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Correlation between nuclear charge radii of Ti and reaction cross sections for p-Ti
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The nuclear root-mean-square charge radii and nuclear density distributions have been calculated in the
framework of relativistic self-consistent mean-field models based on density-dependent meson-exchange
relativistic energy density functional for even isotopes of Ti (A = 44−56). The calculations agree well with
available laser spectroscopic measurements for 44,46,48,50Ti, and results for neutron-rich isotopes are reported. The
semimicroscopic proton optical potentials for 44−56Ti have been derived by folding the target matter density with
the extended Jeukenne-Lejeune-Mahaux energy- and density-dependent internucleon interaction and are used to
calculate the differential elastic scattering and reaction cross sections at 65 MeV. The calculated differential cross
sections reproduce the corresponding experimental values for stable even isotopes, and predictions are presented
for 44,52,54,56Ti. The calculations reveal a prominent kink at the N = 28 shell closure observed in the variation of
reaction cross sections, consistent with mean-square charge radii systematics in the Ti isotopic chain.
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I. INTRODUCTION

The study of structure and properties of nuclei far from the
region of β stability and close to the drip lines has recently
become feasible due to advances in the production of radioac-
tive ion beams. It is important to determine shell effects and
their influence on properties of nuclei, including charge radii.
The trend of rms charge radii 〈r2

c 〉1/2 around shell closures
Z = 20 (Ca) and N = 28 has been investigated through laser
spectroscopic techniques [1–5] and also theoretically [6,7].
However, there is limited experimental information on charge
radii in the vicinity of N = 20 and N = 28 shell closures [8].
The nuclear charge radius and reaction cross section can be
correlated and useful information about nuclear structure can
be extracted. For example, a remarkably large experimental
reaction cross section of 11Li, as compared to neighboring Li
isotopes, was attributed to a correspondingly large increase
in matter distribution [9]. Similarly, an large increase in
experimental charge radii observed in the Zr isotopic chain
was associated with an upturn in predicted reaction cross
sections [10]. The Ti isotopic chain lies in an interesting region
near Z = 20 and N = 28 shell gaps, and rms charge radii
data are available only for stable 46,48,50Ti isotopes and the
neutron-deficient 44Ti nucleus [5]. The correlation between
rms charge radii and the reaction cross sections in Ti isotopes
can be investigated by studying p-Ti elastic scattering. Elastic
scattering differential cross section data for proton scattering
at 65 MeV are available for 46,48,50Ti [11]. In the present work,
ground-state properties have been calculated for both neutron-
deficient and neutron-rich even Ti isotopes. The correlation
between rms charge radii and the reaction cross sections has
been utilized to predict reaction cross sections for protons
scattering from even isotopes 44−56Ti. The predictions of the
differential elastic scattering and reaction cross sections for
unstable isotopes can be validated by performing proton elastic
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scattering in inverse kinematics in the present radioactive
ion-beam facilities.

The ground-state properties are calculated in the framework
of self-consistent mean-field models based on relativistic
energy density functionals [12] using the interaction DD-
ME2 [13] for even Ti isotopes. The binding energies, neutron
separation energies, and charge radii have been calculated
and compared with the corresponding data, where available.
The target matter densities with the above prescription
have been used in the semimicroscopic optical model to
obtain the proton optical potentials for even Ti isotopes.
For this purpose, target matter densities are folded with
the extended Jeukenne-Lejeune-Mahaux (JLM) energy- and
density-dependent nucleon-nucleon interaction [14,15]. The
resulting real and imaginary parts of the optical potential are
used to compute the reaction and differential cross sections for
65 MeV proton scattering from even Ti isotopes.

The details of the formulation employed in the calculation
of ground-state properties are presented in Sec. II, along
with the results for even isotopes of Ti. Section III describes
the semimicroscopic optical model calculation of the folded
potential. The calculated differential and reaction cross section
for 65 MeV proton scattering from even Ti isotopes and
comparison with the available data are also presented in the
same section.

