
PHYSICAL REVIEW C 92, 024904 (2015)

Centrality dependence of mapping the hydrodynamic response to the initial geometry
in heavy-ion collisions

Jinghua Fu*

Institute of Particle Physics, Central China Normal University, Wuhan 430079, People’s Republic of China
and Key Laboratory of Quark & Lepton Physics (CCNU), Ministry of Education, People’s Republic of China

(Received 2 April 2015; revised manuscript received 15 July 2015; published 10 August 2015)

Event-by-event correlations between vn and εm,n for different collision centralities are studied with
hydrodynamics. For the more central collisions vn is better correlated with εm,n defined with relatively larger
radial weight power m, like m = n + 1. For the more peripheral collisions, vn prefers εm,n with relatively smaller
m, like m = n − 1. When the fluid viscosity is large, vn is better correlated with εm,n with large m. For the most
central collisions and for odd harmonics, since anisotropy is solely due to fluctuations, the scaled probability
distributions of εm,n are universal. For noncentral collisions, the scaled probability distributions of εm,2 with
different radial weight power m deviate from one another. εm,2 defined with smaller m has a wider scaled
distribution and a larger scaled standard deviation, and is more consistent with the scaled v2 distribution after
hydrodynamic evolution in peripheral collisions. Hadronic rescattering widens the v2 distribution in noncentral
collisions, which contributes to the observed inconsistency between p(v2) and p(ε2) distributions.
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I. INTRODUCTION

Recent data from ultrarelativistic heavy-ion collisions at
the Relativistic Heavy Ion Collider (RHIC) and the Large
Hadron Collider (LHC) strongly support the dynamical picture
according to which the produced soft hadronic distributions
in transverse momentum, azimuthal orientation, centrality,
and particle species are determined by the fluid dynamic
response to fluctuating initial conditions [1,2]. Relativistic
hydrodynamics has been able to successfully describe the
large azimuthal momentum anisotropies observed in heavy-ion
collisions, which suggests the quark gluon plasma as a strongly
interacting fluid with one of the smallest shear viscosity to
entropy density ratios ever observed [3].

Quantitatively, the particle azimuthal distribution is charac-
terized in terms of the coefficients vn of the Fourier expansion
of the invariant triple differential distributions [4]:
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where φ is the transverse momentum azimuthal angle.
The study of strongly coupled matter with hydrodynamics

requires that one supplies a set of initial conditions, then
evolves them through ideal or viscous hydrodynamics, and
finally computes the particle emission [5,6]. One of the main
features of the hydrodynamical description of the expansion
is that, if the system has an approximate boost invariance near
midrapidity, and if the initial transverse flow and initial viscous
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tensor are negligible, the momentum distribution of particles at
the end of the evolution is determined by the initial transverse
energy density profile ρ(r,φ).

The initial anisotropy is generally quantified in terms of the
participant eccentricity:

�εm,n = εm,ne
in�m,n = −

∫
rdrdφ rmeinφρ(r,φ)∫

rdrdφ rmρ(r,φ)
, (3)

where r =
√

x2 + y2 and φ is now the spatial azimuthal angle.
In Eq. (3) rm indicates a radial weight of the integral, and the
choice of the radial weight power m might be different.

The earliest standard eccentricity [7],

εstd = 〈y2 − x2〉
〈y2 + x2〉 , (4)

and later participant eccentricity [8],

εpart =
√

(〈y2〉 − 〈x2〉)2 + 4〈xy〉2

〈y2 + x2〉 , (5)

have r2 weight with m = 2. When first generalized to the third
harmonic, the r2 weight was kept [9]. Shortly after that, Teaney
and Yan [10] introduced a cumulant expansion to parametrize
possible initial conditions and suggested weighting the coeffi-
cients with the nth power of r:

εn,ne
in�n,n = εne

in�n = −
∫

rdrdφ rneinφρ(r,φ)∫
rdrdφ rnρ(r,φ)

. (6)

This definition of �εn,n (often denoted simply as �εn) has a natural
interpretation as the lowest momentum mode of a Fourier
transform of the initial transverse density [10]. It has been
shown that �εn as defined in Eq. (6) generally gives the best
estimator of �vn [11], and it is widely in use now. More recently,
new methods based on a two-dimensional Fourier expansion
in polar coordinate space have been proposed [12,13], which
order fluctuating radial modes more explicitly in terms of

0556-2813/2015/92(2)/024904(9) 024904-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.92.024904


JINGHUA FU PHYSICAL REVIEW C 92, 024904 (2015)

functions of increasingly smaller radial resolution scale and
naturally include all powers of r in the expansion.

