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Analysis of proton + 12C scattering by microscopic coupled-channels calculations
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The microscopic coupled-channel (MCC) calculations for proton + 12C inelastic scattering are performed in
the energy range of Ep = 29.95 to 65 MeV. The nuclear interactions for the proton-12C system are constructed
from the folding model, which employs the internal wave function of 12C, obtained from the 3α resonating group
method (3α RGM), and an effective nucleon-nucleon interaction of the density-dependent Michigan three-range
Yukawa (DDM3Y). The MCC calculation with the 3α RGM + DDM3Y nicely reproduces all of the differential
cross sections for elastic and inelastic scattering in the angular range of θc.m. = 30 to 120◦. The channel-coupling
effect is analyzed by comparing the full MCC calculation with the calculation of the distorted wave Born
approximation (DWBA). The effect of the spin-orbit interaction, obtained in a simplified manner with the folding
procedure, is also discussed.
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I. INTRODUCTION

Nucleon scattering from carbon is very important in the
fields of nuclear engineering [1] and medical technology [2].
For example, a neutron + carbon reaction occurs in nuclear
reactors because carbon is often used as the moderator of
neutrons to control the nuclear reactions in reactors. The
neutron-carbon interaction is very important to correctly
evaluate the reaction probability in a moderator. The nucleon-
carbon reaction is also related to radiation therapy for humans
because carbon is one of the main elements of human tissue.
In radiation therapy, cancer cells in human tissue are irradiated
by a proton beam and the proton + carbon reaction is
important. To understand the nucleon-carbon interaction more
precisely, a theoretical analysis of nucleon scattering by a
carbon target is needed over a wide range of scattering energy.
Since neutron acceleration control is challenging [3], proton
scattering has been measured in scattering experiments, and
the neutron-carbon interaction is speculated by switching off
the Coulomb interaction.

The 12C nucleus has characteristic features, such as the
coexistence of different kinds of nuclear structures; specifi-
cally, a spatially compact structure and a well-developed 3α
structure coexist in this nucleus [4,5]. The ground 0+

1 state has
a spatially compact structure in which all nucleons are tightly
bound to each other. The excited states of 2+

1 at 4.44 MeV
and 3−

1 at 9.64 MeV have similar compact structures, which
correspond to the rotational and vibrational excitation of the
ground state, respectively. In contrast, the 0+

2 state at 7.65 MeV
has a 3α structure in which the 12C nucleus is decomposed
into 3α particles and they are weakly coupled to each other.
The 2+

2 state located at 10.3 MeV is also the 3α state, which
is generated by the rotational excitation of the 0+

2 state [5].
These two kinds of nuclear structures are nicely described by
the calculation of the resonating group method (RGM) of the
3α particle, in which an antisymmetrization among a whole
nucleon in the 3α particle is fully taken into account [4].

In a theoretical analysis of the proton-carbon reaction, the
characteristic feature in 12C, the coexistence of two kinds of
nuclear structures should be taken into account. There are

many theoretical analyses of proton (p) + 12C elastic scattering
[6,7] and inelastic scattering [8–11]. In the analysis of elastic
scattering, the differential cross section and analyzing power
are calculated on the basis of the optical potential model at
65 MeV � Ep � 200 MeV [6,7], whereas the coupled-channel
(CC) calculation [9–11] and the method of the distorted wave
impulse approximation [8] have been applied to inelastic
scattering at the energy of Ep � 65 MeV and Ep = 200 MeV,
respectively. In the CC calculations in Refs. [9,10], the
observed cross sections are nicely reproduced, but the internal
state of 12C is treated by a phenomenological collective
model in which the coexistence properties of the compact and
extended 3α structures in 12C are not explicitly implemented.
In contrast, in the calculation in Ref. [11], the proton-carbon
interaction is derived from the folding model, which employs
the 3α RGM wave function of 12C and an effective nucleon-
nucleon (NN ) interaction. This CC calculation based on the 3α
RGM wave function can nicely reproduce the various data, but
the NN interaction is treated in a phenomenological manner.
That is, the parameters included in the effective NN interaction
are optimized so as to reproduce the observed differential cross
sections of the inelastic scattering.

In the present studies, we perform the more sophisticated
CC calculation for the p + 12C inelastic scattering, in which
the shortcoming of the previous CC calculations [9–11] is
improved. Specifically, the nuclear interactions of p + 12C are
constructed in the full microscopic manner on the basis of the
3α RGM wave function and the effective NN interaction with
a reliable foundation. As for the NN interaction, the Michigan
three-range Yukawa (M3Y) interaction [12,13] and its density-
dependent version (DDM3Y) [14] are employed. These NN
interactions were derived not in a phenomenological manner
but from the microscopic calculation of infinite nuclear
matter [12]. They are tuned so as to reproduce the scattering
phenomena in light ion systems, such as in 12C + 12C, 12C +
16O, and so on [13,14].

