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Microscopic calculations based on chiral two- and three-nucleon forces for proton- and
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We investigate the effects of chiral three-nucleon force (3NF) on proton scattering at 65 MeV and 4He
scattering at 72 MeV/nucleon from heavier targets, using the standard microscopic framework composed of
the Brueckner-Hartree-Fock (BHF) method and the g-matrix folding model. For nuclear matter, the g matrix is
evaluated from chiral two-nucleon force (2NF) of N3LO and chiral 3NF of NNLO by using the BHF method.
Because the g matrix thus obtained is numerical and nonlocal, an optimum local form is determined from the
on-shell and near-on-shell components of g matrix that are important for elastic scattering. For elastic scattering,
the optical potentials are calculated by folding the local chiral g matrix with projectile and target densities.
This microscopic framework reproduces the experimental data without introducing any adjustable parameter.
Chiral-3NF effects are small for proton scattering, but sizable for 4He scattering at middle angles where the data
are available. Chiral 3NF, mainly in the 2π -exchange diagram, makes the folding potential less attractive and
more absorptive for all the scattering.
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I. INTRODUCTION

An important current issue in nuclear physics is to un-
derstand the effects of three-nucleon force (3NF) on finite
nuclei, nuclear reactions, and nuclear matter. Quantitatively
decisive roles of 3NFs have been established in properties
of light nuclei as well as of nuclear matter [1]. This issue
started with the 2π -exchange 3NF proposed by Fujita and
Miyazawa [2]. Recently, a major breakthrough was made on
this issue with chiral effective field theory (Ch-EFT); see
Refs. [3,4] and references therein. Ch-EFT is a theory based
on chiral perturbation theory to provide a low-momentum
expansion of two-nucleon force (2NF), 3NF, and many-
nucleon forces. Using this theory, one can define multinucleon
forces systematically. The effects of chiral 3NF were analyzed
in many papers; e.g., see Ref. [5] for light nuclei, Refs. [6,7]
for ab initio nuclear-structure calculations in lighter nuclei,
and Refs. [8–12] for nuclear matter. Recently the role of chiral
four-nucleon forces was also analyzed for nuclear matter [13].
When the g matrix (the effective nucleon-nucleon interaction
in nuclear medium) is calculated from chiral 2NF+3NF with
the Brueckner-Hartree-Fock (BHF) method, it well accounts
for the empirical properties of symmetric nuclear matter [9].
The g matrix depends on the nuclear-matter density ρ; i.e.,
g = g(ρ). Chiral-3NF effects become more important as ρ
increases.

Another important issue in nuclear physics is microscopic
understanding of nucleon-nucleus (NA) and nucleus-nucleus
(AA) optical potentials. The optical potentials are essential
in describing not only elastic scattering but also inelastic
scattering and transfer and breakup reactions. In fact, the
optical potentials are essential inputs in distorted-wave Born
approximation and continuum discretized coupled-channel
method (CDCC) calculations [14].
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The g-matrix folding model is a standard method of
calculating the optical potential microscopically. Actually,
many nuclear reactions have been analyzed with the model.
In the model, the potential is obtained by folding g(ρ) with
projectile and target densities (ρP and ρT) for AA scattering
and with ρT for NA scattering; e.g., see Refs. [15–19]
for g(ρ) and Refs. [20–22] for the folding procedure.
The model is called the single-folding (SF) model for
NA scattering and the double-folding (DF) model for AA
scattering.

For NA elastic scattering, the SF model based on the
Melbourne g matrix [16], constructed from the Bonn-B
nucleon-nucleon (NN) interaction [23], well reproduces the
experimental data with no adjustable parameter. In the folding
procedure, the value of ρ in g(ρ) is assumed to be a value of ρT

at the midpoint rm of interacting two nucleons: ρ = ρT(rm).
Target-excitation effects on the elastic scattering are thus
well described by the SF model based on the local-density
approximation.