The statistical properties of anisotropic flow are now
precisely known [14]. The ATLAS Collaboration has analyzed
the full probability distribution of v2, v3, and v4 in Pb + Pb
collisions for several centrality windows [15]. These distribu-
tions are useful to disentangle the size of fluctuations in the
initial energy density profiles.

Generally, we assume that vn in a given event is determined
by linear response to the initial anisotropy, vn = κnεn, where
κn is a response coefficient that does not fluctuate event
to event [16]. The fluctuations of vn for n = 2 and 3
are due to fluctuations of the initial anisotropy εn in the
corresponding harmonic. The problem is that the shape of
the p(ε2) distributions from various initial geometry models
cannot be tuned to agree with that of the p(v2) distributions
across the full centrality range. It has been observed that the vn

distributions after hydrodynamic evolution are slightly wider
than the initial εn distributions, and this widening appears
to be somewhat stronger in peripheral than in central colli-
sions [1,14,15,17,18]. That is, in peripheral collisions, p(ε2)
always falls faster than p(v2) in the tail of the distributions.

As a possible explanation, a recent hydrodynamic model
calculation [14,19] suggests that the response coefficient k2 =
v2/ε2 is not constant across the full ε2 range, but increases
slightly at large ε2; hence the p(v2) distribution is expected to
decrease more slowly than the p(ε2) distribution.

To better understand the relations between p(vn) and
p(εn) distributions, in this paper, I study the event-by-event
correlation between the initial state anisotropies �εm,n defined
with different radial weight power m and the hydrodynamic
response �vn, and their probability distributions p(εm,n) and
p(vn) for different collision centralities. A clear centrality
dependence for better correlation between εm,n and vn is
observed, and this centrality dependence provides a possible
explanation for the faster falling of the tail of the p(εn)
distribution than the p(vn) distribution in peripheral collisions.
Because the higher-order harmonics are coupled nonlinearly
with the lower-order harmonics [11], the analysis concentrates
on the second and third harmonics.

The hydrodynamic model used for this analysis is described
briefly in Sec. II. Section III A presents the analysis of the
event-by-event correlation between the initial condition and
the flow anisotropy, while Sec. III B shows the results of
their probability distributions. The reason for the different
fluctuation behaviors observed for different collision central-
ities is explained in Sec. III B 1. The influence of hadronic
rescattering on the probability distribution of vn is discussed
in Sec. III B 2.

II. METHODOLOGY

The iEBE-VISHNU code package has been used to perform
event-by-event simulations for Pb + Pb collisions at

√
s =

2.76 A TeV with viscous hydrodynamics [5]. To explore the
sensitivity to model uncertainties in the initial state, two
sets of initial conditions are obtained from the Monte-Carlo
Glauber (MC-Glauber) and Monte-Carlo KLN (MC-KLN)
models [20]. The centrality classes are determined according to

the number of wounded nucleons with additional requirements
on the initially produced total entropy in the transverse
plane [5]. Model parameters were tuned to reproduce the pT

spectra and elliptic flows of unidentified charged particles and
identified hadrons [21]. This results in a specific shear viscosity
of η/s = 0.08 for the MC-Glauber initial conditions and a
larger value of η/s = 0.2 for the MC-KLN initial conditions.
The lattice QCD and hadron resonance gas-based equation of
state s95p-PCE-v0 [22] has been used with chemical freeze-
out at temperature Tchem = 165 MeV. The hadron spectra are
calculated with the Cooper-Frye freeze-out procedure [23]
using the decoupling temperature Tf = 120 MeV. Strong
decay contributions from all hadron resonances with masses
up to 2.25 GeV are included.