The coupled-channel formalism based on the DDM3Y
(or M3Y) effective NN interaction and the micro-
scopic internal wave function is called the microscopic
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coupled-channel (MCC) calculation [15–20]. The MCC cal-
culations are successful in describing the inelastic scattering
of the lighter systems, for example, the 12C+12C [15], α + 12C
[16], and 3He + 12C [17]. Therefore, the extension of MCC to
the nucleon-nucleus scattering is interesting in the application
of the MCC calculation. In the present calculation, the MCC is
applied to the p + 12C scattering at the energy range of Ep =
29.95 to 65 MeV, where the impulse approximation is invalid
and the channel-coupling effect becomes prominent.

The preliminary result of our MCC calculation of the p +
12C scattering has already been published in Refs. [23,24]. In
Ref. [23], we solved the two-channel problem of elastic and
inelastic scattering, going to the 0+

2 state with a well-developed
3α cluster structure. In the present report, we extend the MCC
calculation to the multichannel problem of p + 12C inelastic
scattering [24], going to the various inelastic channels, which
contains the collective excitations of the 2+

1 and 3−
1 states and

the 3α excitations of the 0+
2 and 2+

2 states. From the results of
the MCC calculations, we discuss the validity of the nuclear
interactions derived from the microscopic folding procedure.

The organization of this article is as follows. In Sec. II, the
framework of the MCC is explained. In Sec. III, the theoretical
calculations for the p + 12C elastic and inelastic scatterings
are compared with the experiments. The channel-coupling
effects are analyzed by comparing the full coupled-channel
calculation with the method of the distorted wave Born
approximation (DWBA). Based on the result of the MCC
calculation, the validity of the folding potential, the spin-orbit
potential in particular, is discussed. The final section is devoted
to a summary and discussion.

II. FRAMEWORK OF THE MICROSCOPIC
COUPLED CHANNEL

A. Coupled-channel equations

We solve a set of the coupled-channel (CC) equations for
the proton-12C system, which is given in the symbolic form

[Tf (R) + Vf,f (R) − Ef ]χf (R) = −
∑
i �=f

Vf,i(R)χi(R) . (1)

Here, the subscripts f and i design a channel. Tf (R)
represents the kinetic energy of the relative motion of the
p + 12C system with a relative coordinate R, while Vf,i(R)
denotes the coupling potential for the transition from channel
i to channel f . The total energy in channel f , Ef , is given by
the relation of Ef = E − εf with a proton’s incident energy
E and an internal energy of 12C, εf . χf (R) is the proton-12C
relative wave function for channel f , which should be solved
in the CC equation. In the present calculation, we include all
discrete-excited states of 12C in addition to its ground 0+

1 state:
the rotational state of 2+

1 (4.44 MeV), the vibrational 3−
1 state

(9.64 MeV), and the 3α cluster states of 0+
2 (7.65 MeV) and

2+
2 (10.3 MeV).

In the pragmatic CC calculation, partial wave expansion
with the channel-spin representation is applied to the total
wave function, and the radial part of the relative wave function,
such as χJ

(sSa )IL(R), is solved [21,22]. Here, the radial part
of the relative wave function is classified in terms of the

proton spin s, the internal spin of 12C, Sa , the channel spin
I (= s + Sa), the relative spin L, and the total spin J (= I + L).
Here the subscript of a represents a suffix used to distinguish
the internal state of 12C with the same spin (Sa = 0+

1 , 0+
2 , and

so on). A set of the quantum numbers of (sSa)I is a channel,
while that of (sSa)ILJ is usually called the subchannel. In
the CC calculation, the off-diagonal transition between the
subchannels, (sSa)ILJ → (s ′S ′

a′ )I ′L′J , is possible according
to angular momentum algebra, and this off-diagonal transition
corresponds to the channel-coupling effect.

The channel-coupling effect can be classified into two kinds
of the transition scheme. One is the transition involving the
change of the internal state of 12C, for example, 12C(Sa =
0+

1 → 2+
1 ). This transition is called dynamical coupling. The

other is a special transition, in which only L is changed and
internal state of 12C is invariant; (sSa)ILJ → (sSa)IL′J
[18–20]. This L transition is called reorientation coupling.
If the proton spin s is neglected, this reorientation coupling
corresponds to a transition of the alignment of Sa (internal
spin of 12C) with respect to the direction of the total spin
J . If the reorientation coupling occurs, the relative spin
L can be changed in the range of L = |J − Sa| to L =
J + Sa according to angular momentum algebra. There is
no reorientation coupling in the spinless state of 12C (Sa =
0+

1 and 0+
2 ) but the reorientation effect always appears in the

diagonal transition of a finite spin state, such as 2+
1 → 2+

1 .
The reorientation coupling is induced by a component of
the nonspherical part (multipole component) in the density
distribution. Thus, the reorientation coupling effect becomes
prominent if the excited states have a large spin with strong
deformation [19,20].

