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Novel technique to extract experimental symmetry free energy information for nuclear matter
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A new method of accessing information on the symmetry free energy from yields of fragments produced
in Fermi-energy heavy-ion collisions is proposed. Furthermore, by means of quantum fluctuation analysis
techniques, correlations between extracted symmetry free energy coefficients with temperature and density
were studied. The obtained results are consistent with those of commonly used isoscaling techniques.
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I. INTRODUCTION

The fundamental goal of studying strongly excited nuclei
is to characterize the equation of state (EOS) of nuclear
matter over a wide range of temperature, density, pressure,
and isospin. This quest to characterize nuclear phenomena
at intermediate energies is still a matter of intensive in-
vestigations. The characterization of the EOS of nuclear
matter plays a key role for various phenomena in nuclear
astrophysics, nuclear structure, and nuclear reactions [1–5].
The EOS for asymmetric nuclear matter is usually expressed
as a term related to symmetric matter and a term which
takes into account the isospin asymmetry of the system.
The latter is referred to as the symmetry energy. In early
studies, the symmetry energy coefficient (Esym) of nuclei
was extracted by fitting the binding energy in their ground
state with various versions of the liquid drop mass formula.
The properties of nuclear matter are afterwards determined
by theoretically extrapolating the nuclear models designed to
study the structure of real nuclei which are cold (T = 0),
nearly symmetric (N ≈ Z), and at the saturation density
(ρ0 ≈ 0.16 fm−3). In contrast to the value of Esym at ρ0 and
T = 0, the behavior of Esym with temperature (T ) and density
(ρ) is still being mapped out.

Many experimental and theoretical investigations have been
devoted, in recent years, to estimating the behavior of Esym as
a function of T and ρ. Among these efforts, measurements of
the giant dipole [6], pygmy dipole [7], and giant monopole [8]
resonances in neutron-rich nuclei, neutron-proton emission
ratios [9], isospin diffusion [10], collective flows [11], and
fragment isotopic ratios [12–15] have provided constraints
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on the density dependence of the symmetry energy at sub-
saturation densities. Recently, a large body of experimental
data from studies of heavy-ion collisions [16–19] have been
used to extract the free symmetry energy and the symmetry
energy at subsaturation densities and moderate temperatures.
In those studies, isoscaling parameters deduced from isotopic
yields measured in two similar reactions with different isotopic
compositions were used to access the symmetry free energy
coefficients. The symmetry energy coefficients were in turn
derived using model-calculated symmetry entropies together
with experimental symmetry free energy coefficients.

To a good approximation, the EOS of asymmetric nuclear
matter can be written as

E(ρ,T ,m) = E(ρ,T ,m = 0) + Esym(ρ,T )m2 + O(m4),
(1)

where ρ = ρp + ρn, m = (N − Z)/A is the neutron-proton
asymmetry and E(ρ,T ,m = 0) is the EOS of symmetric
nuclear matter [20,21]. As a general representation of the
symmetry energy coefficient, the following definition has been
considered:

Esym(ρ,T ) = 1
2 [E(ρ,T ,1) + E(ρ,T ,−1)] − E(ρ,T ,0). (2)

We recall here that in most cases, the symmetry energy is
connected to the isotopic yields through the relationship

α = 4Csym

T

[(
Z1

A1

)2

−
(

Z2

A2

)2
]
, (3)

where Csym is the symmetry energy coefficient; Z1, A1 and Z2,
A2 are respectively the charge and the mass numbers of system
1 and 2 (system 2 being richer in neutrons than system 1);
and T is the common temperature of the two systems
[13,15,22]. However, at sufficiently low densities, Csym was
shown to be substituted for the symmetry free energy (Fsym)
and is related to Esym through Esym = Fsym + T Ssym, with
Ssym being the symmetry entropy [16–19]. This implies that
at low densities the symmetry entropy contribution to Esym

becomes significant as clustering increases the binding energy
and therefore reduces the entropy in symmetric matter [23].
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II. FORMALISM