II. RELATIVISTIC SELF-CONSISTENT
MEAN-FIELD FRAMEWORK

The self-consistent mean-field structure models based
on relativistic (covariant) energy density functionals are
employed. Various aspects of nuclear structure, in isotopes
ranging from stable ones to those approaching the nucleon drip
line, have been satisfactorily explained by models employing
the Relativistic Mean Field (RMF) approach [16,17]. The
predictions are comparable to those using the nonrelativis-
tic Hartree-Fock-Bogoliubov approach based on Skyrme
functionals or Gogny effective interactions [17–20]. In
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conventional quantum hydrodynamics, a nucleus is considered
as a system of Dirac nucleons coupled to exchange mesons
through an effective Lagrangian. The isoscalar-scalar σ meson,
the isoscalar-vector ω meson, and the isovector-vector ρ
meson build the minimal set of meson fields necessary for
a description of bulk and single-particle nuclear properties.
Calculations are performed with the density-dependent meson-
exchange relativistic energy functional, DD-ME2 [13], which
is found to provide a good description. The particle-particle
channel of the effective internucleon interaction is described
by a separable finite-range pairing force [21].

The Relativistic Hartree Bogoliubov (RHB) equation is
solved in the configuration space of harmonic oscillator wave
functions with appropriate symmetry, whereas the densities are
computed in coordinate space. The method has been applied
to spherical as well as axially and nonaxially deformed nuclei.
The diagonalization of the RHB matrix equation yields the
wave functions in configuration space. The resulting density
matrix is then transformed to coordinate space, and the
resulting vector and scalar densities are used to calculate the
potentials. It should be noted that the procedure to adjust
the energy density functional parameters for the DD-ME2
set involves treating the pairing correlations in the BCS
constant-gap approximation with empirical pair gaps (5-point
formula) [22]. In the case of axial symmetry the solution of
the Helmholtz equations for the meson fields is obtained by
expanding in a harmonic oscillator basis. The details of the
solution of the RMF equations are given in Ref. [23].

In the present work, the RHB calculations using DD-ME2
are denoted by DIRHB. The DIRHB results for physical
observables like the binding energies, charge radii, and proton
and neutron densities for even Ti isotopes are discussed below.

A. Calculation of charge radii

The mean-square charge radius 〈r2
c 〉 is obtained from the

proton density ρp(r) (normalized to unity) [24] given by the
relation,

〈
r2
c

〉 =
∫

r2ρp(r)d3r + 〈
r2
p

〉 − N

Z

〈
r2
n

〉
,

where 〈r2
p〉 and 〈r2

n〉 denote the mean-square radius of the point-
proton and point-neutron density distributions, respectively.

Before going into detail about the calculated charge radii,
we compare the calculated binding energies and two neutron
separation energies with data, where available, for even Ti
isotopes. The calculated binding energies for even Ti isotopes
are found to be within 1% of corresponding experimental
values [25]. Further, experimental values of two neutron
separation energies [25] are reproduced by calculations, and
the shell closure for 50Ti (N = 28) is clearly evident.

The calculated change in the rms charge radii relative to
N = 28 (50Ti), δ〈r2

c 〉N,28, is shown in Fig. 1 for even isotopes
of Ti. Experimental values [11] for δ〈r2

c 〉N,28 are available for
44,46,48,50Ti. The calculated δ〈r2

c 〉N,28 agree quite well with the
corresponding measured values [5]. For comparison, δ〈r2

c 〉N,28

calculated using droplet model [26] are also shown in Fig. 1. It
is seen that the droplet model calculations for δ〈r2

c 〉N,28 for all

FIG. 1. Calculated DIRHB rms charge radii relative to N = 28
(50Ti) for even Ti isotopes. The corresponding experimental values [5]
(where available) are shown for comparison. The dashed line indicates
δ〈r2

c 〉N,28 values obtained using droplet model [26].