B. Central part in the nuclear potential

The coupling potential (Vf,i(R)) has a component of the
nuclear (N ) and Coulomb (C) parts, such as

Vf,i(R) = V
(N)
f,i (R) + V

(C)
f,i (R) . (2)

The nuclear potential is composed of the real (Vf,i(R)) and
phenomenological imaginary potentials (−iUf (R)),

V
(N)
f,i (R) = Ṽf,i(R) − iUf (R)δf,i . (3)

The real part of the nuclear potential (Ṽf,i(R)) is calculated
by the folding model [13,14,18–20], which is expressed
symbolically as

Ṽf,i(R) =
∫

ρf,i(r)vDDM3Y
NN (|r − R|)dr, (4)

where r denotes the coordinate measured from the center
of the mass in the 12C nucleus. Here, ρf,i(r) represents the
diagonal (f = i) or transition (f �= i) densities of 12C and is
calculated by the resonating group method (RGM) [4] of the
3α cluster model. In Eq. (4), vNN represents the effective
nucleon-nucleon (NN ) interaction, which acts between a
nucleon contained in 12C and an incident proton. The Coulomb
interaction in Eq. (2) is calculated by assuming the uniform
charge potential with a radius of RC = 1.2A1/3 (fm), and no
Coulomb coupling is included in the off-diagonal transition.
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In the present work, the density-dependent Michigan
three-range Yukawa (DDM3Y) is used for the effective NN
interaction. The explicit form of the DDM3Y interaction is
given by

vDDM3Y
NN (s) = γ (1 + αe−βρ(s))vM3Y

NN (s), (5)

with the M3Y interaction of

vM3Y
NN (s) = 7999

e−4s

4s
− 2134

e−2.5s

2.5s
− J0δ(s). (6)

In Eq. (5), the parameters of α,β, and γ depend on incident
energy per nucleon [14]. Equation (6) corresponds to the NN
interaction for the spin (S) and isospin (T ) singlet channel (S =
T = 0). Thus, there is no contribution from the long-range
attractive potential generated by the one-pion exchanges. The
third term simulates the single-nucleon knock-on exchange
with the energy-independent strength of J0 = −262 MeV fm3

[13]. In the present CC calculation, no modification is done for
the folding potentials, although a normalization factor is often
introduced in the folding potential for the nucleus-nucleus
scattering [17].

The second term in Eq. (3) represents the imaginary
potential, which is included only in the diagonal transition
(f = i). The imaginary potential is composed of two parts,
such as

Uf (R) = WVf (R) + WSf (R). (7)

Here, WVf (R) and WSf (R) are the Woods-Saxon (WS)
potential with volume-type and surface-type form factors,
respectively [7,28]. Three parameters, such as strength (W0f ),
radius (Rf ), and diffuseness (af ), are included in each of the
WS potentials. These six parameters are channel dependent,
and they are optimized so as to reproduce the observed differ-
ential cross sections as much as possible. In the present calcu-
lation, we neglect the imaginary potentials in the off-diagonal
transition for simplicity. All the parameters used in the present
MCC calculation are listed in the Appendix (Tables I–IV).

Let us discuss the physical origin of the volume and surface
imaginary potentials introduced in the present calculation.
The volume parts mainly simulate the absorption of the
incident proton, and this absorption leads to the formation
of the compound system of 13C and the complicated process
inside of the compound states. On the other hand, one of
the main reaction process that is simulated by the surface-
type absorption is the coupling to transfer channels, such
as the pickup reaction, 12C(p,d)11C [25,26], for example.
In the previous experiments at Ep = 51.9 MeV [26], the
angular distribution of 12C(p,d)11C(3/2−) was measured, and
the distribution was compared with the cross section of the
inelastic scattering to the 2+

1 channel. The magnitude of
the cross section of the pickup reaction is almost the same
as the cross section of the inelastic scattering (∼10 mb/sr).
Furthermore, the angular distribution of the pickup reaction
strongly suggests the nonzero orbital spin transfer (
L �= 0),
which can be confirmed by the rapid decrease of the cross
section at the forward angle, θc.m. ∼ 0◦. These results of
12C(p,d)11C means that the pickup process, which competes
with the inelastic scattering, mainly occurs at the surface region
of the nuclear potential. Therefore, the introduction of the

surface-type absorption is considered to be valid in order to
simulate the pickup reaction.

C. Spin-orbit interaction

In the calculation of the scattering to the spinless channels,
the 0+

1 and 0+
2 channels, we include the spherical spin-orbit

interaction, such as

Ṽf,i(R) → Ṽf,i(R) + V LS
f,i (R)L · s. (8)

The radial form factor of the spin-orbit potential, V LS
f,i (R), is

calculated according to the simplified folding procedure

V LS
f,i (R) = −π

2

1

R

∂ρmono
f,i (R)

∂R

∫
vM3Y

T O (s)s4ds, (9)

where vM3Y
T O (s) represents the triplet-odd (T O) part of the

M3Y spin-orbit interaction. The explicit form of T O spin-orbit
interaction [12] is

vM3Y
T O (s) = −3733

e−4s

4s
− 427.3

e−2.5s

2.5s
. (10)

The M3Y interaction implemented in both the central and
spin-orbit interactions is called the Reid version [12,14].

