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Extracting the mass dependence and quantum numbers of short-range correlated pairs
from A(e,e′ p) and A(e,e′ pp) scattering
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The nuclear mass dependence of the number of short-range correlated (SRC) proton-proton (pp) and proton-
neutron (pn) pairs in nuclei is a sensitive probe of the dynamics of short-range pairs in the ground state of atomic
nuclei. This work presents an analysis of electroinduced single-proton and two-proton knockout measurements
off 12C, 27Al, 56Fe, and 208Pb in kinematics dominated by scattering off SRC pairs. The nuclear mass dependence
of the observed A(e,e′pp)/12C(e,e′pp) cross-section ratios and the extracted number of pp- and pn-SRC pairs are
much softer than the mass dependence of the total number of possible pairs. This is in agreement with a physical
picture of SRC affecting predominantly nucleon-nucleon pairs in a nodeless relative-S state of the mean-field
basis.
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I. INTRODUCTION

The nuclear momentum distribution (NMD) is often quoted
as being composed of two separate parts [1–3]. Below the
Fermi momentum (kF ≈ 250 MeV/c) single nucleons move
as independent particles in a mean field created by their mutual
interactions. Above the Fermi momentum (k > kF ) nucleons
predominantly belong to short-range correlated (SRC) pairs
with high relative and low center-of-mass (c.m.) momenta,
where high and low are relative to the Fermi momentum
[4–8]. In addition to its intrinsic interest, the NMD and its
division into mean-field and correlated parts is relevant to
two-component Fermi systems [9], neutrino physics [10,11],
and the symmetry energy of nuclear matter [12].

The mean-field and long-range aspects of nuclear dynamics
have been studied extensively since the dawn of nuclear
physics. The effect of long-range correlations on the NMDs is
limited to momenta which do not extend far beyond kF [13].
Study of the short-range aspects of nuclear dynamics has
blossomed with the growing availability of high-energy high-
intensity electron and proton accelerators. Recent experiments
confirm the predictions that SRC pairs dominate the high-
momentum tails (k > kF ) of the NMDs [4–7], accounting
for 20–25 % of the NMD probability density [14–17]. These
high-momentum tails have approximately the same shape for
all nuclei [2,3,9,14–18], differing only by scale factors which
can be interpreted as a measure of the relative number of
SRC pairs in the different nuclei. In this work, we aim at
understanding the underlying dynamics which give rise to this
universal behavior of the high-momentum tail.

An intuitive picture describing the dynamics of nuclei
including SRCs is that of independent bound nucleons moving
in the nucleus, occasionally getting sufficiently close to each
other to temporarily fluctuate into SRC-induced nucleon-
nucleon pairs. This picture can be formally implemented in
a framework in which one shifts the complexity of the nuclear
SRC from the wave functions to the operators by calculating
independent-particle model (IPM) Slater determinant wave

functions and acting on them with correlation operators to
include the effect of SRCs [18–20]. The observed number
of proton-proton (pp) and proton-neutron (pn) SRC pairs in
various nuclei can then be used to constrain the amount and
the quantum numbers of the initial-state IPM nucleon-nucleon
(SRC-prone) pairs that can fluctuate dynamically into SRC
pairs through the action of correlation operators.

In this paper, we will extract the relative number of pp-SRC
and pn-SRC pairs in different nuclei from measurements of
electroinduced two-proton and one-proton knockout cross-
section ratios for medium and heavy nuclei (27Al, 56Fe, and
208Pb) relative to 12C in kinematics dominated by scattering
off SRC pairs [8,21]. In these kinematics in the plane-wave
approximation A(e,e′pp) cross sections are proportional to
the number of pp pairs in the nucleus and A(e,e′p) cross
sections are proportional to twice the number of pp pairs plus
the number of pn pairs (2pp + pn). Therefore, after correcting
the measured cross sections for rescattering of the outgoing
nucleons from the residual nucleus (final state interactions
or FSIs), the relative number of pp and pn pairs will be
extracted from measurements of A(e,e′pp)/12C(e,e′pp) and
A(e,e′p)/12C(e,e′p) cross-section ratios [8].

