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We compute the energy and momentum deposited by a fast-moving parton in a quark-gluon plasma using
linear viscous hydrodynamics with an energy loss per unit length profile proportional to the path length and with
different values of the shear-viscosity to entropy-density ratio. We show that when varying these parameters, the
transverse modes dominate over the longitudinal ones and thus energy and momentum is preferentially deposited
along the head-shock, as in the case of a constant energy loss per unit length profile and the lowest value for the
shear-viscosity to entropy-density ratio.
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I. INTRODUCTION

Experiments where heavy nuclei are collided at high
energies at the BNL Relativistic Heavy-Ion Collider [1] and the
CERN Large Hadron Collider [2] show that in these reactions
the so-called quark gluon plasma (QGP) is formed. The
dynamics of the bulk matter can be accurately described using
viscous hydrodynamics [3]. One way to study the properties
of the QGP is to consider how hard scattered partons transfer
energy and momentum to this medium.

In a given event the particle with the largest momentum
defines the near-side, and the opposite side is called the away-
side. In practice, one considers that the hard scattering happens
near the fireball’s surface in such a way that the away-side
patrons deposit energy and momentum to the medium, whereas
the near-side ones fragment in vacuum, giving rise to the so-
called jet-quenching [4,5]. A possible way to characterize the
medium is to study azimuthal particle correlations.

These correlations show some interesting features: When
the leading and the away-side particles have similar momenta,
the correlation shows a suppression of the away-side peak,
compared to proton collisions at the same energies. However,
when the momentum difference between leading and away-
side particles increases, either a double peak or a broadening
of the away-side peak appears. Neither of these features are
present in proton collisions at the same energies [6].

Explanations based on the emission of sound modes caused
by one fast-moving parton [7–9], the so-called Mach cones
are nowadays considered incomplete, since the jet-medium
interaction produces also a wake whose contribution cannot
be ignored [10,11]. Moreover it was recently shown that
it is unlikely that the propagation of a single high-energy
particle through the medium leads to a double-peak structure
in the azimuthal correlation in a system of the size and
finite viscosity relevant for heavy-ion collisions, since the
energy-momentum deposition in the head-shock region is
strongly forward peaked [12]. In addition, the overlapping

perturbations in very different spatial directions wipe out any
distinct Mach cone structure, according to the findings of
Refs. [13,14].

Currently, the origin of the double peak/broadening is
described in terms of initial state fluctuations of the matter
density in the colliding nuclei. Nevertheless there is also
evidence of a strong connection between the observed away-
side structures and the medium’s path length, expressed
through the dependence of the azimuthal correlation on the
trigger particle direction with respect to the event plane
as measured in away-side correlation studies performed by
the STAR Collaboration [15]. This connection is made by
observing that for selected trigger and associated particle
momenta, the double peak is present (absent) for out-of-plane
(in-plane) trigger particle direction. A final state effect rather
than an initial state one, seems more consistent with this
observation [16].

The energy momentum transferred by the fast traveling
parton to the medium can be described in terms of linearized
viscous hydrodynamics [3,10,17,18]. An important ingredient
for this description is the energy loss per unit length dE/dx
which enters as the coefficient describing a local hydrody-
namic source term. It is known that this parameter exhibits
a nontrivial dependence on the traveled path length L. For
instance, depending on the interplay between the evolving
density of the medium during the collision, the medium’s
size and formation length and the dominating energy-loss
mechanism (radiative or collisional), dE/dx could be either
constant or proportional to L [19–22].

In a previous work [23], we have explored the consequences
drawn from assuming that dE/dx is constant and that the
shear viscosity to entropy density ratio takes on its lower
theoretical value, showing that under such scenario the Mach
cone signal is weaker as compared to the wake or head-shock.
Moreover, we also showed that under such conditions, the
double peak/broadening in azimuthal angular correlations can
be better described by two instead of one parton depositing
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energy and momentum into the medium. In this work we set
out to explore the consequences of a linear dependence on L
of the energy loss per unit length and different values of the
shear viscosity to entropy ratio, using the same framework.
The paper is organized as follows. In Sec. II, we obtain the
expression for the local hydrodynamic source in Fourier space
and, from the solution to the linear viscous hydrodynamic
equations, we obtain the energy and momentum deposited
by the source into the medium. In Sec. III we study different
allowed values for the model parameters, in particular different
traveled paths and different shear-viscosity to entropy-density
ratios. We show that the energy and momentum is still
preferentially deposited along the head-shock, as in the case
of a constant energy loss per unit length profile and the
lowest value for the shear-viscosity to entropy-density ratio.
We finally summarize and conclude in Sec. IV.

