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Differential Hanbury-Brown–Twiss approach for an exact hydrodynamic model with rotation
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We study an exact rotating and expanding solution of the fluid dynamical model of heavy ion reactions, that
take into account the rate of slowing down of the rotation due to the longitudinal and transverse expansion of the
system. The parameters of the model are set on the basis of realistic 3+1D fluid dynamical calculation at TeV
energies, where the rotation is enhanced by the build up of the Kelvin Helmholtz instability in the flow.
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I. INTRODUCTION

In peripheral heavy ion collisions the participant system
has large angular momentum. In hydrodynamical model
calculations it has been shown that this shear leads to a
significant vorticity [1,2]. When quark-gluon plasma (QGP) is
formed with low viscosity [3–5], new phenomena may occur
like rotation [6], or turbulence, which shows up in the form of a
starting Kelvin-Helmholtz instability (KHI) [7–9]. It was also
shown [10] that in peripheral collisions even if the shear flow is
neglected and the same boost invariant longitudinal velocity is
assumed at all transverse points, in the color glass condensate
(CGC) model initial transverse flow develops and it contributes
to angular momentum in the same direction as the angular
momentum arising from the target and projectile motion in
the participant system. Rotation in heavy ion collisions has
only recently been considered, our aim is to detect it using a
two-particle correlation.

The differential Hanbury-Brown–Twiss (DHBT) method
has been introduced earlier in [11]. Previously the method has
been applied to a high resolution particle in cell relativistic
(PICR) fluid dynamical model [12]. Here we will look at how
the DHBT can be used for the exact hydromodel [13,14].
Rotation in exact models has been investigated as well in [15].
We look at the values from the exact hydromodel and determine
the effect rotation has on the correlation functions (CF) for
detectors at different positions.

II. CORRELATION FUNCTION FOR
EXACT HYDRO MODEL

The two-particle correlation function for this model is found
with the same method used in [11] where the source function
is

S(x,k) = n(x)kμσμ

Cn

exp

[
−kμuμ

T (x)

]
, (1)

where Cn is a constant, kμ is the average four-vector mo-
mentum of two pions, k = (p1 + p2)/2, and the momentum
difference is q = (p2 − p1). uμ is the four-vector velocity of
the source, σμ is the normal of the freeze-out hypersurface,
and T (x) is the temperature distribution. The density for the
exact hydromodel [14] is given by

N (rρ,ry) = NB

Cn

V
exp

(−r2
ρ/2R2

)
exp

(−r2
y /2Y 2

)
(2)

or using the scaling variables in the out (ρ, R), side (ϕ, �),
long (y, Y ) directions

N (sρ,sy) = NB

Cn

V
exp(−sρ/2) exp(−sy/2), (3)

where sρ = r2
ρ/R2 and sy = r2

y /Y 2.
We use the finite size cylindrical shape source as described

in Eq. (10) of [14]∫ ∞

0

∫ ∞

−∞

∫ 2π

0
rρdrρdrydϕ = R2Y

∫ 1

0

∫ 1

0

∫ 2π

0

dsydsρdϕ√
sy

, (4)

and the integral J (k,q) for this model will be

J (k,q) ∝
∫ 1

0

∫ 1

0

∫ 2π

0
wsγs(k0 + k · vs)

× exp

[
− γs

Ts

((k0 + q0/2) − (k + q/2) · vs)

]

× exp(iq · x)e−sρ/2e−sy/2 dsydsρdϕ√
(sy)

, (5)

where k0 =
√

2mπ

�c
+ k2 and q0 = k·q

k0
,ws is a weight function,

ws ∝ kμσμ, and the temperature profile is flat with a value of
250 MeV.

We have the single particle distribution integral∫
d4xS(x,k) ∝

∫
wsγs(k0 + k · vs)

× exp

[
−γs

Ts

(k0 − k · vs)

]

× e−sρ/2e−sy/2 dsydsρdϕ√
(sy)

, (6)

and the correlation function is given by [11]

C(k,q) = 1 + Re[J (k,q)J (k,−q)]∣∣ ∫ d4xS(x,k)
∣∣2 (7)

so the constants outside the integrals will cancel.
The velocity consists of a radial expansion in the out

direction, an angular velocity, where the rotation is in the
reaction plane, and also an axis-directed expansion in the side
direction. The velocity in the out (ρ), side (ϕ), long direction
(y) is then

vs = (Ṙ
√

sρ,Rω
√

sρ,Ẏ
√

sy) , (8)
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TABLE I. Time dependence of some characteristic parameters of
the fluid dynamical calculation presented in Ref. [14]. R is the average
transverse radius, Y is the longitudinal length of the participant
system, ϕ is the angle of the rotation of the interior region of the
system around the y axis, measured from the horizontal, beam (z)
direction in the reaction, [x,z] plane, Ṙ, Ẏ are the speeds of expansion
in transverse and longitudinal directions, and ω is the angular velocity
of the internal region of the matter during the collision.