We will then compare the A(e,e′pp)/12C(e,e′pp) cross-
section ratios and the extracted number of pp and pn pairs to
factorized calculations using different models of nucleon pairs
in order to deduce the quantum numbers of the IPM SRC-
prone pairs. We will provide strong evidence that the relative
quantum numbers of the majority of the SRC-susceptible pairs
are 1S0(1) for pp and 3S1(0) for pn. Hereby, we used the notation
2J+1LS(T ) to identify the pair’s quantum state (T is the total
isospin).

This paper is structured as follows. The one- and two-proton
knockout experiments analyzed in this paper are described
in Sec. II. In Sec. III we introduce the model to calculate
the FSI-corrected two-nucleon knockout cross-section ratios.
Results and discussions are presented in Sec. IV. Section V
contains the concluding remarks.
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II. EXPERIMENT

The one- and two-proton knockout measurements analyzed
in this paper were described in [8] and its supplemental
information. They were carried out using the CEBAF Large
Acceptance Spectrometer (CLAS) [22], located in Hall-B of
the Thomas Jefferson National Accelerator Facility (Jefferson
Lab) in Newport News, Virginia. The data were collected in
2004 using a 5.014 GeV electron beam incident on 12C, 27Al,
56Fe, and 208Pb targets. The scattered electron and knocked out
proton(s) were measured with CLAS. We selected A(e,e′p)
events in which the electron interacts with a single fast proton
from a SRC nucleon-nucleon pair in the nucleus by requiring
large four-momentum transfer (Q2 > 1.5 GeV2), Bjorken
scaling parameter xB = Q2

2mN ω
> 1.2, and missing momentum

300 < | �pmiss| < 600 MeV/c. The four-momentum transfer
Q2 = �q · �q − (ω

c
)2 where �q and ω are the three-momentum

and energy transferred to the nucleus respectively; mN is the
nucleon mass; the missing momentum �pmiss = �pp − �q, and
�pp is the knockout proton three-momentum. We also required
that the knockout proton was detected within a cone of 25◦
of the momentum transfer �q and that it carried at least 60%
of its momentum (i.e., | �pp |

|�q| � 0.6). To suppress contributions
from inelastic excitations of the struck nucleon we limited
the reconstructed missing mass of the two-nucleon system
mmiss < 1.1 GeV/c2.

The A(e,e′pp) event sample contains all A(e,e′p) events in
which a second, recoil, proton was detected with momentum
greater than 350 MeV/c. Figure 1 shows the distribution of
the cosine of the angle between the initial momentum of the
knockout proton and the recoil proton for these events [8].
The recoil proton is emitted almost diametrically opposite to
the missing-momentum direction. The observed backward-
peaked angular distributions are very similar for all nuclei

FIG. 1. (Color online) Distribution (in arbitrary units) of the
cosine of the angle γ between the missing momentum of the leading
proton and the recoil proton for 12C (dark blue long-dashed line),
27Al (red dotted line), 56Fe (purple solid line), and 208Pb (blue dashed
line). The black dashed line shows the distribution of the random
phase-space extracted from mixed events.

and are not due to acceptance effects as shown by the angular
distribution of mixed events. These distributions are a signature
of scattering on a nucleon in a SRC pair, indicating that
the two emitted protons were largely back-to-back in the
initial state, having large relative momentum and small c.m.
momentum [6,23]. Further evidence of scattering on a SRC
nucleon pair is that the recoil proton was emitted at forward
angles (i.e., angles in the range 20◦–60◦ with respect to �q).