In the derivation of Eq. (9), the short-range property of the
spin-orbit NN interaction and cancellation of the triplet-even
part and knock-on exchange are assumed [27]. In Eq. (9), the
ρmono

f,i (R) denotes the monopole transition density, which is
the spherical component of the multipole decomposition in
the transition density [4,19]. The folding potential in Eq. (9)
was originally derived for the nucleon scattering by a spherical
and a spinless target [27]. Equation (9) is very useful because
the spin-orbit potential is easily obtained from the simple
derivative of the monopole transition density. In the present
CC calculation, the folding potential in Eq. (9) is extended in a
straightforward manner; specifically, the internal spin of all the
excited states in the 12C nucleus is neglected, and the spin-orbit
couplings are included in the monopole transitions between the
same spin states, such as the 0+

1 → 0+
2 ,2+

1 → 2+
2 ,3−

1 → 3−
1 ,

and so on. We investigate the validity of the simple prescription
of the spin-orbit potential in Eq. (9).

III. RESULTS

A. Systematic calculation of the differential cross sections

We show the results of the full CC calculation with the
nuclear interaction in Eqs. (3) and (4). In this calculation, all
the spin-orbit interactions are switched off, and the proton is
treated as the spinless particle (s = 0). Figures 1, 2, 3, and 4
show the results of the differential cross sections, going to the
0+

1 , 2+
1 , 3−

1 , and 0+
2 channels, respectively. The comparison

of the CC calculations (solid curves) with the experiments
(asterisks) are done in the energy range of Ep = 29.95 to
65 MeV.

The CC calculations for the elastic (0+
1 ) and 2+

1 channels,
which are shown in Figs. 1 and 2, respectively, nicely
reproduce the overall features of the observed differential cross
sections except for the backward angles of θc.m. � 120◦ at
the energies of Ep � 39.95 MeV. In the MCC calculation
of the 0+

1 channel, a prominent valley appears at the angle
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FIG. 1. (Color online) Differential cross section of the
elastic(0+

1 ) scattering in the range of Elab = 29.95 to 65 MeV. The
asterisks and the curves represent the experimental data and the
theoretical calculations, respectively.

of θc.m. = 130◦, and the calculated cross section quickly
increased beyond 130◦ in comparison to the experimental data.
Such valley-peak structures in the theoretical calculation are
observed in the 2+

1 channel (Fig. 2), and the CC calculation
is out of phase at θc.m. = 130◦. The valley-peak structures at
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FIG. 2. (Color online) Same as Fig. 1 except for the inelastic 2+
1

channel.
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FIG. 3. (Color online) Same as Fig. 1 except for the inelastic 3−
1

channel.

the backward angles were also observed in the previous CC
calculation based on the soft-rotator model [9].

The present CC calculation nicely reproduces the cross
section going to the 3−

1 state, especially in the angular range
of 30◦ � θc.m. � 140◦, as shown in Fig. 3. At Ep = 35.2 and
39.95 MeV, the valley-peak structures, which are confirmed in
the 2+

1 channel, also appear around θc.m. ∼ 150◦. In addition,
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FIG. 4. (Color online) Same as Fig. 1 except for the inelastic 0+
2

channel.
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FIG. 5. (Color online) Comparison of the full CC calculations
with the DWBA calculations in the elastic channel. The solid curve
shows the result of the full CC calculations, while the dashed curves
represent the DWBA calculations.

the CC calculations underestimate the cross sections at the
forward angles of θc.m. � 20◦ at the lower energy region,
Ep = 29.95 and 35.2 MeV.

The results of the CC calculation for the 0+
2 state, which has

the well-developed three α structures, are shown in Fig. 4. In
all the energy ranges, the theoretical calculations reasonably
reproduce the global features of the observed cross sections.
However, the deviations of the CC calculation from the
experimental data are more prominent in comparison to other
collective channels, such as the 0+

1 , 2+
1 , and 3+

1 channels. At
the backward angles of θc.m. ∼ 150◦ the CC calculation is out
of phase in comparison to the experimental data. Being out
of phase is a common feature in all the inelastic channels.
Moreover, a sharp valley appears in the CC calculation at
the angle of θc.m. = 30◦, and this valley is largely deviated
from the observed data except for the incident energy of Ep =
65 MeV.

The present CC calculations are successful in reproducing
the differential cross section in the angular range of θc.m. =
30–120◦, although the fit to the experimental data depends
considerably on the exit channels. There is a common feature
in the deviation between the theory and the experiment: the
out-of-phase structure at the backward angle of θc.m. � 130◦.
In the 0+

2 and 3−
1 channels, moreover, the deviation of the CC

calculation from the experiments is confirmed at the forward
angular region.