isotopes are lower compared to those obtained from DIRHB. A
steady increase in DIRHB calculated δ〈r2

c 〉N,28 values with the
addition of neutrons is seen for neutron-rich isotopes. While in
the neutron-deficient region, both calculation and experiment
show a different behavior, i.e., removal of two neutrons from
N = 28 increases δ〈r2

c 〉N,28, instead of the decrease expected
from the droplet model estimate. The calculations indicate
that 46Ti has similar radius to that of 52Ti. It is also seen that
as neutrons are removed from 50Ti, the δ〈r2

c 〉N,28 increases
smoothly up to 46Ti followed by a change in slope at N = 24.
The trend in variation of 〈r2

c 〉1/2 can be explained in terms
of the change in charge radii as a function of quadrupole
deformation [27]. It is well-known that the mid-neutron shell
nuclei have maximum deformation. The DIRHB calculation
shows maximum quadrupole deformation for mid-neutron
shell nucleus 46Ti, and this behavior is reflected in the
calculated δ〈r2

c 〉N,28 values.

B. Calculated density distributions

Following the agreement with experimental data of cal-
culated ground-state properties, we now calculate the point
proton and neutron density distributions that are required for
the calculation of semimicroscopic optical model potential.
The L = 0 projected and renormalized DIRHB point proton
and neutron density distributions calculated for the even Ti
isotopes 44−56Ti are shown in Fig. 2. Proton and neutron
density distributions (ρp and ρn) are quite similar for all the
nuclei in the interior region. In the surface region, ρp exhibits
a different trend as compared to ρn. ρp has the least spread
for 50Ti, while it is more extended and similar in nature for
44,46Ti; also ρp for 48,52,54,56Ti closely resemble one another. ρn

for 44,46,48,50Ti are similar and extend over smaller distances as
compared to those for 52,54,56Ti. The DIRHB point proton and
neutron density distributions calculated for the even Ti isotopes
are used in the folding model analysis, which is discussed in
the next section.
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FIG. 2. (Color online) Calculated DIRHB (L = 0 projected and
renormalized) (a) proton densities and (b) neutron densities for even
Ti isotopes.

III. SEMIMICROSCOPIC OPTICAL MODEL

The elastic scattering calculation using folding model
serves to relate the cross sections with nuclear structure infor-
mation of the proton and neutron density distributions. This is
achieved by fixing the parameters of the effective interaction in
the folding model analysis and the differences in nuclear den-
sity distribution among the isotopes are probed. In the energy
range of interest (typically 50–100 MeV) and for systems p-A
and n-A, the JLM model predictions for scattering and reaction
observables assuming spherical symmetry work well when
the radial matter densities are obtained from well-established
structure models whether relativistic or nonrelativistic [28,29].
Similar considerations hold for other microscopic, spherical
nucleon-nucleus optical model potentials based on different
approximations or effective forces [30,31]. In the present work,
the optical model potential (OMP) [14,15] is built by folding
the extended JLM interaction with the target radial matter
densities. The point proton and neutron densities used here are
calculated in DIRHB framework using DD-ME2 interaction as
described in the previous section. The OMP in nuclear matter
is based on the Brückner-Hartree-Fock work of JLM and the
interaction is spin independent as well as energy and density
dependent. The imaginary part of the effective interaction is
multiplied by an effective mass. To make the JLM interaction
which has been established for nuclear matter relevant to finite
nuclei, a local density approximation (LDA) is applied. The
LDA is further improved and extended to deformed nuclei [15].
In the absence of spin-orbit interaction in JLM model, we
have used the phenomenological prescription [32] to calculate

the deformed complex spin-orbit potential in the full Thomas
form [15]. Using the real and imaginary parts of the proton
optical model potential, the differential and reaction cross
sections are calculated. This semimicroscopic approach is used
in the analysis of proton elastic scattering on even Ti isotopes
(A = 44−56). In the present work, we have not considered
the coupled channel effects for deformed Ti isotopes. These
effects are significant at lower energies and are expected to be
less important at the energy (65 MeV) considered here. It is
seen that Ti isotopes, except those with N = 20 and N = 28,
are open shell nuclei and collectivity sets in Refs. [33,34].

