future works. Because the values of
the chiral invariant mass are diverse in the literature, it is
quite important and interesting to narrow down the value
of m0 and to dig further down to the role of m0 in hadron
physics.
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