We have recently investigated chiral-3NF effects on the
description of NA scattering [24] and AA scattering [25],
12C + 12C and 16O + 16O, by modifying the Melbourne g ma-
trix by introducing spin- and isospin-dependent multiplicative
factors to simulate the 3NF effects. Results have shown that
the 3NF effects are small for NA scattering, because the
process is mainly governed by the interaction at low density
regions. This reinforces the success of calculations using the
Melbourne g matrix without considering 3NFs. On the other
hand, sizable effects are found for AA scattering at around
80 MeV/nucleon through the repulsive contribution in the real
part and the enhanced absorptive potential. However, these are
somewhat exploratory, relying on the Melbourne g matrix. In
this paper, we present full chiral g matrices parameterized in
a three-range Gaussian form on the basis of nuclear matter
g-matrix calculations with the 2NF and 3NF of Ch-EFT, and
apply them to the SF and DF models.
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The g-matrix DF model for AA scattering has a practical
problem. In nuclear matter calculations, we have to consider
two Fermi spheres and the g matrix should be obtained by
solving scattering between a nucleon in a Fermi sphere and
a nucleon in another Fermi sphere [26,27], but it is quite
difficult in practice. In fact, the g matrix is evaluated by
solving nucleon scattering from a single Fermi sphere. For
consistency with the nuclear-matter calculation, we assumed
ρ = ρT(rm) in g(ρ) and applied this framework to 3,4He
scattering from heavier targets in a wide range of incident
energies from 30 MeV/nucleon to 180 MeV/nucleon [22,28].
The Melbourne g-matrix DF model with the target-density ap-
proximation (TDA) well reproduces the data with no adjustable
parameter, particularly for total reaction cross sections σR and
forward differential cross sections. The DF-TDA model does
not include projectile-excitation effects, but it was confirmed
by CDCC calculations that the effects are negligible for 3He
scattering. Precisely, the effects are appreciable at incident
energies lower than 40 MeV/nucleon, but they enhance σR

only by a few percent. It is very likely that projectile-excitation
effects are even smaller for 4He scattering, because 4He is less
fragile than 3He. The practical problem is thus solved for 3,4He
scattering. Therefore, this DF-TDA model is used in this paper.

For heavier projectiles than 4He, it is quite difficult to
include all projectile-excitation effects explicitly. For such
AA scattering, the frozen-density approximation (FDA), ρ =
ρP(rm) + ρT(rm), is often taken as a value of ρ in g(ρ),
although g(ρ) is obtained by solving nucleon scattering on a
single Fermi sphere. The DF-FDA model includes projectile-
excitation effects approximately. The model based on the
Melbourne g matrix well reproduces measured σR for 12,14−16C
[29,30] and Ne and Mg isotopes [21,31]. As an important
result, the microscopic analyses conclude that 31Ne and 37Mg
are deformed halo nuclei. For 3,4He scattering, however,
the DF-TDA model always yields better agreement with the
experimental data than the DF-FDA model [22,28].

The g matrix obtained is quite inconvenient in many appli-
cations, because it is nonlocal and numerical. The Melbourne
group showed that elastic scattering is mainly determined by
the on-shell part of g(ρ) [16]. Making a χ2 fitting to the on-
shell and near-on-shell components of the g matrix, the group
provided g(ρ) with a local (Yukawa) form to make the folding
procedure feasible [16,32,33]. The Melbourne g matrix thus
obtained accounts for NN scattering in the limit of ρ = 0,
and the SF model based on the Melbourne g matrix explains
NA scattering systematically with no adjustable parameter, as
mentioned above.

In this paper, we consider heavier targets such as 40Ca, 58Ni,
and 208Pb to make our discussion clear, because the g matrix
is evaluated in nuclear matter and the g-matrix folding model
is considered to be more reliable for heavier targets. Taking
the Melbourne-group procedure [16,32,33], we provide the
chiral g matrix with a three-range Gaussian form for each
of the central, spin-orbit, and tensor components, because the
Gaussian form is much more convenient than the Yukawa form
in many applications whereas the two forms yield the same
results for NA and AA scattering. The ranges and the depths
of individual components are determined for each energy and
density so as to reproduce the on-shell and near-on-shell matrix

elements of the original g matrix. For the central part of the
g matrix, the present ranges of the three-range Gaussian form
are (0.4,0.9,2.5) fm and close to those of Ref. [17]. We call
the analytic form “Gaussian chiral g matrix” and the original
numerical g matrix “original chiral g matrix,” when we need
to identify the two. The folding model based on the Gaussian
chiral g matrix reproduces the experimental data with no
adjustable parameter for the present scattering. Therefore, we
can investigate chiral-3NF effects on proton and 4He scattering
clearly.