III. RESULTS

In this work I consider Pb + Pb collisions at
√

s =
2.76 A TeV. All the results shown in this paper are for positively
charged pions. For every centrality class, a total of 2000
events were evolved from each of the two initial state models.
The Fourier coefficients and the initial-state anisotropies were
calculated according to Eqs. (2) and (3), respectively.

A. Correlations

It has been shown that the second and third Fourier
coefficients have a strong event-by-event linear correlation to
the initial geometry of the collision [24]. Here I study whether
this correlation depends on the different rm weights in the
definition of �εm,n for different collision centralities. Because
it has been known that �εn with m = n as defined in Eq. (6)
generally gives the best estimator of �vn [11], I concentrate
on values of m around m = n. Specifically I first choose
m = n − 1, n, and n + 1. For the second harmonic n = 2,
m is first chosen as m = 1, 2, and 3. The event-by-event
correlations between ε(1,2,3),2 and v2 for the most central 0%–
5%, midcentral 20%–30%, and peripheral 50%–60% collision
centralities with MC-Glauber and MC-KLN initializations are
shown in Fig. 1.

To quantify the event-by-event linear correlation between
the harmonics �vn and �εm,n, a natural choice is the linear
correlation coefficient between them. Two slightly differently
defined linear correlation coefficients have been introduced in
previous publications [24,25]:

c(εm,n,vn) =
〈

(εm,n − 〈εm,n〉)(vn − 〈vn〉)
σεm,n

σvn

〉
, (7)

and

Qn(εm,n,vn) = Re〈�vn�ε ∗
m,n〉√〈|�vn|2〉〈|�εm,n|2〉

. (8)

It is easy to see that c(εm,n,vn) considers mainly the magnitude
deviation and correlation, while Qn(εm,n,vn) defines the
correlation between two vectors. For the second and third
harmonics, Qn(εm,n,vn) becomes explicitly

Q2(εm,2,v2) = 〈v2εm,2 cos 2(�2 − �m,2)〉√〈
v2

2

〉〈
ε2
m,2

〉 (9)
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FIG. 1. (Color online) The event-by-event correlations between ε1,2, ε2,2, and ε3,2 and v2 for the centrality classes 0%–5%, 20%–30%, and
50%–60% with MC-Glauber (left) and MC-KLN (right) initializations. The dashed lines are to guide the eyes, not a fit.

and

Q3(εm,3,v3) = 〈v3εm,3 cos 3(�3 − �m,3)〉√〈
v2

3

〉〈
ε2
m,3

〉 . (10)

The correlation functions c(εm,n,vn) and Qn(εm,n,vn) are
bounded by [−1,1]. Larger values, closer to 1, indicate better
linear correlations. c(εm,n,vn) and Qn(εm,n,vn) give similar
results. In the figures, the values and statistical errors of
Qn(εm,n,vn) are shown.

From Fig. 1, one can see that, for all three centralities and
for both initializations, ε2,2 gives a good measure of v2, as
expected. At the same time one sees a centrality dependence
for better correlation between εm,2 and v2. For the most
central 0%–5% collisions v2 has better correlation with the
larger radial power weighted ε4,2 compared with ε1,2, while
for the more peripheral 50%–60% centrality class v2 has
better correlation with the smaller radial power weighted ε1,2

compared with ε4,2. That is, central collisions favor a relatively
larger radial weight power, while peripheral collisions favor a
relatively smaller radial weight power. A larger radial weight
power m gives more weight to those initial energy densities
that are located at larger radius r . This centrality dependence
on radial weight power m indicates that v2 is driven more by
the outer layers of the fireball for central collisions, and driven
more by the inner layers of the fireball for peripheral collisions,
which is consistent with previous observations [11].

Because a larger specific shear viscosity of η/s = 0.20
is used for the MC-KLN initialization events, better linear
correlations between εm,2 and v2 are obtained [24]. This larger
shear viscosity also makes v2 better correlated with the larger
radial power weighted ε3,2 for the most central 0%–5% and
midcentral 20%–30% collisions, better than with ε2,2. That
is because the larger viscous effects further damp small-scale
structure in the initial condition.