B. Analysis of the channel coupling effect

We discuss multistep coupling in the reaction process.
Figures 5, 6, 7, and 8 represent comparisons of the full CC
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FIG. 6. (Color online) Same as Fig. 5 except for the inelastic 2+
1

channel.

calculation and the calculation of the DWBA [21,22]. The
former and latter results are shown by the solid and dotted
curves, respectively, in the individual figures. In both the CC
and DWBA calculations, the spin-orbit interaction is switched
off and the proton spin is set to s = 0.

In the DWBA calculation, all the off-diagonal transitions
from the ground subchannel, which are represented by
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FIG. 7. (Color online) Same as Fig. 5 except for the inelastic 3−
1

channel.
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FIG. 8. (Color online) Same as Fig. 5 except for the inelastic 0+
2

channel.

(Sa,L = J,J ) = (0+
1 ,J,J ) → (S ′

a′ ,L′,J ) with S ′
a′ = 0+

2 ,
2+

1 , and 3−
1 are treated in the first-order perturbation, while

the couplings among the excited subchannels, (S ′
a′ ,L′,J ) →

(S ′′
a′′ ,L′′,J ), are switched off. Therefore, in the DWBA, the

coupling of the ground 0+
1 channel to all the excited channels

terminates in the one-step transition. In contrast, the infinite
multistep transitions among the channels are fully taken into
account in the full CC calculation. If the channel coupling
effect is weak, the DWBA calculation gives the same results
as the CC calculation.

In the result of the 0+
1 channel (Fig. 5), the DWBA

results are almost indistinguishable from the CC results in
the forward angles of θc.m. � 90◦. However, the difference
of the full CC and DWBA is prominent at the backward
region, such as θc.m. � 90◦, in the lower energy region of
Ep � 39.95 MeV. This result means that multistep coupling is
important in the backward scattering. The strong effect of the
multistep coupling at the backward angle is naturally expected
from a general feature of the channel-coupling effect. The
backward scattering occurs when the incident proton wave
deeply penetrates the inside region of the 12C nucleus. Thus,
the proton scattered at the backward angle strongly feels the
nuclear field of the 12C target, and the multistep effect by
the nuclear interaction becomes prominent. In contrast to the
lower energy region, the CC calculation is almost the same
as the DWBA calculation at the higher incident energy, Ep =
65 MeV. This is because the interaction time becomes short
in the higher energy scattering; hence, the multistep coupling
becomes weak.

In the result of the 2+
1 channel (Fig. 6), a similar feature to

the 0+
1 channel is seen. Specifically, the difference of CC (solid

curves) and DWBA (dashed curves) is prominent at the back-
ward angles in the lower energy region (Ep � 39.95 MeV),

but the CC effect is less important in the high energy region
(Ep = 65 MeV). The difference of CC and DWBA at the
backward scattering is common to the 0+

1 and 2+
1 channels.

Since the 0+
1 and 2+

1 states form the ground rotational band
[4], the coupling of these two channels is strong [18]. Thus,
the backward difference of DWBA and CC is attributed to the
multistep effect of the dynamical coupling of 0+

1 → 2+
1 .

In the forward angles of θc.m. � 90◦ at Ep � 39.95 MeV,
the DWBA results closely follow the CC results, but the
DWBA results slightly deviate from the CC results. In the
forward scattering, the dynamical coupling of 0+

1 → 2+
1 is

expected to be small. Since there is a reorientation coupling in
the 2+

1 channel, which does not exist in the spinless 0+
1 channel,

the origin of the deviation at the forward angle is considered to
be the reorientation coupling, which arises from the diagonal
transition of 2+

1 → 2+
1 in the final channel.

The comparison of CC with DWBA for the 3−
1 channel is

shown in Fig. 7. The differences in these two calculations are
prominent at the backward angles, and this feature is similar
to the results of the 0+

1 and 2+
1 channels, which are confirmed

in Figs. 5 and 6, respectively. The backward difference is
generated by the multistep effect of the dynamical coupling
of 0+

1 → 3+
1 , because the 0+

1 and 3+
1 states have a common

nuclear structure. This coupling gives a considerable effect at
the backward scattering, although its effect is weaker than the
coupling of 0+

1 → 2+
1 [18].

In the forward scattering at θc.m. � 90◦, we can confirm that
the DWBA results deviate considerably from the CC results,
and this deviation is more prominent than the deviation in
the 2+

1 channel (Fig. 6). Since the intrinsic deformation in
the 3−

1 state is stronger than that in the 2+
1 state [4], the

reorientation coupling among the subchannels with the 3−
1

state is enhanced more than the reorientation among the 2+
1

subchannels. The enhanced reorientation coupling especially
affects on the forward scattering. In fact, we can see the clear
difference of DWBA and CC at the extremely forward angle
of θc.m. � 30◦.