Heavy-ion collisions in the Fermi-energy domain are
dominated by nuclear fragmentation and their studies provide
information about the properties of nuclear matter at moderate
temperatures and subsaturation densities. Several studies
[24–26] have shown this energy domain to be the region of
the nuclear liquid-gas phase transition. In our recent works
[27–32], we have analyzed fragment yield data to investigate
the nuclear phase transition using the Landau free energy
approach [33,34]. In such an approach, the key assumption is
that in the vicinity of the critical point, the fragment free energy
per nucleon (F ) relative to the system temperature (T ) can be
expanded in a power series in the fragment’s neutron-proton
asymmetry m as given by the relation

F

T
= 1

2
am2 + 1

4
bm4 + 1

6
cm6 − H

T
m, (4)

where m = (Nf − Zf )/Af , and Nf , Zf , and Af are the
neutron, proton, and mass numbers of the fragment, respec-
tively. The quantity m behaves as an order parameter, H is its
conjugate variable, and the coefficients a, b, and c are fitting
parameters. We recall that based on a modified Fisher model
[27,35,36], fragment yields are proportional to A−τ

f e−(F/T )Af

near the critical point, with τ as the critical exponent.
From Landau’s free energy equation, using an analogous

expression of Eq. (2) for Fsym (composed of pure neutron,
pure proton, and symmetric nuclear matter), one can obtain
the following expression:

Fsym

T
= 1

2
a + 1

4
b + 1

6
c . (5)

The parameters of the Landau’s equation are related to the
state variables of the fragmenting system and have been shown
to depend on its proton-neutron concentration and excitation
energy [30,32]. This suggests that these parameters could be
used to directly obtain information about the symmetry free
energy which is a component of the nuclear EOS.

In this paper, we report on experimental symmetry free
energy coefficients extracted using the Landau free energy
approach. The temperature and density of the fragmenting
source are determined using the quantum-fluctuation method,
fully described in Refs. [37–41]. This is the first time that
experimental fragment yield data analyzed within the Landau
free energy framework are used to determine symmetry free
energy coefficients in a completely self-consistent manner.

III. EXPERIMENTAL DETAILS AND EVENT SELECTION

The experiment was performed at the K-500 superconduct-
ing cyclotron facility at Texas A&M University. Beams of
64Zn, 70Zn, and 64Ni at 35 MeV/A were used to respectively
irradiate 64Zn, 70Zn, and 64Ni targets. The 4π NIMROD-ISiS
array [42,43] was used to collect charged particles and free
neutrons produced in the reactions. More details of the
experiment have been given in Refs. [44–46]. An excellent
energy resolution was achieved, allowing isotopic resolution
of charged particles up to Z = 17 and elemental resolution up
to the charge of the beam.

We reconstruct the primary hot nuclear system in order
to select events of similar character. For this analysis, we
are interested in studying equilibrated systems, so events
are selected in the following way: Fragments that do not
originate from an equilibrated quasiprojectile (QP) source
were excluded with the condition that the longitudinal velocity
of fragments with Z = 1,2, � 3 be in the range of ±65%,
±60%, and ±40%, respectively, of the velocity of the heaviest
fragment in the event. The sum Z is selected from 21 to
30, and the sum A of fragments is selected to be 54 to
64. To select roughly spherical events, which are spatially
equilibrated, the quadrupole moment Qshape was required to be
−0.3 � log10(Qshape) � 0.3, where Qshape = ∑

p2
z/

∑ 1
2p2

t ,
and pz and pt are respectively the longitudinal and transverse
momenta of the fragments comprising the QP.