The response coefficient k2 = v2/ε2 is not constant across
the full ε2 range for the peripheral 50%–60% centrality class
as shown in Fig. 1. k2 increases slightly at large ε2. The dashed
lines in Fig. 1 are to guide the eyes; they are not a fit. The
increase of k2 dependences on the radial weight power used
in defining εm,2. A larger m leads to stronger increasing of k2.
For m = 1, v2/ε1,2 is approximately constant. Note that I have
used v2 as the x axis and εm,2 as the y axis, which is generally
the other way in many of the other publications.

The results for the event-by-event third harmonic flow and
eccentricity correlation from the MC-Glauber and MC-KLN
initialization events are shown in Fig. 2. Compared with the
second harmonic results in Fig. 1, one observes an even
stronger centrality dependence on the radial weight power m.
For both initializations, for the 0%–5% most central collisions
v3 is best correlated with ε4,3, for the 20%–30% centrality
v3 best correlated with ε3,3, and for the peripheral 50%–60%
centrality v3 best correlated with ε2,3. The choice of m = 2
for the third harmonic eccentricity, ε2,3, is not very good for
central collisions, but is fine for peripheral collisions.

When m in Eq. (3) takes values further away from m = n,
the event-by-event correlation between vn and εm,n generally
becomes worse. One step further away from m = n, I set m =
n − 2 and n + 2, that is, m = 0,4 for the second harmonic and
m = 1,5 for the third harmonic. The results for the event-by-
event correlation between ε(0,4),2 and v2 and between ε(1,5),3

and v3 from MC-Glauber and MC-KLN initializations for the
0%–5%, 20%–30%, and 50%–60% collision centralities are
shown in Fig. 3.

The event-by-event correlations between ε(0,4),2 and v2 from
MC-Glauber initialization events in Fig. 3 (top left) are indeed
worse than those between ε(1,2,3),2 and v2 in Fig. 1 (left). For
the third harmonic, similarly, the event-by-event correlations
between ε(1,5),3 and v3 from MC-Glauber initialization events
in Fig. 3 (bottom left) are worse than those between ε(2,3,4),3

and v3 in Fig. 2 (left). However, there are exceptions. For the
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FIG. 2. (Color online) The event-by-event correlations between ε2,3, ε3,3, and ε4,3 and v3 for the centrality classes 0%–5%, 20%–30%, and
50%–60% with MC-Glauber (left) and MC-KLN (right) initializations.

MC-KLN initialization events, due to the larger shear viscosity
strongly damping the small-scale structure, flow coefficients
become even more sensitive to eccentricities with larger radial

weight power m in the most central collisions, as shown in
Fig. 3 (top right and bottom right). For my simulations of
MC-KLN initialization events, for the 0%–5% most central

FIG. 3. (Color online) Top panels: The event-by-event correlations between ε0,2 and v2 and between ε4,2 and v2 for the centrality classes
0%–5%, 20%–30%, and 50%–60% with MC-Glauber (left) and MC-KLN (right) initializations. Bottom panels: The event-by-event correlations
between ε1,3 and v3 and between ε5,3 and v3 for the centrality classes 0%–5%, 20%–30%, and 50%–60% with MC-Glauber (left) and MC-KLN
(right) initializations.
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FIG. 4. (Color online) The scaled distributions of the second harmonic eccentricities ε1,2, ε2,2, and ε3,2 and flow v2 for the centrality classes
0%–5%, 20%–30%, and 50%–60% with MC-Glauber and MC-KLN initializations (left panels). The scaled distributions of the third harmonic
eccentricities ε2,3, ε3,3, and ε4,3 and flow v3 for the centrality classes 0%–5%, 20%–30%, and 50%–60% with MC-Glauber and MC-KLN
initializations (right panels).

collisions, up to m = 6 the correlation between εm,2 and v2

is fairly good, and up to m = 7 the correlation between εm,3

and v3 is fairly good. Except for the most central collisions
with large shear viscosity, the correlations between εm,n and
vn become poor when |m − n| > 2.