In contrast to the 0+
1 , 2+

1 , and 3−
1 channels, there is the large

difference of CC and DWBA in the 0+
2 channel, as shown in

Fig. 8. In the forward region, the angular distribution calculated
by DWBA (dashed curves) has a strong oscillating structure
in comparison to the CC calculation (solid curves). Moreover,
the magnitude of the cross section in the full CC calculation
is reduced in comparison to the magnitude of the DWBA
calculation. This reduction in the full CC suggests that the
flux in the 0+

2 channel is strongly absorbed to another channel
by the multistep coupling.

The origin of the absorption is not the reorientation coupling
but the dynamical coupling because the 0+

2 channel is a spinless
state. The 0+

2 state has a well-developed 3α cluster structure
with a spatial extension, and hence this state can easily be
excited to its rotational excited state of the 2+

2 state [4].
Therefore, the difference of DWBA and CC originates from the
coupling of 0+

2 → 2+
2 . The inclusion of the 2+

2 state is essential
in the calculation of the inelastic scattering to the 0+

2 channel.
We perform the restricted CC calculation, in which the

coupling to 2+
2 is switched off, to investigate the effect of

the coupling to the 2+
2 channel more clearly. In Fig. 9, the

results of the restricted CC calculation are compared to the
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FIG. 9. (Color online) Comparison of the restricted CC calcula-
tion without 2+

2 and the DWBA calculations in the inelastic scattering
to the 0+

2 channel. The solid curve represent the results of the restricted
CC calculation without the channel coupling to the 2+

2 channel, while
the DWBA results are plotted by the dashed curves. The DWBA
results are the same as the dashed curves shown in the Fig. 8.

DWBA calculation. The restricted CC calculations without 2+
2

(solid curves) are nearly same as the DWBA results (dashed
curve) although there is a difference in the detailed structure
of the angular distributions. This result means that the DWBA
calculation is nicely simulated by the restricted CC calculation.
Thus, the large deviation of the full CC (solid curves) and
DWBA (dashed curves) calculations can be attributed to the
coupling effect to the 2+

2 state. This result is consistent with
the analysis of the dynamic polarization potential in the 12C +
12C system at the molecular resonance energy region [18].

C. Effect of the spin-orbit interaction

We discuss the effect of spin-orbit interaction on the elastic
and inelastic scattering to the 0+

2 state. Here we focus on the
scattering at Ep = 65 MeV because the spin-orbit interaction
becomes effective in the higher energy region. In the following
calculation, the coupling of the proton spin is treated precisely
(s = 1/2).

Figure 10 shows the comparison of the theoretical CC
calculation (solid curve) with the experimental data (asterisks).
In this calculation, no modification of the folding potential
is done, and the parameters in the imaginary potentials are
optimized so as to reproduce both angular distributions. The
observed cross section of the elastic (0+

1 ) scattering is nicely
reproduced although the dip of the solid curve at θc.m. = 40◦
seems to be steeper than the experimental observation. On the
contrary, the reproduction of the inelastic scattering to the 0+

2
channel is not greatly improved. In this inelastic scattering,
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FIG. 10. (Color online) Differential cross section at Ep =
65 MeV in the 0+

1 and 0+
2 channels. The asterisk and curve represent

the theoretical calculations, respectively.

a steep dip around θc.m. = 30◦, which is observed in Fig. 4,
becomes a moderate dip, leading to a good fit to the observation
at the forward angle. However, the oscillation pattern of the
calculation is out of phase at the backward angle in comparison
to the experiments. We tried to search the imaginary potentials
to reproduce the cross section over a whole angle, but the
reproduction of the observed phase was difficult.

We change the potential to obtain a better fit to the
experiments in the following step. First, we include the
spin-orbit potential only in the diagonal transition of the 0+

1
channel, and all other spin-orbit potentials for the monopole
transitions are switched off. Second, we search the parameters
of the imaginary potential in this modified treatment of
the spin-orbit potential. Figure 11 represents the result of
the modified calculation. We can clearly confirm that the
modified calculation nicely reproduces the global features of
the oscillating pattern in the differential cross section. In the
elastic channel, the steep dip at θc.m. = 40◦ disappears, and
the fit to the experiment is improved. As for the 0+

2 channel,
the oscillating phase in the modified calculation reproduces the
observed phase over a whole angle although the theoretical
calculation still overestimates the magnitude of the cross
section at θc.m. = 30◦.

The theoretical calculations shown in Figs. 10 and 11
suggest that the spin-orbit potential calculated from Eq. (9)
is inappropriate for describing a realistic inelastic scattering.
The functional form in Eq. (9) has been derived for the elastic
scattering by the spinless target [27], but its validity is unclear,
especially in the treatment of the inelastic scattering induced
by the off-diagonal transition density. Thus, a more precise
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FIG. 11. (Color online) The same as Fig. 10 except for the
calculation with the modified treatment of the spin-orbit potentials.
See text for details.

treatment of the folding potential should be considered for the
spin-orbit coupling in the coupled-channel formalism.