II. HYDRODYNAMICAL DESCRIPTION
OF ENERGY LOSS

To describe the interaction between a fast moving parton
and the medium, one can resort to linearized viscous hydrody-
namics. In such a description, the source of energy-momentum
is provided by the current produced by the fast-moving parton
given by

J ν(x,t) =
(

dE

dx

)
vνδ3(x − vt), (1)

where vν is the particle’s four-velocity and dE/dx is the
energy loss per unit length. The current is proportional to
the instantaneous location of the particle which is modeled by
the three-dimensional δ function.

We assume that the disturbance induced by the fast-moving
parton is small such that the energy-momentum tensor can be
written as

�μν = �
μν
0 + δ�μν, (2)

where δ�μν is the disturbance generated by the parton and �
μν
0

is the equilibrium energy-momentum tensor of the underlying
medium. The tensor’s components satisfy

∂μδ�μν = J ν,
(3)

∂μ�
μν
0 = 0,

where J ν is given in Eq. (1). Equations (3) are solved by
considering that �μν consists of a term that describes an
isotropic fluid

�
μν
0 = −pgμν + (ε + p)uμ

0 uν
0, (4)

and the disturbance δ�μν that, to first order in the shear
viscosity density η [18] and ignoring bulk viscosity, has
explicit components given by

δ�00 = δε,

δ�0i = g, (5)

δ�ij = δij c
2
s δε − 3

4�s

(
∂igj + ∂j gi − 2

3δij∇ · g
)
.

Here we have defined ε(t,x) = ε0 + δε(t,x), with ε0 the
energy density of the background fluid and, δε and g the

energy and momentum densities associated to the disturbance,
respectively. The vector g is related to the spatial part of the
medium’s four-velocity,

u = g

ε0
(
1 + c2

s

) , (6)

where cs is the sound velocity and

�s ≡ 4

3

η

ε0
(
1 + c2

s

) = 4

3

η

s0T
(7)

is the sound attenuation length, with s0 the entropy density and
T0 the temperature of the underlying medium.

For the linear approximation the dynamical description of
the disturbance is given by the first of Eqs. (3), whose explicit
components can be written as

∂0δε + ∇ · g = J 0,
(8)

∂0gi + ∂j δ�
ij = J i.

These equations can be readily solved in momentum space.
We define the Fourier transform pair f (x,t) and f (k,ω) as

f (x,t) = 1

(2π )4

∫
d3k

∫
dω eik·x−iωtf (k,ω). (9)

Using Eq. (9) in Eqs. (8), together with Eqs. (5), we obtain

− iωδε + ik · g = J 0,
(10)

−iωgi + ic2
s k

iδε + 3

4
�s

(
k2gi + ki

3
(k · g)

)
= J i.

If we decompose g into its longitudinal and transverse parts,
with respect to the Fourier mode k, in the form

g = gL + gT , (11)

with the definition of longitudinal and transverse components
of any vector σ given by

σL ≡ (σ · k)

k2
k, (12)

σ T ≡ σ − σL, (13)

we can solve Eqs. (10) for each of the g modes as well as for
the energy density δε, which gives

δε(k,ω) = ik · J(k,ω) + J 0(k,ω)(iω − �sk
2)

ω2 − c2
s k

2 + i�sωk2
, (14)

gL(k,ω) = i
[

ω
k2 k · J(k,ω) + c2

s J
0(k,ω)

]
k

ω2 − c2
s k

2 + i�sωk2
, (15)

gT (k,ω) = g − gL = iJT (k,ω)

ω + i 3
4�sk2

. (16)

In a recent study [23], dE/dx was taken as constant. Under
such assumption it was found that the longitudinal signal is
weaker than the transverse one and that since the former is
mostly directed along the perpendicular direction of motion of
the source whereas the latter is forward peaked, the energy-
momentum was preferentially deposited along the direction
of motion of the hard parton. Nevertheless, it is known that
depending on the size and treatment of the scattering properties
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of the medium, dE/dx can depend on the traveled path.
Let us therefore consider a simple scenario where the length
dependence of dE/dx is linear, namely let us take(

dE

dx

)
= Cz, (17)

where we have explicitly considered that the particle’s direc-
tion of motion is along the ẑ direction and introduced the
dimensionful proportionality constant C which is fixed later
on. We thus write explicitly the current as