The A(e,e′p)/12C(e,e′p) and A(e,e′pp)/12C(e,e′pp)
cross-section ratios are obtained from the ratio of the measured
number of events, normalized by the incident integrated
electron flux and the nuclear density of each target. During
the experiment all solid targets were held in the same location,
the detector instantaneous rate was kept constant, and the
kinematics of the measured events from all target nuclei
were almost identical [8,21]. Therefore detector acceptance
effects cancel almost entirely in the A(e,e′pp)/C(e,e′pp)
cross-section ratios. Due to the large acceptance of CLAS,
radiative effects affect mainly the electron kinematics. These
corrections were calculated in Ref. [21] for the extraction
of the A(e,e′p)/C(e,e′p) cross-section ratio. As the electron
kinematics is the same for the A(e,e′p) and A(e,e′pp)
reactions, the same corrections are used here to extract the
A(e,e′pp)/C(e,e′pp) cross-section ratios. See Ref. [8] for
additional details.

III. FSI AND CROSS-SECTION MODEL

To extract the underlying relative number of pp and pn
SRC pairs in nuclei from the measured cross-section ratios,
we must correct the data for FSI effects [8]. Alternatively,
in order to compare the measured ratios to calculations, we
must correct either the data or the calculation for FSI effects.
The two dominant contributions are (1) attenuation of the
outgoing nucleon(s) upon traversing the residual A − 1 or
A − 2 nucleus, and (2) rescattering of a neutron into a proton
[i.e., single charge-exchange (SCX)]. SCX can lead to a pp
final state which originates from a pn pair.

The effect of FSIs of the ejected pair with the remaining
A − 2 spectators was computed in a relativistic multiple-
scattering Glauber approximation (RMSGA) [24,25]. The
RMSGA is a multiple-scattering formalism based on the
eikonal approximation with spin-independent NN interactions.
We have included both the elastic and the SCX rescattering
of the outgoing nucleons with the A − 2 spectators. The
three parameters entering in the RMSGA model are taken
from NN scattering data and yield an excellent description
of the world’s A(e,e′p) transparency data [25]. In this work
no free parameters are tuned to model the FSI effects in the
A(e,e′p) and A(e,e′pp) data under study. The RMSGA yields
attenuation coefficients that are similar to the power-law results
obtained in nuclear transparency measurements [21]. For those
reasons, we estimate the systematic uncertainty related to the
FSI calculation as small.

The SCX probabilities are calculated in a semiclassical ap-
proximation. The probability of charge-exchange re-scattering
for a nucleon with initial IPM quantum numbers α which
is brought in a continuum state at the coordinate �r is
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modeled by

P
α(β)
CX (�r ) = 1 − exp

[
−σCX(s)

∫ +∞

z

dz′ραβ (z′)
]

. (1)

The z axis is chosen along the direction of propagation of
the nucleon with initial quantum numbers α. The quantum
numbers of the correlated partner in the SRC pair are denoted
with β. The ραβ is the IPM one-body density of the residual
nucleus available for SCX reactions. The ραβ is determined as
the IPM density of the target nucleus, minus the contribution
from the single-particle orbitals α and β. Obviously, for an
ejected proton (neutron) only the neutron (proton) density of
the residual nucleus affects SCX reactions. σCX(s) in Eq. (1),
with s the total c.m. energy squared of the two nucleons
involved in the SCX [26], can be extracted from elastic
proton-neutron scattering data [27].

As outlined in Refs. [23,28], in the spectator approximation
it is possible to factorize the A(e,e′pN ) cross section in
kinematics probing short-range correlated pairs as

d8σ [A(e,e′pN )]

d2�e′ d3 �P12 d3�k12

= KepN σepN (�k12)FpN(D)
A ( �P12) , (2)

where �e′ is the solid angle of the scattered electron, and �k12

and �P12 are the relative and c.m. momenta of the nucleon pair
that absorbed the virtual photon. The KepN is a kinematic factor
and σepN (�k12) is the cross section for virtual-photon absorption
on a correlated pN pair. The F

pN(D)
A ( �P12) is the distorted

two-body c.m. momentum distribution of the correlated pN
pair. In the limit of vanishing FSIs, it is the conditional
c.m. momentum distribution of a pN pair with relative Sn=0

quantum numbers. Distortions of F
pN(D)
A ( �P12) due to FSI

are calculated in the RMSGA. The factorized cross-section
expression of Eq. (2) hinges on the validity of the zero-range
approximation (ZRA), which amounts to putting the relative
pair coordinate �r12 to zero. The ZRA works as a projection
operator for selecting the very-short-range components of the
IPM relative pair wave functions.