t Y Ẏ ω R Ṙ ϕ

(fm/c) (fm) (c) (c/fm) (fm) (c) (Rad)

0 4.000 0.300 0.150 2.500 0.250 0.000
3 5.258 0.503 0.059 3.970 0.646 0.307
8 8.049 0.591 0.016 7.629 0.779 0.467

or in the x, y, z directions, where x is the direction of the
impact parameter, y is the longitudinal (rotation) axis, and z is
the (beam) collision axis:

vs = (Ṙ
√

sρ sin(ϕ) + Rω
√

sρ cos(ϕ),

Ẏ
√

sy,Ṙ
√

sρ cos(ϕ) − Rω
√

sρ sin(ϕ)). (9)

The average transverse radius is R = √
XZ, and we use this

value when the exact model is studied. Using the values from
Table I we show the correlation function as function of q = qout

in Figs. 1(a) and 1(b) for two different configurations.
As the system size increases with time we get a narrower

distribution in qout for the correlation function. We also notice
a wider distribution for increasing values of k.

III. RESULTS—DIFFERENTIAL HBT FOR
EXACT HYDROMODEL

Let us now “event by event” evaluate two correlation
functions at two different k-vectors in the plane of rotation. The
differential correlation function [11] is obtained by taking the
difference between the correlation functions, e.g., at detector
positions k+ = (a,0,b)k and subtracting the CF for a detector
at k− = (a,0,−b)k (a2 + b2 = 1) in x,y,z coordinates,

	C(k,q) ≡ C(k+,q) − C(k−,q) . (10)

FIG. 2. (Color online) The schematic phase space distribution of
the rotating and expanding source in the momentum space. The
momentum of the expansion increases with the radius just as the
momentum arising from the rotation. So, higher radial flow momenta
correspond to higher rotation momenta also, as given by Eq. (8) and
indicated by the red line. At constant pρ the distribution peaks at
the momentum pφ indicated by the red line; the Jüttner distribution,
Eq. (8), is not symmetric, it is elongated towards higher momenta,
see Sec. 2.4.2 of [16]. The resulting thermally smeared distribution
is indicated by the contour lines.

The integrals for this model cannot be given in analytic
form, so the CF and DCF need to be integrated numerically.
The momentum difference vector q may point in different
directions, and it is usual to use the qout, qlong, qside system of
directions. In the present work we show the qout dependence
of the correlation functions only, where k ‖ qout.

A. Detectors

As we can see from Eq. (8) the rotation leads to an
asymmetry, both the ρ and ϕ components of the velocity vs

depend linearly on
√

sρ , thus the flow velocities of the system

at a given FO time have a velocity profile v
(ϕ)
s = const.v(ρ)

s .
The corresponding momentum of the fluid motion has ap-
proximately the same characteristics, and this is indicated by
the red full line in Fig. 2. This characteristic flow velocity

(a) (b) (c)

FIG. 1. (Color online) Correlation function C(k,qout) for the exact hydromodel as function of q = qout, with (a) R = 2.500 fm, Ṙ = 0.250
c,Y = 4.000 fm, Ẏ = 0.300 fm, ω = 0.150 c/fm, at t = 0.0 fm/c; (b) R = 3.970 fm, Ṙ = 0.646 c,Y = 5.258 fm, Ẏ = 0.503 fm, ω = 0.059
c/fm, at t = 3.0 fm/c; (c) R = 7.629 fm, Ṙ = 0.779 c,Y = 8.049 fm, Ẏ = 0.591 fm, ω = 0.016 c/fm, at t = 8.0 fm/c. The solid black line
is for k = 0.2 fm−1, the dashed red line is for k = 1 fm−1, and the dotted blue line is for k = 5 fm−1.
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(a) (b) (c)

FIG. 3. (Color online) Differential correlation function for the exact hydromodel as function of q = qout, with (a) R = 2.500 fm, Ṙ = 0.250
c,Y = 4.000 fm, Ẏ = 0.300 fm, ω = 0.150 c/fm at t = 0.0 fm/c; (b) R = 3.970 fm, Ṙ = 0.646 c,Y = 5.258 fm, Ẏ = 0.503 fm, ω = 0.059
c/fm at t = 3.0 fm/c; (c) R = 7.629 fm, Ṙ = 0.779 c,Y = 8.049 fm, Ẏ = 0.591 fm, ω = 0.016 c/fm at t = 8.0 fm/c. Where the solid black
line is for k = 0.2 fm−1, the dashed red line is for k = 1 fm−1, and the dotted blue line is for k = 5 fm−1. In (a) the solid black line is close to
the axis.

distribution determines the final momentum distribution of the
emitted particles where the contribution of a fluid element
at a radial coordinate sρ leads to a tangential momentum
distribution centered around v

(ϕ)
s = Rω

√
sρ . The resulting

momentum distribution of the emitted particles from different
radii is sketched in Fig. 2.