J ν(x,t) = Czvνδ3(x − vt), (18)

whose Fourier transform can be written as

J ν(k,ω) = −2iCvπvν ∂

∂ω
δ(ω − k · v). (19)

When considering the effect of the derivative of the δ function
in Eq. (19) for the integrations that lead to the energy and
momentum components deposited into the medium, we can
generically write∫

dω F (ω)
∂

∂ω
δ(ω − k · v) = − ∂

∂ω
F (ω)

∣∣∣∣
ω=k·v

. (20)

Also, the dependence on ω of this function is a product of the
form F (ω) = e−iωtf (ω), thus

∂

∂ω
F (ω) = −ite−iωtf (ω) + e−iωt ∂

∂ω
f (ω). (21)

Therefore the total energy or momentum deposited into the
medium can be expressed in terms of two contributions: The
first term in Eq. (21) which corresponds to the one computed
in Ref. [23] as if the energy per unit length was constant,
multiplied by the time interval t , and the second one in that
equation, which corresponds to a new contribution stemming
from the derivative of the function multiplying the exponential
in the integrands. We write these generic contributions as

F(x,t) = vC[F0(x,t)t + F̃(x,t)]. (22)

In order to make the analysis more transparent, let us
consider that t represents a parameter that accounts for the
time during which the parton travels trough the medium. For a
hydrodynamical description, we require that this time is large
enough compared to the sound attenuation length. Thus, it is
convenient to express this time in units of �s , introducing a
dimensionless phenomenological quantity κ , given by

Ct = Cκ

t( 3�s

2v

) ≡ Cκκ, (23)

where κ = (3�s/2v)−1t is a characteristic time scale given in
units of the sound attenuation length and Cκ is a dimensionless
free parameter that will be fixed by requiring that the total
energy and momentum deposited within the medium by the fast
moving parton is the same as in the case of a constant dE/dx.
With this definition the energy and momentum deposited into
the medium can be written as

F(x,t) = Cκv

[
κF0(x,t) +

(
2v

3�s

)
F̃(x,t)

]
. (24)

We can now use Eqs. (14)–(16) to obtain the space-time
solutions for δε(x,t) and g(x,t). Using Eq. (9) and after
integration in ω, the new contributions are

g̃T (x,t)=
∫

d3k

(2π )3
eik·(x−vt)

[
v − (k · J)k

k2

]
1(

k · v+i 3
4�sk2

)2 ,

(25)

g̃L(x,t)=−g̃L1(x,t) + g̃L2(x,t), (26)

with

g̃L1(x,t) =
∫

d3k

(2π )3
ek·(x−vt)

× (k · v)k

k2
[
(k · v)2 − c2

s k
2 + i�s(k · v)k2

] , (27)

g̃L2(x,t) =
∫

d3k

(2π )3
kek·(x−vt)

×
( (k·v)2

k2 + c2
s

)
(2k · v + i�sk

2)[
(k · v)2 − c2

s k
2 + i�s(k · v)k2

]2 , (28)

and

δε̃(x,t) = δε̃1(x,t) − δε̃2(x,t) (29)

with

δε̃1(x,t) = −
∫

d3k

(2π )3

ek·(x−vt)

(k · v)2 − c2
s k

2 + i�s(k · v)k2
, (30)

δε̃2(x,t) = i

∫
d3k

(2π )3
ek·(x−vt) (2ik · v−�sk

2)
(
2k · v+i�sk

2
)

[
(k · v)2−c2

s k
2+i�s(k · v)k2

]2 .