In Sec. II, we recapitulate the BHF method for the
symmetric nuclear matter with 2NF + 3NF and the folding
model for proton and 4He scattering. In Sec. III, the results
of the folding model with the Gaussian chiral g matrix are
shown for proton and 4He scattering. Section IV is devoted to
a summary.

II. THEORETICAL FRAMEWORK

A. Nuclear-matter calculations for 3NF

We recapitulate the BHF method for the case of 2NF+3NF
[9]. The 3NF V123 is hard to treat even in infinite matter. We
then derive an effective 2NF V12(3) from V123 by averaging it
over the third nucleon in the Fermi sea. After this approxima-
tion, the potential energy is reduced to

1

2

∑

k1 k2

〈k1k2|V12|k1k2〉A + 1

3!

∑

k1 k2 k3

〈k1k2k3|V123|k1k2k3〉A

= 1

2

∑

k1 k2

〈k1k2|V eff
12 |k1k2〉A, (1)

with the effective 2NF,

V eff
12 = V12 + 1

3V12(3), (2)

where the symbol A means the antisymmetrization and ki

denotes quantum numbers of the ith nucleon; note the factor
1/3 in front of V12(3) in Eq. (2). The g matrix g12 is then
obtained by solving the equation,

g12 = V eff
12 + V eff

12 G0g12, (3)

for g12 with the nucleon propagator G0 including the Pauli
exclusion operator. Here the single-particle energy ek for
a nucleon with momentum k in the denominator of G0 is
obtained by [9]

ek = 〈k|T |k〉 + Re[U(k)], (4)

with the single-particle potential,

U(k) =
kF∑

k′
〈kk′|g12 + 1

6
V12(3)(1 + G0g12)|kk′〉A, (5)

where T is a kinetic-energy operator of nucleon with the
mass m and k is related to the incident energy Ein as
Ein = (�k)2/(2m) + Re[U]. When Ein > 0, the single-particle
potential is nothing but an optical potential of an extra nucleon
in nuclear matter. Similar calculations, but in the second-order
perturbation, of the optical potential in the framework of Ch-
EFT was reported by Holt et al. [34]. The present formulation
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FIG. 1. (Color online) Differential cross sections for neutron-
proton scattering at Ein � 65 MeV in free space. The solid (dashed)
curves represent the results of the original (Gaussian) chiral t matrix.
Experimental data are taken from Refs. [38,39].

is consistent with theirs by virtue of the factor 1/6 in Eq. (5)
[9].

In the present BHF calculation, the cutoff energy � =
550 MeV is used with the form factor exp{−(q ′/�)6 −
(q/�)6} both for V12 and V12(3). The low-energy constants
of chiral forces are taken from Ref. [35] as (c1,c3,c4) =
(−0.81,−3.4,3.4) in units of GeV−1, and the other constants
(cD,cE) = (−4.381,−1.126) are from Ref. [8]. Other sets of
low-energy constants present in the literature [36] are expected
to give essentially the same results. Furthermore, the variation
of g matrices is much reduced in the effective 2NF level when
3NFs are incorporated consistently [9]. In addition, the net
effect of cD and cE is small, when cD � 4cE . This relation
is well satisfied in various calculations for light nuclei in
Ref. [37] and also for nuclear matter in Ref. [8] and the
present work. As for U , our results are similar to those of
second-order perturbation calculations [34] for the real part,
but for the imaginary part the former is more absorptive than
the latter. This may be originated in the full ladder-summation
in g-matrix calculations.

Figure 1 shows differential cross sections for neutron-
proton scattering at Ein � 65 MeV in free space (in the limit
of ρ = 0), where Ein stands for an incident energy in the
laboratory system. The solid and dashed lines denote the results
of original and Gaussian chiral t matrices, respectively; note
that the g matrix is reduced to the t matrix in the limit of ρ = 0.
Thus the Gaussian t matrix well reproduces the result of the
original chiral t matrix.

The g matrix can be classified with S,T ,Ein, and kF

as gST (kF,Ein). Hence U can be decomposed into U =∑
ST (2S + 1)(2T + 1)UST with UST defined by Eq. (5) in

which g and V12(3) are replaced by gST and V ST
12(3), respectively.