A. Calculated folded potentials

The real and imaginary parts of the central and spin-orbit
potentials are obtained by folding the JLM internucleon
interaction with the calculated DIRHB densities using the
computer code MOM (microscopic optical model) [15] for
65 MeV proton elastic scattering from even isotopes of Ti. The
code ECIS [35] is used to calculate the differential and reaction
cross sections and for performing χ2 minimization by fitting
the differential cross section to corresponding data. Good
agreement to differential cross section data [11] for stable even
Ti isotopes has been possible with overall renormalization
of the real and imaginary parts of the central potential and
real part of the spin-orbit one. The imaginary part of the
spin-orbit potential was not used in the calculation as it did not
have a significant influence on the cross section results. The
renormalization factors for real (λV ) and imaginary central
(λW ) and real spin-orbit (λV so) parts of the potential, for the
stable even isotopes of Ti, were obtained by performing a
search to achieve a minimum χ2 in fitting the differential
cross section data [11]. To reduce the number of parameters
for prediction of cross sections, the values of λV so obtained
from search for stable isotopes, was fixed to the average value
of λV so = 88. It was seen that with λV so fixed to 88, and λV

and λW both obtained from the search, resulted in a good fit to
the differential cross section data for stable isotopes, 46,48,50Ti;
these are referred to as best fit values (Fig. 4). Using these
best fit values, the calculated renormalized real central V (r),
imaginary central W (r) and real spin-orbit Vso(r) parts of the
folded potential are plotted in Fig. 3 for the stable isotopes.
Figure 3 also shows the corresponding phenomenological parts
of the Woods-Saxon (WS) potential [11]. It is clear from figure
that for 46,48,50Ti, in general, the semimicroscopic calculation
for real and imaginary central, and real spin-orbit parts of
the potential are similar to the corresponding WS parts of the
potential, with the exception of V (r) in the interior region for
50Ti.

A least-squares fit to the best fit values of λV and λW has
been carried out to obtain the renormalization constants for
even neutron-deficient and neutron-rich Ti isotopes. These are
shown in Fig. 4 by solid lines. This figure reveals a small
dependence on A of both λV and λW and their variation
is given in terms of the expressions: λV = 0.0228A − 0.193
and λW = 0.0847A − 3.210, respectively. The λV values are
close to unity for all the isotopes under consideration. For the
sake of completeness, we note the average of the best fit λV

and λW values obtained from 46,48,50Ti to be 0.90 and 0.86,
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FIG. 3. Renormalized real central, imaginary central and real
spin-orbit parts of the folded potential using best fit values of λV

and λW for (p,p) scattering from stable even Ti isotopes. The
corresponding phenomenological [11] Woods-Saxon (WS) potentials
are also shown.

respectively, and these are plotted in Fig. 4 as a function of A.
The best fit values of λV and λW are also shown in the Fig. 4.
The errors in λV and λW are obtained by changing λV and λW ,
respectively, to get a variation in χ2 by a factor of 2 from the
respective best fit values.

In the next section, we discuss the calculation of cross
sections using best fit, least-squares fit, and average values of
λV and λW , with λV so fixed.

B. Calculated cross sections

Predictions of differential and reaction cross sections for
neutron-deficient and neutron-rich even isotopes (44−56Ti) are
made with the calculated optical model potential obtained
in the previous section as inputs to the ECIS code [35]. The
calculation of cross sections using least-squares fit and average
values of λV and λW with λV so are denoted by sets I and II,
respectively. The calculated differential cross sections for the
elastic scattering of 65 MeV proton incident on Ti isotopes
are displayed in Fig. 5. In the figure, the set I calculations
are shown. The experimental differential cross section [11] for
the stable isotopes are also indicated in the same figure. The
semimicroscopic calculations are in good agreement with the
corresponding data. The calculated angular distributions are

FIG. 4. Renormalization constants for (a) real and (b) imaginary
central parts of the potential obtained from the present MOM

calculation for (p,p) scattering from even Ti isotopes. The λV and λW

values from least-squares fit and average values are shown by solid
and dashed lines, respectively for 44−56Ti. The corresponding best fit
values for stable isotopes 46,48,50Ti are shown by solid circles.

seen to shift slightly to lower angles and the minima become
increasingly deeper with addition of neutrons.