B. Fluctuations

For a more detailed comparison, I study how the full
event-by-event distributions of εm,n are affected by using
different radial weight rm. To compare the distributions
of the initial eccentricities with the final vn distributions
after hydrodynamic evolution, it is convenient to scale the
distributions by their respective mean values. The scaled
probability distributions of the second harmonic flow P ( v2

〈v2〉 )

and eccentricities P ( ε(1,2,3),2

〈ε(1,2,3),2〉 ) for the 0%–5%, 20%–30%, and
50%–60% centrality classes with MC-Glauber and MC-KLN
initializations are shown in Fig. 4 (left). Those of the third
harmonic flow P ( v3

〈v3〉 ) and eccentricities P ( ε(2,3,4),3

〈ε(2,3,4),3〉 ) are shown
in Fig. 4 (right).

From Fig. 4 one can see that for the 0%–5% most central
collisions, for both the second and third harmonics, the scaled
distributions of εm,n with different radial weight power m
look quite similar, and all have good consistency with the
distributions of vn. For the midcentral 20%–30% centrality
class, one starts to see some deviations in the tails of the
second harmonic eccentricity distributions. For the peripheral
50%–60% centrality class, the second harmonic eccentricity
distributions with different radial weight power m obviously
deviate from one another. The second harmonic eccentricity
with the largest radial weight power, ε3,2, has the narrowest
distribution, while that with the smallest m, ε1,2, has the widest

distribution, and the distribution of ε2,2 stays in between them.
The probability distribution of v2 is slightly wider than the
initial eccentricity distribution and is most consistent with
the distribution of ε1,2. This centrality dependence of the
scaled eccentricity distribution on the radial weight power
m is the same for both the MC-Glauber and MC-KLN
initializations, though the distributions themselves from these
two initializations are somewhat different. For the 50%–60%
centrality, the third harmonic eccentricity distributions show
some deviations similar to those of the second harmonic, but
much less in magnitude.

To be more quantitative, the mean values, standard devia-
tions and scaled standard deviations of the second harmonic
eccentricities, ε1,2, ε2,2, and ε3,2, as a function of collision
centrality are shown in the left-hand panels of Fig. 5, and
those of the third harmonic, ε2,3, ε3,3, and ε4,3, are shown in the
right-hand panels of Fig. 5. Errors of the data points in Fig. 5
are within the symbols. The mean values of both the second and
third harmonic eccentricities (upper panels in Fig. 5) depend
on the radial weight power m. Eccentricities with larger m have
larger mean values, eccentricities with smaller m have smaller
mean values, and the differences between them increase with
the collision centrality. The standard deviation of the third
harmonic eccentricity [middle panels in Fig. 5 (right)] behaves
similarly to the mean value, while the standard deviation of the
second harmonic eccentricity [middle panels in Fig. 5 (left)]
has a much weaker dependence on the radial weight power
m. For peripheral collisions, 〈εm,2〉 increases largely with m,
while σ (εm,2) only increases mildly with m. We know that the
second harmonic eccentricities εm,2 measure the initial almond
overlapping shape of the colliding nuclei, while the third
harmonic eccentricities εm,3 are caused solely by fluctuations.
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FIG. 5. The mean values, standard deviations, relative standard deviations of ε1,2, ε2,2, and ε3,2, and the relative standard deviation of v2

as a function of collision centrality for MC-Glauber and MC-KLN initializations (left-hand panels). The mean values, standard deviations,
relative standard deviations of ε2,3, ε3,3, and ε4,3, and the relative standard deviation of v3 as a function of collision centrality for MC-Glauber
and MC-KLN initializations (right-hand panels). The dashed lines in the bottom panels indicate the value

√
4/π − 1.

This is the reason for the different dependencies of σ (εm,2) and
σ (εm,3) on m, as explained in the following subsection.