Thus, UST means the single-particle potential in each spin-
isospin channel.

Figure 2 shows kF dependence of UST . The squares and
circles stand for the results of the original chiral g matrix with
and without chiral 3NF, respectively. The difference between
the two results mainly stems from the 2π -exchange diagram
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FIG. 2. (Color online) kF dependence of UST at Ein = 65 MeV
for (a)1E, (b) 3E, (c) 1O, and (d) 3O. Squares (circles) mean the
results of the original chiral g matrix with (without) 3NF. The solid
(dashed) lines represent the results of the Gaussian chiral g matrix
with (without) 3NF. For 3O, the imaginary part is shifted down by
10 MeV.

in chiral 3NF. Particularly for nucleon and 4He scattering,
the region kF � 1.35 fm−1 (ρ � ρ0) is important. For the
spin-triplet channels (3E and 3O), the 2π -exchange 3NF
enhances tensor correlations and makes transitions between
different states stronger, and eventually it makes the imaginary
part of UST more absorptive. For 1E, chiral-3NF effects are
large and repulsive, which corresponds to the suppression
of � isobar excitations in nuclear medium in a conventional
picture. The solid and dashed lines correspond to the results
of the Gaussian chiral g matrix with and without chiral 3NF,
respectively. The Gaussian chiral g matrix well reproduces the
results of the original chiral g matrix. The potentials in the
parity-odd channels, 1O and 3O, are small.

B. Folding model

The formulation of SF and DF models is summarized in
Ref. [28], together with the relation between the two models.
The folding potential is composed of the direct and knock-
on exchange components. The latter component makes the
potential nonlocal, but it can be localized with high accuracy
by the Brieva-Rook (local momentum) approximation [15].
The reliability of this approximation is shown in Refs. [40,41].
The resultant folding potential U (R) is a function of the
relative coordinate R of projectile and target. The odd (3O
and 1O) channels of gST are almost canceled between the
direct and knock-on exchange components, and hence U (R)
is determined mainly by the even (3E and 1E) g matrices;
e.g., see Refs. [24,25]. The S matrices for NA and 4He elastic
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scattering are obtained by solving a one-body Schrödinger
equation with U (R).

For 40Ca, 58Ni, and 208Pb targets, the matter densities are
calculated with the spherical Hartree-Fock (HF) method using
the Gogny-D1S interaction [42]. The spurious center-of-mass
(c.m.) motions are removed in a standard prescription [21].
For 4He, we take phenomenological density determined from
electron scattering [43] in which the finite-size effect of proton
charge is unfolded by using a standard procedure [44].

III. RESULTS

First, we consider proton elastic scattering at Ein = 65 MeV
from 40Ca, 58Ni, and 208Pb targets. In Fig. 3, differential cross
sections dσ/d� and vector analyzing powers Ay are plotted as
a function of scattering angle θc.m. in the c.m. system. The solid
and dashed lines stand for the results of the chiral g matrix with
and without 3NF effects, respectively. Chiral-3NF effects are
small at forward and middle angles where the experimental
data [45] are available, because the scattering is governed by
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FIG. 3. (Color online) Angular distribution of (a) differential
cross sections and (b) vector analyzing powers for proton elastic
scattering at 65 MeV. The solid (dashed) lines denote the results
of chiral g matrix with (without) 3NF effects. Each cross section
is multiplied by the factor shown in the figure, while each vector
analyzing power is shifted up by the number shown in the figure.
Experimental data are taken from Ref. [45].
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FIG. 4. (Color online) Angular distribution of differential cross
sections for 4He scattering at 72MeV/nucleon from 58Ni and 208Pb
targets. The solid (dashed) lines denote the results of the chiral g

matrix with (without) 3NF effects. Each cross section is multiplied
by the factor shown in the figure. Experimental data are taken from
Ref. [46].

the potential in the surface region where 3NF effects are small
because of low density. Only an exception is Ay at θc.m. � 60◦
for 40Ca and 58Ni targets. Chiral-3NF effects enhance the spin-
orbit part of U (R) by a factor of about 30%, which may be the
reason for this improvement. We confirmed that chiral-3NF
effects are small also for σR.