The probability for charge-exchange reactions in pN
knockout is calculated on an event per event basis, using
the SRC pair probability density F

pN(D)
A ( �R12) in the ZRA

corrected for FSI. With the aid of the factorized cross-section
expression of Eq. (2), the phase-space integrated A(e,e′pN )
to 12C(e,e′pN ) cross-section ratios can be approximately
expressed as integrals over distorted c.m. momentum distri-
butions,

σ [A(e,e′pN )]

σ [12C(e,e′pN )]

≈
∫

d2�e′ d3�k12KepN σepN (�k12)
∫

d3 �P12F
pN(D)
A ( �P12)∫

d2�e′ d3�k12KepN σepN (�k12)
∫

d3 �P12F
pN(D)
C ( �P12)

=
∫

d3 �P12F
pN(D)
A ( �P12)∫

d3 �P12F
pN(D)
C ( �P12)

. (3)

In the absence of FSI, the integrated c.m. momentum distri-
butions

∫
d3 �P12F

pN(D)
A ( �P12) equal the total number of SRC-

prone pN pairs in the nucleus A. Hence, the cross-section

ratios of Eq. (3) provide access to the relative number of
SRC pN pairs up to corrections stemming from FSI. We
have evaluated the ratios of the distorted c.m. momentum
distributions of Eq. (3) over the phase space covered in
the experiment. Given the almost 4π phase space and the
high computational requirement of multidimensional FSI
calculations, we use an importance-sampling approach. The
major effect on the c.m. momentum distribution F

pN(D)
A ( �P12)

when including FSIs is an overall attenuation; the shape is
almost unaffected [23]. Motivated by this, we used the c.m.
momentum distributions without FSI as the sampling distri-
bution for the importance sampling in the FSI calculations.
When convergence is reached, the computed impact of FSI is
extrapolated to the whole phase space.

IV. RESULTS AND DISCUSSIONS

Figure 2 shows the measured uncorrected σ [A(e,e′pp)]
σ [12C(e,e′pp)]

cross-section ratios compared with the ZRA reaction-model
calculation with and without RMSGA FSI corrections. The
first striking observation is that the measured cross-section
ratios increase very slowly with A (e.g., the Pb/C ratio is
only 3.8 ± 0.5). For contrast, combinatorial scaling based on
the number of pp pairs leads to a ratio of over 200. The
ZRA-RMSGA calculations agree well with the measured data,
yielding a Pb/C ratio of 4.96+0.11

−0.14. The ZRA and ZRA-RMSGA
calculations assume that only pairs with a finite probability
density at relative coordinate zero contribute to the cross
section. This is consistent with assuming that only IPM pairs
in a nodeless relative-S state (i.e., Sn=0) contribute.

Figure 3 shows the number of pp- and pn-SRC pairs in
various nuclei relative to carbon extracted from the measured
A(e,e′pp)/C(e,e′pp) and A(e,e′p)/C(e,e′p) cross-section
ratios following the method outlined in Ref. [8] with RMSGA
corrections for FSI and SCX. The extracted number of pp pairs
are very sensitive to SCX. If the virtual photon is absorbed on
a pn pair and the neutron subsequently undergoes a single
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FIG. 2. (Color online) The mass dependence of the A(e,
e′pp)/12C(e,e′pp) cross-section ratios. The points show the mea-
sured, FSI-uncorrected, cross-section ratios. The lower orange band
and upper grey line denote ZRA reaction-model calculations for
12C, 27Al, 56Fe, and 208Pb based on Eq. (3) with and without FSI
corrections respectively. The width of the ZRA-RMSGA band reflects
the maximum possible effect of SCX.
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FIG. 3. (Color online) Mass dependence of the number of pp (top
panel) and pn (bottom panel) SRC pairs of nucleus A relative to 12C.
Data (small black circles with error bars) are extracted from the
measured CLAS A(e,e′p) and A(e,e′pp) cross-section ratios [8,21]
after correcting for FSI. Error bars include the estimated uncertainty
on the cross-section ratios and the FSI corrections. The green squares
correspond with unconditional counting of the pp pairs, i.e., [Z(Z −
1)/30 in the upper panel] and pn pairs (ZN/36 in the bottom panel)
for the nuclei 12C, 16O, 27Al, 40Ca, 48Ca, 56Fe, 63Cu, 108Ag, and
208Pb. The yellow diamonds are the ratios obtained by counting IPM
pairs in a relative S and P state. The blue triangles count IPM Sn=0