(31)

In order to compute the integrals in Eqs. (25)–(31) we use
cylindrical coordinates with kz directed along the direction
of motion v of the fast parton. Let us look in detail at the
computation of the z- component of g̃T . After carrying out the
angular integration we get

(g̃T )z = v

∫ ∞

0

dkT

(2π )2

∫ ∞

−∞
dkze

ikz(z−vt)

× k3
TJ0(kT xT )(

kzv + i 3
4�sk2

)2(
k2
T + k2

z

)
= 2πiv

∫ ∞

0

dkT

(2π )2
k3
TJ0(kT xT )[Res1 + Res2], (32)

where J0 is a Bessel function and xT =
√

y2 is the distance
from the parton along the transverse direction (directed along
the ŷ axis, in the geometry we are using) and Res1 and Res2
represent the residues at the two poles in the integrand of
Eq. (32). To carry out the contour integration we close the
contour on the lower half kz-plane in order to ensure causal
motion (z − vt < 0). The first residue is given by

Res1 = −i
ekT (z−vt)

2k3
T v2

, (33)
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which can be analytically integrated with respect to kT . For
the second residue, we express the integral in terms of the
dimensionless quantities

ξ ≡
(

3�s

2v

)
kT , α ≡

(
3�s

2v

)−1

|z − vt |,
(34)

β ≡
(

3�s

2v

)−1

xT , s =
√

1 + ξ 2 − 1,

thus

Res2 = i

2v2

(
3�s

2v

)3

e−αs s − α(s + 1)

s(s + 1)3
. (35)

Note that the variables α and β represent the distance from the
source in the parton direction of motion and in the transverse
direction, respectively, in units of the sound attenuation length,
whereas ξ is the transverse momentum in units of the inverse
of the sound attenuation length.

Putting all together, the integral in Eq (32) becomes

(g̃T )z = 1

v

(
1

4π

)(
2v

3�s

)[
1√

α2 + β2
−

∫ ∞

0
ds

s − α(s + 1)

(s + 1)2
(s + 2)J0(β

√
s(s + 2))e−αs

]

≡
(

1

4π

)(
2v

3�s

)
ĨgT z

. (36)

In a similar fashion we get

(g̃T )y = 1

v

(
1

4π

)(
2v

3�s

)[
α −

√
α2 + β2

β
√

α2 + β2
+

∫ ∞

0
dsJ1(β

√
s(s + 2))e−αs

√
s(s + 2)

(s2 + s + 1) − αs(s + 1)

(s + 1)2

]

≡
(

1

4π

)(
2v

3�s

)
ĨgTy

, (37)

where J1 is a Bessel function. For the (g̃L1)z component, after carrying out the angular integration we get

(g̃L1)z = 1

v

∫
dkT

(2π )2

∫
dkzk

2
z kTJ0(xT kT )eikz(z−vt) 1(

k2
T + k2

z

)[
k2
z + ( − c2

s

v2 + i�s
kz

v

)
(k2

T + k2
z )

] . (38)

For conditions close to the ones after a heavy-ion reaction, the quantity c2
s /v

2 is small, since for a fast moving (massless)
parton v � 1 and for a relativistic gas, cs � √

1/3. Therefore, we can expand the integrand in Eq. (38) in this parameter. To first
order in c2

s /v
2, we get

(g̃L1)z = 1

v

∫
dkT

(2π )2

∫
dkz

kT k2
zJ0(xT kT )eikz(z−vt)(

k2
T + k2

z

)
{

1

k2
z + i�s

kz

v

(
k2
T + k2

z

) +
(
k2
T + k2

z

)
[
k2
z + i�s

kz

v

(
k2
T + k2

z

)]2

(
c2
s

v2

)}
. (39)

To perform the integral it is convenient to introduce the variable r related to ξ by r = 4
3ξ . Once again, in order to describe causal

motion (z − vt < 0), we close the contour on the lower half kz-plane. The remaining integral is obtained after the change of
variable s = √

1 + r2 − 1 and given by

(g̃L1)z = 1

v

(
1

4π

)(
2v

3�s

){
− 1√

α2 + β2
+

∫ ∞

0
dsJ0

(
3

4
β
√

s(s + 2)

)
e− 3

4 αs

[
3

8
+ 3

2

(cs

v

)2
(s + 1)

(
1 + 3

4
α(s + 1)

)]}

≡
(

1

4π

)(
2v

3�s

)
ĨgL1z

. (40)

In a similar fashion we obtain

(g̃L2)z = 1

v

(
1

4π

)(
2v

3�s

){
− 2√

α2 + β2
+ 3

4

∫ ∞

0
ds

J0
(

3
4β

√
s(s + 2)

)
(s + 1)2

e− 3
4 αs

[
(2s2 + 4s + 3) − 3

2αs(s + 1)