To investigate the effect of the spin-orbit potential in greater
depth, we analyze the distribution of the partial cross sections,
σ (JL), which represents the decomposition of the angle-
integrated cross section into the individual contributions of the
partial waves, which are classified by the total (J ) and relative
(L) spins. As pointed out in our recent study [23], the partial
cross section is an important quantity to characterize a size of
the reaction area although the partial cross sections themselves
are not direct observables. The partial cross sections of the
elastic 0+

1 channel are shown in Fig. 12. In this figure, the
partial cross sections with different L belonging to a common J
is summed up as σ (J ) = ∑

L σ (JL), and they are normalized
by the total cross section of σ = ∑

J σ (J ). In the partial cross
section plotted in Fig. 12, the contribution from the Coulomb
scattering is excluded; hence, the plotted partial cross sections
are converged to finite values.

In Fig. 12, the partial cross sections with the full spin-orbit
potential are shown by the asterisks, while those with the
restricted spin-orbit potential, in which the spin-orbit potential
is included only in the diagonal transition of the ground 0+

1
channel, are shown by the solid square. Since the asterisks are
almost indistinguishable from the solid squares, the effect of
the off-diagonal coupling in the spin-orbit potential is weak for
the elastic channel. Thus, the elastic scattering is dominated
by the diagonal spin-orbit potential in this channel.

In contrast, we can confirm the strong effect of the spin-orbit
potential in inelastic scattering, going to the 0+

2 channel. In
Fig. 13, the partial cross sections for the 0+

2 channel are shown.
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FIG. 12. (Color online) Distributions of the partial cross sections
for the elastic at Ep = 65 MeV. The asterisks show the results of the
calculation with the full spin-orbit potential, while the solid squares
represent the results with the restricted spin-orbit potential. See text
for details.

The symbols in Fig. 13 are the same as those in Fig. 12. As
can clearly be seen in Fig. 13, σ (J ) with the full spin-orbit (as-
terisks) has a more extended distribution in comparison to the
results with the restricted spin-orbit potential (solid squares).
This result means that the spin-orbit potential causes the
inelastic scattering of the higher partial waves, and the higher
partial wave contribution generates an unrealistic oscillation in
the angular distribution, as shown in the lower panel of Fig. 10.

In the inelastic scattering to the 0+
2 channel, there are

two kinds of dominant spin-orbit couplings: the off-diagonal
coupling of 0+

1 → 0+
2 and the diagonal coupling of 0+

2 → 0+
2 .
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FIG. 13. (Color online) The same as Fig. 12 except for the
inelastic channels of the 0+

2 state.
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We have confirmed that the former coupling is dominant.
Therefore, the off-diagonal spin-orbit potential should be
improved by more sophisticated treatment than the simple
formula according to Eq. (9).

IV. SUMMARY AND DISCUSSION

In sum, we have performed the microscopic coupled-
channel (MCC) calculation in the proton + 12C scattering
in the energy range of Ep = 29.95 to 65 MeV. In the
framework of MCC, the real part of the nuclear potentials
are derived from the precise wave function of 12C, which are
calculated by the 3α resonating group method (3α RGM), and
the reliable nucleon-nucleon (NN ) interaction, such as the
density-dependent Michigan 3-range Yukawa (DDM3Y) and
the Michigan three-range Yukawa (M3Y). In addition to the
real potential, we have introduced an imaginary potential with
the form factor of the Woods-Saxon potential for the diagonal
coupling, and the parameters in the imaginary potentials are
optimized to reproduce the differential cross sections.

The MCC calculation with 3α RGM + DDM3Y can nicely
reproduce the observed angular distributions in the angular
region of θc.m. = 30 to 120◦. The fit to the experimental
data in the present MCC calculation is superior to the
previous coupled-channel calculations that were based on
the phenomenological treatment in the coupling potential
[9–11]. Reproduction of the experiments by the microscopi-
cally derived nuclear interactions is an important development
in the theoretical calculations. However, the reproduction of
the detailed structures is still insufficient especially in the
backward (θc.m. � 120◦) and forward scattering (θc.m. � 30◦).
In the backward scattering, the theoretical calculations for
all the exit channels commonly generate the valley-peak
structures, which are out of phase in the oscillating pattern of
the angular distribution by comparing the experimental data.
Since the proton scattered to the backward angle strongly feels
the interior density of the 12C target, the modification of the
interior part of the transition density may be important for the
improvement of the fit to the backward scattering.

On the contrary, the failure of the forward scattering is
confirmed only in the 3−

1 and 0+
2 channels, which are the

unbound resonant states above the 3α threshold [4]. Thus, the
failure of the forward scattering seems to relate to the resonant
property of these two states. In the unbound resonances, the
tail part of the density is extended to a wide spatial region due
to the quantum tunneling effect. Since the forward scattering
is sensitive to the tail part of the transition density, the precise
treatment of the tail is especially important in the treatment of
the scattering to the resonant states. Therefore, the possibility
exists that the careful treatment of the tail part in the resonant
density may lead to an improvement in the reproduction of the
experimental data.