Next, we show the angular distribution of dσ/d� for 4He
scattering at 72 MeV/nucleon from 58Ni and 208Pb targets in
Fig. 4. The solid and dashed lines denote the results of the
chiral g matrix with and without 3NF effects, respectively. For
both targets, chiral-3NF effects are sizable at middle angles
θc.m. � 20◦ where the experimental data [46] are available.

The scattering amplitude can be decomposed into the near-
and far-side components [47]. When a detector is set on the
right-hand side of the target, the outgoing wave going through
the right-hand (left-hand) side of the target is called the near-
side (far-side) scattering. The near-side (far-side) component
is mainly induced by repulsive Coulomb (attractive nuclear)
force, and in general the near-side (far-side) component
dominates forward-angle (middle-angle) scattering. For both
58Ni and 208Pb targets, large oscillations seen in the range
θc.m. = 5–20◦ are a consequence of the interference between
the near- and far-side components. When the scattering
is dominated by the far-side component, dσ/d� has no
oscillation and is sensitive to the change of nuclear force. The
far-side dominance appears at θc.m. > 20◦. Chiral-3NF effects
thus appear in the far-side dominant angles sensitive to the
change of nuclear force.

Figure 5 shows the central part UCE(R) of U for 4He +
208Pb scattering at 72MeV/nucleon. The solid and dashed
lines correspond to the results of the chiral g matrix with
and without 3NF effects, respectively. Chiral 3NF, mainly in
its the 2π -exchange diagram, makes UCE(R) less attractive
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FIG. 5. (Color online) R dependence of the central part of
the folding potential for 4He + 208Pb elastic scattering at E =
72 MeV/nucleon. These (a) and (b) correspond to the real and
imaginary parts of UCE(R), respectively. The solid (dashed) lines
represent the results of chiral g matrix with (without) chiral 3NF.

and more absorptive. This repulsive effect of chiral 3NF in
UCE(R) comes from the repulsion in the 1E channel of gST .
The repulsive nature suppresses dσ/d� at θc.m. > 20◦ for 4He
scattering, whereas stronger absorption from chiral 3NF better
separates the far-side amplitude from the near-side one.

IV. SUMMARY

We investigated the effects of chiral NNLO 3NF on proton
scattering at 65 MeV and 4He scattering at 72 MeV/nucleon
from heavier targets, using the standard BHF method and
the g-matrix folding model. We evaluated the g matrix from

N3LO 2NF plus NNLO 3NF for positive energy in nuclear
matter. The same calculations for negative energies account
well for the empirical saturation properties of symmetric
nuclear matter. Chiral-3NF effects are mainly originated in the
2π -exchange diagram. The 3NF contribution in the 3E channel
enhances tensor correlations to make the optical potential more
absorptive. In the 1E channel, the 3NF effect yields a repulsion
that may correspond to the Pauli suppression of isobar �
excitation in the nuclear-matter medium in the conventional
picture.

Following the Melbourne-group procedure [16,32,33], we
provided the chiral g matrix with a three-range Gaussian
form by making a χ2 fitting to the on-shell and near-on-shell
parts of the original numerical g matrix. This Gaussian form
makes the folding procedure much easier. The g-matrix folding
model with chiral 3NF reproduces the experimental data with
no adjustable parameter for proton and 4He scattering. We
found that chiral-3NF effects are small for proton scattering
but sizable for 4He scattering at middle angles θc.m. � 20◦
where the experimental data are available. Chiral 3NF yields
repulsive and absorptive corrections to UCE(R) for both
proton and 4He scattering. 4He scattering is dominated by
the far-side scattering amplitude at middle angles θc.m. � 20◦.
The repulsive nature of chiral 3NF suppresses the far-side
scattering amplitude, whereas the absorptive nature of chiral
3NF better separates the far-side scattering from the near-side
one. Chiral 3NF thus becomes sizable in the far-side dominant
angle range. Note that the repulsive nature comes from the 1E
channel, whereas the absorptive nature from the 3E channel.
Phenomenological 3NFs also make repulsive corrections to
UCE(R) [17–19]. However, the origin of the repulsion is
different. It is interesting if the mechanism of producing the
repulsive contributions is clarified by analyzing scattering data.
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