2

− 2(s2 + s + 1) − 3
2αs(s + 1)

s

(cs

v

)2
−

9
4α2s(s + 1) − 3α(2s2 + 3s + 4)

2(s + 1)

(cs

v

)2
− 2s2 + 4s + 5

(s + 1)2

(cs

v

)2
]}

≡
(

1

4π

)(
2v

3�s

)
ĨgL2z

, (41)
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FIG. 1. (Color online) Three-dimensional plots (surfaces and contours) for IgT z
and Igδε

as functions of α, β, and κ for η/s = 1/4π . The
plots are shown starting from a minimum value of αmin = 0.5 and for values (left to right) of κ = 75, 100.

(g̃L1)y = 1

v

(
1

4π

)(
2v

3�s

){√
α2 + β2 − α

β
√

α2 + β2
− 3

4

∫ ∞

0
ds

√
s(s + 2)

s
e− 3

4 αsJ1

(
3

4
β
√

s(s + 2)

)

×
[

1 +
3
2αs(s + 1) + 2(2s + 1)

(s + 1)2

(cs

v

)2
]}

≡
(

1

4π

)(
2v

3�s

)
ĨgL1y

, (42)

(g̃L2)y = 1

v

(
1

4π

)(
2v

3�s

){
2
α −

√
α2 + β2

β
√

α2 + β2
+ 3

4

∫ ∞

0
ds

√
s(s + 2)

s(s + 1)2
e− 3

4 αsJ1

(
3

4
β
√

s(s + 2)

)

×
[

3
2αs(s + 1) − 2(2s2 + 3s + 2)

2
+ 2s − 3

2α(s + 1)

s + 1

(cs

v

)2
+

9
4α2s2

(s + 1)

(cs

v

)2

−
2
3α(2s3 + 3s2 + 3s + 2)

(s + 1)3

(cs

v

)2
− 2(4s3 + 7s2 + 8s + 2)

(s + 1)3

(cs

v

)2
]}

≡
(

1

4π

)(
2v

3�s

)
ĨgL2y

, (43)

δε̃1(x,t) = 1

v2

(
1

4π

)(
2v

3�s

)
3

2

∫ ∞

0
ds

e− 3
4 αs

s
J0

(
3

4
β
√

s(s + 2)

)[
1 + c2

s

3
2αs(s + 1) + 2(s2 + 4s + 2)

2s(s + 1)2

]

≡
(

1

4π

)(
2v

3�s

)
Ĩδε1, (44)
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FIG. 2. Integrals of the functions IgT z
(κ),IgTy

(κ),IgLz
(κ),IgLy

(κ), Igδε
(κ), Igz (κ), and Igy (κ), defined in Eqs. (46) and (47), over the domain

αmin < α < 6, −5 < β < 5 for the different values of αmin and κ = 75, 90, 100, with η/s = 1/4π . Also the constant energy-loss I0 case is
plotted for comparison purposes. Notice that for all of values of αmin, the hierarchy of modes remains the same as for the case with constant
dE/dx and energy momentum is preferentially deposited along the head-shock.

and

δε̃2(x,t) = 1

v2

(
1

4π

)(
2v

3�s

)
3

4

∫ ∞

0
dse− 3

4 αsJ0

(
3

4
β
√

s(s + 2)

)[
2(2s2 + 3s + 2)

s(s + 1)2

− c2
s

9
4α2s2(s + 1)2 − 3αs(2s3 + 3s2 + 3s + 2)

s2(s + 1)4
− 4(2s4 + 12s3 + 19s2 + 16s + 4)

s2(s + 1)4
c2
s −

3
2αs

(s + 1)

]

≡
(

1

4π

)(
2v

3�s

)
Ĩδε1. (45)

From Eqs. (25)–(29) the total energy and momentum deposition into the medium can be written as

δε(x,t) =
(

1

4π

)(
2v

3�s

)2(9Cκ

8

)[
κI δε

0 +
(

8

9v

)
Ĩ δε

]
≡

(
1

4π

)(
2v

3�s

)2(9

8

)
I δε(α,β,κ), (46)

g(x,t) =
(

1

4π

)(
2v

3�s

)2

Cκv
[
κIg

0 + Ĩg
] ≡

(
1

4π

)(
2v

3�s

)2

vIg(α,β,κ). (47)
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FIG. 3. (Color online) Three-dimensional plots (surfaces and contours) for IgT z
and Igδε

as functions of α, β, and κ for η/s = 1.5/4π . The
plots are shown starting from a minimum value of αmin = 0.5 and for values (left to right) of κ = 50, 70.