The channel coupling effect is analyzed by performing
the DWBA. In comparison with the DWBA and the full
CC calculations, the channel-coupling effect is confirmed,
especially in the backward scattering in the 0+

1 , 2+
1 , and 3−

1
channels. In the 2+

1 and 3−
1 channels, there is the extra effect of

the channel coupling in the forward scattering. The coupling
at the forward angle is considered to be the effect of the

reorientation coupling, which is peculiar to the excited states
with a finite spin. The channel coupling effect for the 0+

2
channel, which has the well-developed 3α structure, is the
most prominent of all the channels. The origin of this effect is
the coupling to the 3α rotational state, the 2+

2 state.
We have also investigated the effect of the spin-orbit poten-

tial on the spinless exit channels, 0+
1 and 0+

2 . The radial form
of the spin-orbit potential is obtained from a simple derivative
form of the transition density with the density-independent
NN interaction, M3Y. The inclusion of the spin-orbit potential
partially improves the forward scattering in the 0+

2 channel,
but the CC calculation with the spin-orbit interaction fails to
reproduce the global behavior of the oscillation pattern in the
differential cross section. We have obtained a better fit by
switching off the spin-orbit potential except for the diagonal
transition in the elastic channel.

The effect of the spin-orbit potential is also investigated
by the analysis of the partial cross section. The off-diagonal
transition induced by the spin-orbit potential has a minor effect
on the elastic scattering, but its effect is prominent in the 0+

2
channel. The inclusion of the spin-orbit transition induces the
scattering of the higher partial waves, which leads to unrealistic
oscillation in the angular distribution. The result of the present
analysis strongly suggests that the simplified folding procedure
with density-independent NN spin-orbit interaction should
be reconsidered especially for the excited channel although
the central part of the folding potential is considered to be a
realistic interaction.

In the present study, we have focused on proton scatter-
ing, but we should extend the MCC calculation to neutron
scattering as well, which is obtained in the energy region
of En � 40.3 MeV [9,28]. The MCC calculation for the
low-energy neutron scattering is important in the compilation
of nuclear data in nuclear engineering and medical technology.
Moreover, deep analysis of the partial cross section should be
done for the present multichannel problem. As pointed out in
Ref. [23,24], the distribution of the partial cross sections is
useful in defining a size of the spatial area, where the final
channels are produced. The radii evaluated from the partial
cross sections, which are called the “scattering radii” [23,24],
may have a close connection to the matter radius of the excited
states, which is impossible to measure directly in experiments.
Systematic calculations of neutron scattering and the analysis
of the scattering radius are currently under way.
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APPENDIX

In this Appendix, the parameter sets of the imaginary
potentials included in the diagonal transition, shown in
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TABLE I. Incident energy dependence of the parameter sets for
the elastic (0+

1 ) channel. At the left-most column, the proton incident
energy is shown, and the parameters of the volume type (W0V , RV , and
aV ) and surface type (W0V , RV , and aV ) are listed for the individual
energies.

Energy W0V RV aV W0S RS aS

29.95 6.5 3.0 0.6 3.0 0.5 0.6
35.2 5.2 1.5 0.6 4.6 1.7 0.6
39.95 3.5 2.2 0.6 4.5 2.0 0.6
65 6.8 1.5 0.6 17.9 1.43 0.6

Eq. (7), are listed. In all the channels, the imaginary potential
comprises the Woods-Saxon potential with the volume (V ) and
surface (S) form factors. In each of the Wood-Saxon potential,
there are three parameters, such as the depth (W0), radius (R),

TABLE II. Same as Table I, except for the 2+
1 channel.

Energy W0V RV aV W0S RS aS

29.95 2.0 3.0 0.6 3.0 5.0 0.8
35.2 2.5 5.0 0.6 3.0 9.0 0.8
39.95 4.0 2.5 0.6 4.0 5.2 0.6
65 3.0 3.0 0.3 1.0 3.5 0.6

TABLE III. Same as Table I, except for the 3−
1 channel.

Energy W0V RV aV W0S RS aS

29.95 3.0 3.0 0.6 1.0 2.5 0.6
35.2 3.0 2.5 0.6 2.0 8.5 0.6
39.95 2.0 1.8 0.6 2.0 1.5 0.6
65 0.5 1.0 0.6 0.5 5.7 0.6

and the diffuseness (a) parameters. The parameters listed in
the following are employed the MCC calculation without the
spin-orbit potential.

TABLE IV. Same as Table I, except for the 0+
2 and 2+

2 channels.

Energy W0V RV aV W0S RS aS

29.95 5.0 2.0 0.6 4.0 5.5 0.6
35.2 4.0 3.8 0.6 3.0 4.0 0.6
39.95 10.0 2.6 0.6 8.0 2.7 0.6
65 2.0 3.0 0.8 2.0 2.0 0.8
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