The QP system was reconstructed from events in which all
charged particles and free neutrons were isotopically identi-
fied. The neutron ball provided event-by-event experimental
information on the free neutrons emitted during a reaction.
The number of free neutrons emitted by the QP was deduced
from the total measured number of neutrons, background, and
efficiencies for measuring neutrons produced from QP and
quasitarget sources [47,48]. In order to minimize contributions
from collective effects, which are predominant in the beam
direction, the excitation energy of the reconstructed QPs
was estimated from transverse kinetic energy of the charged
particles, the neutron multiplicity, the average neutron kinetic
energy determined using the Coulomb-shifted proton energy
distribution, and the energy needed for the breakup (Q value).
A detailed description of this method of reconstruction is given
in Refs. [47,49]. Events were sorted in 8 excitation energy bins,
1 MeV/A wide, from 2.5 to 9.5 MeV/A.

IV. TEMPERATURE AND DENSITY

The temperatures of reconstructed QP sources are obtained
with the quadrupole momentum fluctuation method. The
method is described in a very detailed way in [37–41,50];
here we only briefly outline it. The quadrupole momentum is
defined as Qxy = p2

x − p2
y using the transverse components

px and py of the particle’s momentum in the frame of the
QP source. If the correct quantum distribution for fermions is
used, the variance of Qxy is related to the temperature by〈

σ 2
xy

〉 = 4m2
partT

2FQC, (6)

where mpart is the mass of the particle being used as the probe
and FQC is the quantum-correction factor. The quadrupole
is defined in the transverse direction in order to minimize
nonequilibrium effects, which may manifest in the beam
direction. Equation (6) was solved numerically for a Fermi
gas and the quantity FQC was parametrized in terms of the
temperature relative to the Fermi energy (T/εf ), which in
turn was parametrized in terms of the normalized multiplicity
fluctuation. The nucleon density ρ is therefore determined
from the Fermi-energy relation εf = εf0 (ρ/ρ0)2/3 with εf0 and
ρ0 respectively the ground-state values of Fermi energy and
nucleon density. Coulomb corrections were later applied to
derived temperatures and densities. This is done by a method
borrowed from electron scattering where the Coulomb field is
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taken to be the Fourier transform of the Coulomb potential of
the source. In such an approach, as described in Refs. [40,41],
the equations of quadrupole momentum fluctuation, the
average multiplicity, and the multiplicity fluctuation which
contain the Coulomb field term are numerically solved to
derive the temperature T , the density ρ, and the volume
V of the system. This method can be considered reliable
as from model calculations, temperatures of protons after
Coulomb corrections were similar to those of neutrons. In
Ref. [51], where we have applied this method to experimental
data, it was observed that these Coulomb corrections lower
temperature values by almost 2 MeV, while their effects were
small on derived densities. The error in applying the Coulomb
corrections arises from the uncertainty in the source charge.
We varied the source charge by ±2 units and the estimated
errors are respectively ±2% for the densities and ±6% for the
temperatures.

Previously [31,32,50] the data were sorted into four
different QP asymmetry bins of width 0.05, ranging from 0.04
to 0.24. In a subsequent paper [51], it was shown that values
of T and ρ that correspond to an asymmetry bin width close to
zero (as it should be for fixed A and Z) could be obtained by
averaging values for all four asymmetry bins. Therefore, in this
paper we have reported averaged values of temperatures and
densities for all four asymmetry bins. On the same grounds,
Fsym values presented here are also obtained from averaged
values of Landau’s equation fitting parameters from the four
asymmetry bins.

V. RESULTS AND DISCUSSION

Figure 1 shows the free energy (F/T ) values as a function
of fragment’s neutron-proton asymmetry m at an excitation
energy of 5.5 MeV/A of the QP. As the efficiency for
measuring neutrons differs from the efficiency for measuring
charged particles, only charged-particle yields are used in the
Landau’s equation fitting. The form of the fitting function has

m
-1 -0.5 0 0.5 1

F
/T

-1

0

1

2

3

4
Experimental data  
Landau Fit1 
Landau Fit2

FIG. 1. (Color online) F/T values as a function of fragment’s
neutron-proton asymmetry m for an excitation energy of 5.5 MeV/A
of the QP. The solid line (Landau Fit1) is a fit to the data with all
Landau’s equation parameters as free parameters while the dashed
line (Landau Fit2) represents a fit to data fixing c = 115. Error bars
corresponding to statistical errors are smaller than the symbols.