We now proceed to study how this momentum is distributed
in transverse and longitudinal modes.

III. ENERGY-MOMENTUM DEPOSITION

First, let us consider the case discussed in Ref. [23], where
η/s0 = 1/4π . When the range for the traveled path length L
is such that 7 fm < L < 10 fm, then 75 < κ < 100. Figure 1
shows the three-dimensional plots for IgT z

and Igδε
as functions

of α and β for κ = 75, 100. The plots are shown in the range
0.5 < α < 4 and −5 < β < 5. The constant Cκ in Eqs. (46)
and (47) is fixed by requiring that the total energy momentum
deposited into the medium is the same as the case with a
constant dE/dx, namely∫

dα dβ(δε2 + |g|2) =
∫

dα dβ
(
δε2

0 + |g0|2
)
. (48)

Figure 2 shows the integral defined in Eq. (46) and the
different components of the integrals defined in Eq. (47),
integrated over the domain αmin = 0.5, 1, αmax = 6, and −5 <

β < 5 for several values of κ . The figure also shows I δε
0 and

the components of Ig
0 which correspond to a constant energy-

loss per unit length. Note that the hierarchy of momentum
deposition is the same in both cases. This means that the
momentum is preferentially deposited also in the forward
direction for this value of η/s0.

The value η/s0 = 1/4π , corresponds to a universal lower
bound for all relativistic quantum field theories in the strongly
coupled limit [18]. However, we can test the sensitivity to the
momentum deposition when varying η/s0 [18,24–26]. Since
�s is proportional to η/s0, a traveled path length L in the range
7 fm < L < 10 fm, corresponds to different values of κ than
for the previously discussed case where we took η/s = 1/4π .
Note that since δ̃ε is intrinsically negative, if we require that
δε = κδε0 − |δ̃ε| > 0 then not all values of κ are allowed. To
find a restriction involving κ and η/s0, note that

κ >
|δ̃ε|
δε0

≈ 30 (49)
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FIG. 4. Integrals of the functions IgT z
(κ),IgTy

(κ),IgLz
(κ),IgLy

(κ), Igδε
(κ), Igz (κ), and Igy (κ), Eqs. (46) and (47), over the domain αmin < α <

6, −5 < β < 5 for the different values of αmin and κ = 50, 60, 70, with η/s = 1.5/4π . Also the constant energy-loss I0 case with η/s = 1/4π

is plotted for comparison purposes. Notice that for all values of αmin, the hierarchy of modes remains the same as for the case with constant
dE/dx and energy-momentum is preferentially deposited along the head-shock.

therefore

η

s0
<

vtmin

2

δε0

δ̃ε
T0 ≈ 2.5

1

4π
, (50)

where tmin is the minimum time that we consider for the
fast-moving parton to have traveled in the medium. For
definitiveness we take this parameter to be tmin = 7 fm, given
that the maximum time corresponds to twice the nuclear radius
which for led nuclei is of order 10 fm.

Figure 3 shows the integral defined in Eq. (46) and the
component IgT z

of the integrals defined in Eq. (47) as functions
of α and β. The plots are shown in the range 0.5 < α < 4
and −5 < β < 5 for several values of κ . The normalization
constant Cκ is computed also from the requirement in
Eq. (48). There is not much of a difference between the
three-dimensional surfaces in Fig. 3 and those in Fig. 1. This

means that the spatial distribution of energy and momentum are
very much alike for the cases with η/s = 1/4π , 1.5/4π . Figure
4 shows the comparison between the integrals of Eqs. (46) and
(47), with respect to α and β, with the case corresponding to
a constant energy-loss per unit length for η/s = 1.5/4π . Note
that the hierarchy of strengths for the momentum components
for the case with η/s = 1.5/4π is maintained with respect to
the case with η/s = 1/4π . The only significant change comes
from the energy deposition which is 30% smaller in the latter
case.