The scaled standard deviation is the standard deviation
divided by the mean value. Because the mean value of the
second harmonic eccentricity increases with m much faster
than its standard deviation, the scaled standard deviation
σ (εm,2)
〈εm,2〉 decreases with increasing m [lower panels in Figs. 5

(left)]. The dependence of σ (εm,2)
〈εm,2〉 on m is more obvious for

peripheral collisions and is negligible for central collisions.
This is consistent with the scaled distributions of εm,2 in Fig. 4
(left). For the third harmonic, 〈εm,3〉 and σ (εm,3) have similar
dependencies on m for all centralities, and their ratios σ (εm,3)

〈εm,3〉
almost stay constant, as shown in Fig. 5 (right). Also shown in
the bottom panels of Fig. 5 are the scaled standard deviations
of the flow coefficient vn after hydrodynamic evolution. For
the most central collisions and for the third harmonic, the
scaled standard deviations of eccentricities with different
radial weight power m all have good consistency with the
scaled standard deviations of vn. For peripheral collisions,
the second harmonic eccentricities with smaller radial weight
power m have larger scaled standard deviations and better
consistency with the scaled standard deviations of v2.

These results indicate that, in peripheral collisions, if
we compare the distributions p(v2) with p(ε1,2), instead of
with p(ε2,2), the additional widening of the v2 distributions
compared with the ε2 distributions will disappear.

1. Eccentricity distributions

Now we try to understand the reason for the different
eccentricity fluctuation behaviors observed for different col-
lision centralities. As we know, both the magnitude and
direction of the participant eccentricity �εm,n fluctuate event

to event. The simplest parametrization of these fluctuations
is a two-dimensional Gaussian probability distribution which,
upon integration over the azimuthal angle, yields the Bessel-
Gaussian distribution [26,27]:

p(εm,n) = εm,n

σ 2
I0

(
ε0εm,n

σ 2

)
exp

(
− ε2

0 + ε2
m,n

2σ 2

)
, (11)

where ε0 is the mean anisotropy in the reaction plane,

ε0 = −
∫

rdrdφrm cos(nφ)ρ(r,φ)∫
rdrdφrmρ(r,φ)

,

and σ is the typical magnitude of eccentricity fluctuations
around this mean anisotropy. For n = 2 and m = 2, ε0 =
〈y2−x2〉
〈y2+x2〉 .

For the most central collisions and for odd harmon-
ics, ε0 vanishes with symmetry. In this limit, the aver-
age 〈εm,n〉 = √

π/2σ and the standard deviation σ (εm,n) =√
2 − π/2σ [26,27]. Their ratio, σ (εm,n)/〈εm,n〉 = √

4/π − 1,
is approximately a constant, as indicated by the dashed lines
in Fig. 5. The scaled distribution of εm,n in this limit becomes

p

(
εm,n

〈εm,n〉
)

= εm,n/〈εm,n〉
(
√

2/π )2
exp

(
− (εm,n/〈εm,n〉)2

2(
√

2/π )2

)
, (12)

which is universal, independent of any parameter. The uni-
versality of the scaled eccentricity distributions for the most
central collisions and for the third harmonic is observed in
Fig. 4. This universality has also been observed in previous
publications [15,28].

The distributions of ε2 in noncentral nucleus-nucleus
collisions are better described by the elliptic power
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FIG. 6. (Color online) Elliptic power fits of the ε1,2, ε2,2, and ε3,2 distributions in 20%–30% and 50%–60% centrality bins with MC-Glauber
(left) and MC-KLN (right) initializations.

distribution [29]:

p(εm,n) = αεm,n

π

(
1 − ε2

0

)α+ 1
2

∫ 2π

0

(
1 − ε2

m,n

)α−1
dφ

(1 − ε0εm,n cos φ)2α+1
,

(13)
where ε0 is the same as in Eq. (11) and α describes the fluctua-
tions. Elliptic power fits of the ε1,2, ε2,2, and ε3,2 distributions
in 20%–30% and 50%–60% centrality bins with MC-Glauber
and MC-KLN initializations are presented in Fig. 6. The mean
and the standard deviation of the elliptic power distribution
need to be calculated numerically as a function of ε0 and α.
The results of 〈εm,2〉, σ (εm,2), and σ (εm,2)/〈εm,n2〉, together
with the fitting parameters ε0 and α, are listed in Fig. 6.
The scaled standard deviation σ (εm,2)/〈εm,2〉 from the elliptic
power distribution decreases as the radial weight power m
increases, closely matching the Monte Carlo results in Fig. 5.

The small deviation in the tail of the p(εm,3) distributions
for the 50%–60% centrality bin in Fig. 4 (right) is due to
the nonzero correlation between ε2 and ε3 when the collision
centrality is larger than 50% [30].