physical restrictions on it. Since the symmetry energy is isospin
symmetric, only even powers of m appear, aside from the
external field. Furthermore, at extreme values of asymmetry,
the free energy must not be decreasing toward negative infinity.
Within these constraints, the form must also have a minimum
at zero as dictated by the data. A parabolic fit describes the
data only around zero, but misses entirely the points at both
m = −1 and m = 0.5. Our ability to measure this point is very
useful to constrain F/T . Having excluded the quadratic fit, we
next rule out all quartic fits immediately on the grounds that the
function must be rising at extreme values of m and still have
a minimum at 0. A sixth order (in even terms only) is the next
simplest polynomial that satisfies the physical constraints. The
values of the free energy obtained were corrected for pairing
[27,32], similar to the mass formula, and a good scaling is
seen in the figure. The solid line (Landau Fit1) is a fit to
the data with all parameters as free parameters. In Ref. [32],
the parameter c was observed to be almost constant, within
uncertainties, over the entire range of the QP excitation energy.
Here we additionally fitted the data fixing c = 115. This is
represented by the dashed line (Landau Fit2). It is observed
that the two fitting curves provide a good fit to the free-energy
data. However, at the two extreme minima (at large m values)
where we have no data points the two curves are slightly
different. The values of a, b, and c corresponding to the solid
line were obtained as 15.527 ± 0.041, −91.786 ± 0.484, and
100.81 ± 0.615, respectively. After fixing c = 115 (dashed
line), the values of a and b were obtained as 16.289 ± 0.024
and −102.871 ± 0.058, respectively. This resulted in similar
values of Fsym/T , calculated using Eq. (5), as 1.619 ± 0.16
and 1.593 ± 0.019. The values of parameters a and b of
Landau’s equation used in the rest of the discussion were
obtained by fixing c = 115. In this way, estimated errors
on extracted Fsym values were significantly minimized. The
appearance of the three minima is a signature of a first-order
phase transition of the system [27–32].

As there are no experimental data points in the region of
the two minima of the fit and one must rely on the proton
point at m = −1, we have investigated the uncertainty on the
Fsym values introduced by the fit parameters if this point was
in error by some amount. A 15% variation of the F/T value
at m = −1 resulted in a 19% change of the Fsym value. We
estimated the systematic uncertainty caused by the isolated
proton point on the Fsym values to be less than 20%.

The symmetry free energy coefficients determined from the
Landau free-energy technique are displayed as a function of the
system temperature T [Fig. 2(a)] and density ρ [Fig. 2(b)]. T
and ρ for this work were derived from the quantum-fluctuation
method without and with Coulomb corrections, while Fsym

values are derived from the Landau equation parameters.
The present data set is compared to previously published
work, which used the Albergo method. The Albergo method
is a double ratio technique that evaluates the temperature
and density of equilibrated nuclear regions using the yields
of different light nuclides (d, t , h, α). Application of this
technique assumes that thermal equilibration and chemical
equilibration have been attained [16,52]. Data represented by
inverted triangle symbols (Albergo) are taken directly from
Ref. [17], where T and ρ were determined. The isoscaling
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FIG. 2. (Color online) (a) Symmetry free energy vs temperature.
(b) Symmetry free energy vs density. The symmetry free energy
coefficients (Fsym) are extracted from Landau’s free energy approach.
Temperatures and densities are derived from the quantum-fluctuation
method with protons as the probe particle. Full circles and squares
correspond respectively to results without and with Coulomb correc-
tion. For comparison, Fsym values obtained from isoscaling techniques
along with T and ρ from Albergo [17] and coalescence [18] methods
are also plotted. Statistical errors are indicated by the bars and are not
shown when smaller than the symbols.