The calculated total reaction cross sections σR using both
least-squares fit (set I) and average (set II) values of λV and
λW for even Ti isotopes are depicted in Fig. 6. The calculated
σR using the best fit values of λV and λW obtained for stable
isotopes are also plotted in the same figure. For comparison,
both geometric σ

g
R and cross section σ k

R from an improved
parametrization in the Kox model [36,37] which is based on
the strong absorption model are shown in Fig. 6. The geometric
cross section are calculated as per the relation σ

g
R=πr2

0 (A1/3
p +

A
1/3
Ti )2, where Ap and ATi are the mass of the projectile p and

Ti target, respectively. The σ
g
R and σ k

R are both normalized to
the σR calculated from best fit values of λV and λW for 50Ti, and
are also included in the figure. Both σ

g
R and σ k

R show a smooth
increase with N and the kink seen in the DIRHB calculated σR

is not present at N = 28. σ k
R has a larger slope in comparison

with σ
g
R and shows better agreement with set I calculation for

σR . In the neutron-rich region, σR from the set I calculations
are significantly larger than the geometrical predictions while
below N = 26 they are suppressed. The set II calculations
for σR are found to be closer to the geometric cross sections
for all isotopes. The total reaction cross section for 65 MeV
proton scattering off 50Ti obtained from the set I calculation is
836 mb. While the experimental σR at 65 MeV is not available,
it may be noted that a value of σR = 853 ± 80 mb [38] has
been measured for scattering at 60.8 MeV protons off 50Ti.
The errors on σR are calculated by a similar procedure as
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FIG. 5. Calculated (set I) and experimental [11] (where available)
differential elastic scattering cross section for 65 MeV proton
scattering from selected even Ti isotopes.

that adopted for λV and λW . The calculations with both sets
I and II show a smooth increase in σR as a function of A,
with a sudden change of slope at shell closure, N = 28. Both
calculations show a noticeable increase in σR going from 50Ti
to 52Ti, consistent with mean-square charge radii systematics
(Fig. 1).

IV. CONCLUSION

We have calculated the ground-state properties in the frame-
work of self-consistent mean-field models based on relativistic
energy density functionals using the interaction DD-ME2, for
even isotopes 44−56Ti. The calculated rms charge radii are
found to agree well with the available data and predictions have
been made for neutron-rich isotopes of Ti up to A = 56. The
calculated DIRHB densities are folded with the extended JLM,

FIG. 6. Calculated total reaction cross section σR for 65 MeV
proton scattering from even Ti isotopes. The σR are calculated using
the best fit, least-squares fit (set I) and average (set II) values of λV and
λW . Geometric cross sections and σR from Kox model are indicated
by dotted and dashed lines, respectively.

energy- and density-dependent nucleon-nucleon interaction to
yield the optical potential which is then used to obtain the
differential elastic scattering and reaction cross sections for
65 MeV proton scattering by even Ti isotopes. The differential
cross sections obtained from the semimicroscopic calculations
agree quite well with the corresponding experimental values
for stable even isotopes, and predictions are presented for
44,52,54,56Ti. Predictions of reaction cross sections have been
made for even isotopes 44−56Ti, where no data are available.
Our semimicroscopic calculation reveals a kink at N = 28
in the variation of total reaction cross section which is
also reflected in the pronounced increase in the calculated
rms charge radii for Ti isotopes. It would be interesting to
verify predictions of total reaction cross sections for protons
scattering from both neutron-deficient and neutron-rich Ti
isotopes in the present radioactive ion-beam facilities.
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