2. Hadronic rescattering

Hadronic rescattering generally modifies the flow coeffi-
cient and its probability distribution. To study this effect,
hadrons produced on the particalization hypersurface are
converted into an initial condition file for the hadronic rescat-
tering model Ultrarelativistic Quantum Molecular Dynamics
(UrQMD) to calculate the further evolution of the hadrons [5].
UrQMD is a microscopic transport model and has been exten-
sively used to model the evolution of hadronic systems [31].
The results of scaled v2 distributions before and after hadronic
rescattering for the centrality classes 0%–5%, 20%–30%, and
50%–60% are shown in Fig. 7. The values of the scaled
standard deviations, σ (v2)

〈v2〉 , with statistical errors are listed.

For the 0%–5% most central collisions, the scaled v2

probability distributions before and after hadronic rescattering

FIG. 7. (Color online) The scaled v2 distributions before and
after hadronic rescattering for the centrality classes 0%–5%, 20%–
30%, and 50%–60% with MC-Glauber initialization.
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nicely agree with each other and can be described by the
universal expression Eq. (12), following the corresponding
initial eccentricity probability distribution. Their scaled stan-
dard deviations, σ (v2)

〈v2〉 , approach the limiting value
√

4/π − 1.
For noncentral collisions, the scaled v2 distributions with
hadronic rescattering are wider than those without. Hadronic
rescattering increases the scaled standard deviation of the v2

distribution, and this increase is more obvious for the more
peripheral collisions. Results in Fig. 7 are from the MC-
Glauber initialization, those from the MC-KLN initialization
are similar and not shown. The probability distributions of the
third harmonic flow coefficient v3 before and after hadronic
transport are consistent with each other, similar to the v2

distributions in the most central collisions.
These results indicate that hadronic rescattering contributes

to the widening of the p(v2) distribution compared with the
p(ε2) distribution in peripheral collisions. The magnitude of
the increase of σ (v2)

〈v2〉 when including hadronic transport is of

the same order as the difference between σ (εm,2)
〈εm,2〉 when defined

with different m.

IV. CONCLUSIONS

In this work, the correlations between the flow coefficient
vn and the initial eccentricity εm,n in ultrarelativistic heavy-ion
collisions have been studied using event-by-event hydrody-
namics. The radial weight power m of εm,n has been set to
values around m = n, mainly m = n − 1, n, and n + 1, to
study the dependence on m. The results show that, for the
second and third harmonics, the event-by-event correlation
between vn and εm,n depends on the collision centrality and
the fluid viscosity. Generally, for the more central collisions,
vn is better correlated with εm,n defined with relatively larger
m, like εn+1,n, while for the more peripheral collisions, vn

is better correlated with εm,n with relatively smaller m, like

εn−1,n. Large fluid viscosity leads to vn more sensitive to εm,n

with m > n in central collisions.
For the most central collisions and for odd harmonics,

anisotropy is solely due to fluctuations, and eccentricity
distributions can be described by the Gaussian distribution.
In this case, the scaled probability distributions of εm,n are
universal and have good consistency with the scaled flow
coefficient vn distributions. For noncentral collisions, the
second harmonic eccentricity distributions are better described
by the elliptic power distribution, which leads to the scaled
probability distributions of εm,2 with different radial weight
power m deviating from one another, and the deviation
increases with the collision centrality. In peripheral collisions,
εm,2 with smaller m has a wider scaled probability distribution
and a larger scaled standard deviation, and better consistency
with the scaled v2 distribution after hydrodynamic evolution.
Including hadronic rescattering further widens the scaled v2

distribution in noncentral collisions. Both the dependence of
p(εm,2) distribution on m and hadronic rescattering contribute
to the observed inconsistency between p(v2) and p(ε2)
distributions.

If future analysis of the event-by-event flow distributions
include the centrality-dependent weight factors for the ec-
centricities, this might lead to better agreement with the
experimental data and improve the understanding of the current
issues with the centrality dependence in a single specific initial
state model. The residual inconsistency between p(v2) and
p(εm,2) distributions is mainly due to hadronic rescattering.
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