method was used to extract Fsym values. A comparison is
also made to previous work that extracted T and ρ using a
combination of the Albergo method and a coalescence model.
This work is shown in full upward-triangle symbols, and the
points are taken directly from Ref. [18]. The overlap of the
errors from this work reflect that the binning of the data was not
done as a function of temperature, density, or free symmetry
energy, but of fragment surface velocity, which is correlated
to the emission time. The effect of this is seen in the size
and proximity of the error bars. In the coalescence model, the
momentum space densities of ejected light composite particles
are directly related to those of the ejected nucleons of the
same velocity. The phase space correlations, which lead to
cluster formation, may therefore be parametrized in terms of
the radius of the momentum space volume, P0, within which
the correlations exist. In this way the double isotope yield ratio
at equal velocity is used to determine the temperature. From
the relationship between the coalescence parameter P0 and the
volume of the emitting system, the density is derived [53,54].
Isoscaling was also used to extract Fsym in this case.

It is observed that there is a fair agreement between
temperature-dependent Fsym results. However, the density-
dependent Fsym results with Coulomb corrections significantly
deviate from those obtained without Coulomb corrections
and coalescence and Albergo data as well. Neverthless, it
is amazing to see that within the error bars temperature-
and density-dependent symmetry free energies derived from
different methods agree with each other to a remarkable
degree. In Ref. [18], where the coalescence data have been
taken, the quoted errors on the temperatures are 10% at low
density, evolving to 15% at the higher densities. The error in
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FIG. 3. (Color online) Symmetry free energy density (Jsym =
Fsym × ρ) as a function of the system temperature T . Error bars
represent statistical errors and are not shown when smaller than the
symbols.

the derivation of the density was estimated to be in the order
of 17%.

From the values of Fsym, T , and ρ, we examine in Fig. 3 the
symmetry free energy density (Jsym = Fsym × ρ) against T . It
is observed that Jsym monotonically increases as T increases
and some of the differences seen between curves in both panels
of Fig. 2 are less evident, except for the curve represented by
full squares where Coulomb corrections have been accounted
for. Therefore, plots of Fsym values as a function of T (ρ) could
be misleading, since T and ρ vary simultaneously. The Jsym as
a function of temperature makes use of all the three quantities
that are experimentally accessed. This quantity displays a
clear deviation among the different methods, especially when
dealing with the Coulomb correction, suggesting some model
dependence in dealing with the Coulomb term. This ambiguity
could be further studied by deriving density and temperature
from neutron fluctuations as well. We expect from model
calculations [41] that quantities derived using the protons
should be similar to those of neutrons after the Coulomb
correction. If this is not true, then further work is needed to
understand the role of Coulomb. In the coalescence model a
Coulomb correction is applied through a shift of the measured
kinetic energy spectra of the particles of interest. From such a
Coulomb shift, knowing the charge and mass of the emitting
system, it is possible to derive its density [55], which can be
compared to the obtained values from coalescence [18,19].
If the densities obtained do not agree with each other, then
a simple shift of the energy distribution is not sufficient to
describe the role of Coulomb.

VI. CONCLUSIONS

In conclusion, we have shown that symmetry free energy
coefficients of nuclear systems can be extracted from fragment
yield data produced in Fermi-energy heavy-ion collisions by
employing Landau’s free energy approach. The temperature-
and density-dependent symmetry free energies have been
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observed to be consistent with those derived from isoscaling
analyses. This is the first time experimental fragment yield
data analyzed within the Landau description have been used to
determine symmetry free energy coefficients. We have found
some discrepancy among different methods, possibly because
of the different handling of Coulomb corrections. Precise
measurement of the neutron distribution function might help to
solve this ambiguity. The estimation of entropic contributions

to the symmetry free energy in order to derive symmetry energy
coefficients is currently being given special attention.
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