For completeness, we also study the case with η/s = 2/4π .
Figure 5 shows the three-dimensional plots corresponding to
Eqs. (46) and (47) for several values of κ . Figure 6 shows
the comparison between all components of these integrals
and I δε

0 and the components of Ig
0 which correspond to a

constant energy loss per unit length for the case η/s = 1/4π .
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FIG. 5. (Color online) Three-dimensional plots (surfaces and contours) for IgT z
and Igδε

as functions of α, β, and κ for η/s = 2/4π . The
plots are shown starting from a minimum value of αmin = 0.5 and for values (left to right) of κ = 35, 55.

The normalization constant Cκ is computed also with the
requirement in Eq. (48). Note that the energy deposition
decreases about 60% with respect to the case with η/s = 1/4π
but the hierarchy of strengths between the momentum modes
remains the same as the case with η/s = 1/4π .

In order to further study the energy-momentum deposition,
we proceed as in Ref. [27], defining the energy density and
momentum flux angular distributions as

dIδε

dθ
= 2πR2 sin θIδε, (51)

and

dIg

dθ
= 2πR2 sin θ R̂ · Ig

= 2πR2 sin θ (|gz| cos θ + |gy | sin θ ), (52)

respectively, where R is the distance vector from the source
measured from the forward direction.

Figure 7 shows the angular distribution for energy density
(a) and momentum flux (b), for different values of distances
to the source R in units of sound attenuation length, for
η/s = 1/4π and κ = 75. Note that both angular distributions
peak for angles close the source, which strengthens the
conclusion that energy and momentum deposition is in the
forward direction. The energy density increases and the
momentum flux decreases with the distance to the source.
This can be understood from the fact that the energy density
contains an extra power of R with respect to the momentum
flux.

IV. SUMMARY AND CONCLUSIONS

In summary, we have studied the energy-momentum depo-
sition produced by a fast-moving parton traveling in a medium
modeled by linear viscous hydrodynamics. The energy loss
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FIG. 6. Integrals of the functions IgT z
(κ),IgTy

(κ),IgLz
(κ),IgLy

(κ), Igδε
(κ), Igz (κ), and Igy (κ), defined in Eqs. (46) and (47), over the domain

αmin < α < 6, −5 < β < 5 for the different values of αmin and κ = 35, 45, 55, with η/s = 2/4π . Also the constant energy loss I0 with
η/s = 1/4π is plotted for comparison purposes. Notice that for all values of αmin the hierarchy of modes remains the same as for the case with
constant dE/dx and energy momentum is preferentially deposited along the head-shock.
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FIG. 7. (Color online) Angular distribution of (a) energy density dIδε/dθ and (b) momentum flux dIg/dθ over an angular range [π/2,π ]
at distances R = 2.0, 3.0, and 4.0 in units of the sound attenuation length �s for η/s0 = 1/4π and κ = 75.
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per unit length dE/dx has been taken as proportional to
the traveled length. We found that the transverse modes still
dominate the momentum deposition and therefore this case
is similar to the one where dE/dx is taken as independent
of the traveled path length. This situation is also maintained
when the shear viscosity to entropy ratio η/s0 is increased
from its theoretical lower bound. The only significant change
comes from the energy deposition which decreases as η/s
increases. Therefore, the momentum is forward peaked as in
the case with constant energy loss per unit length as well
as for the case of the lower value of η/s previously studied
[23]. We conclude that for the cases where dE/dx is constant
or proportional to the path length, as well as for larger than
the lower theoretical bound values of η/s, the energy and
momentum are preferentially deposited along the direction
of motion of the traveling parton. Therefore, for the cases
studied, the conical emission of particles is suppressed with
respect to the forward emission, which means for instance
that it is unlikely that the propagation of a single fast-moving
parton leads to the appearance of a double-peak structure in
azimuthal angular correlations in heavy-ion collisions.

We also point out that it is easy to generalize the present
studies to the case where dE/dx ∝ Ln with n an integer larger
than 1. In such a situation, the Fourier transform of J ν(x,t) ∝

δ(n)(ω − k · v), where n is the nth derivative of the δ function.
Thus, the expressions for the energy and momentum deposition
become polynomials of degree n in t , where the coefficient
of tn corresponds to the strength of the term F0(x,t) which
then becomes the dominant component for the range 7 fm
< L < 10 fm. Therefore the hierarchy of the modes retain the
general features already seen in the case of a constant energy
loss per unit length profile.
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