Although our spatial source configuration is azimuthally
symmetric, our phase-space configuration is not, because of
the given direction of the rotation. As Eq. (5) shows the CF
depends on q · vs and q · x, thus reversing the direction of
either q or vs will change the CF. For vanishing rotation the
CF would be the same for different azimuthal angles (e.g.,
dz = ±b) if the spatial source is azimuthally symmetric. If
there is no expansion the rotation does not change the CF
integrals either.

We use a detector placed at (x,y,z) = (0.935,0,0.353),
so that k = (0.935,0,0.353)k and q = qout =
(0.935,0,0.353)qout, so that both k and q are parallel,
are in the reaction plane, and are orthogonal to the rotation
axis, y.

If we look at the azimuthal integrals for k · vs for the
detectors at k = (ak,0, ± bk) in Eqs. (5),(6), we have the
integrals below, which will have a nonzero difference for
a �= b,Ṙ �= 0, and ω �= 0, both for k and qout:∫ 2π

0
exp(k

√
sρ (a[Ṙ sin(ϕ) + Rω cos(ϕ)]

+ c[Ṙ cos(ϕ) − Rω sin(ϕ)]))dϕ

�=
∫ 2π

0
exp(k

√
sρ (a[Ṙ sin(ϕ) + Rω cos(ϕ)]

− c[Ṙ cos(ϕ) − Rω sin(ϕ)]))dϕ. (11)

This is so because, although the spatial distribution does not
depend on ϕ, the momentum space distribution depends on vϕ .

In the case of a realistic dynamical configuration, espe-
cially in the initial configuration, the local rotation velocity

component from the shear flow is maximal at higher distances
in the ±x directions and pointing towards the ±z direction.

For different detector positions we would expect different
values of the correlation function, and ideally we would place
them along or near the direction of highest speed in the side
direction which would usually be in the beam direction.

In the exact model discussed here we can see that at small
values of k there is little to no difference in the DCF, but
the difference will increase for higher values. As the system
grows in size the distribution becomes narrower for the CF and
the DCF will become smaller for larger values of the relative
momentum q.

For the initial time, t = 0, the DCF is small and positive,
Fig. 3(a), but for the later times the amplitude is larger and
negative. Comparing Figs. 3(b) and 3(c) we see that as expected
the peaks of the DCF are more to the left for a larger size
because R ∼ 1/q at half-width of the correlation function. We
also see that the amplitude for DCF for Figs. 3(b) and 3(c) are
about the same. As the system continues to increase in size we
would see a decrease in the amplitude because of the lower ω
value. For higher values of the temperature we get a smaller
amplitude in the DCF, or for smaller values of the temperature
we get a higher amplitude. At late times, t = 8 fm/c and larger
size, the CF is much narrower as shown in Fig. 1(c). Notice that
at low wave numbers, k the CF has several zero points. This is
also reflected in the DCF at the same k value, see Fig. 3(c).

The DCF is dependent on the positions of the detectors
as demonstrated in Fig. 3. This dependence can be used to
maximize the amplitude of DCF in a given configuration, based
on previous theoretical estimates. Measuring a single CF at
different azimuthal angles in the plane of rotation does provide
the same C(k,q)’s as our model is azimuthally symmetric.
Thus, the difference is caused by the measuring two CFs in
one event with the same source function homogeneity area, but
two different k-vectors at different azimuths with respect to the
source area. This is also indicated by Eq. (27) of [11], where
the ε sinh( 2k·us

Ts
) factor appears, which leads to the sensitivity

on vector k.
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IV. CONCLUSION

The model calculations show that the differential HBT
method can give a measure of rotation in this exact hydro-
model. The differential correlation function is dependent on
shape, temperature, radial velocity, and angular velocity. Also
the detector position is important.

If we eliminate rotation or the radial expansion the DCF
vanishes in the model. It also indicates that using the estimated

small rotation velocities, ω = 0.01–0.15 c/fm, we get a DCF
value approaching 2–3%.
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