pairs. The solid line denotes the result of a reaction-model calculation
for scattering from close-proximity pairs [Eq. (3)] which takes full
account of the experimental phase space. This calculation does not
include FSI corrections because these are applied to the data, see text
for details.

charge-exchange reaction with a proton, two protons will be
detected in the final state. These events must be subtracted
in order to extract the number of pp-SRC pairs. Since the
contribution from these pn pairs to the pp final state is
comparable to the number of initial pp pairs, this leads to
a large uncertainty in the number of pp pairs, especially for
heavy nuclei.

Figure 3 also shows the expected number of pp and pn SRC
pairs relative to carbon for different quantum numbers of the
IPM pairs that can dynamically form SRC pairs through the
action of correlation operators. These include (a) all possible
NN pairs (i.e., Z(Z − 1)/(6 × 5) and ZN/(6 × 6) for pp and
pn pairs respectively), (b) pairs in a nodeless relative-S state
(i.e., Sn=0), and (c) L � 1 pairs (i.e., both S and P state pairs).
Those Sn=0 pairs are characterized by the (n = 0,L = 0)
quantum numbers for their relative orbital motion. Of all
possible states for the pairs, the Sn=0 pairs have the highest
probability for the two nucleons in the pair to approach each
other closely. Close-proximity IPM pn pairs in a 3S1(0) state

TABLE I. Relative number of SRC pp and pn pairs calculated
using Sn=0 counting and the ZRA reaction model compared to the
extracted values from the measured A(e,e′p) and A(e,e′pp) ratios
after correcting for FSI effects. The error includes the uncertainties
in the cross-section ratios and FSI calculations.

pp pn

Sn=0 ZRA Expt. Sn=0 ZRA Expt.

27Al / 12C 3.10 2.89 2.47+0.55
−0.67 2.99 2.52 2.99+0.26

−0.22

56Fe / 12C 8.60 5.89 3.98+0.99
−1.19 7.72 4.82 6.03+0.60

−0.51

208Pb / 12C 45.29 17.44 7.73+5.92
−7.23 37.62 18.80 24.87+3.89

−3.42

are highly susceptible to the tensor correlation operator that
creates SRC pairs in a spin-triplet state with predominantly
deuteron-like quantum numbers (L = 0,2; T = 0; S = 1).

We determine the number of pairs in each case using
an IPM harmonic-oscillator basis and performing a standard
transformation to relative and center-of-mass coordinates as
detailed in Ref. [29]. The relative number of pairs are displayed
in Fig. 3 and listed in Table I. As can be seen, both (a) the naive
combinatorial assumption and (c) the calculations that include
IPM S and P pair contributions both drastically overestimate
the increase in the number of pairs with A. The ZRA and
Sn=0 pair counting calculations are in fair agreement with the
extracted number of pp and pn pairs.

As both the ZRA and the Sn=0 pair counting methods project
IPM states onto close-range pairs, we expect the two methods
to produce a similar mass dependence of the number of SRC
pairs. The ZRA predicts a somewhat softer mass dependence
(∝ A1.01±0.02 vs A1.12±0.02). This can be explained by the fact
that the ZRA is a more restrictive projection on close-proximity
pairs than the Sn=0 counting which accounts also for �r12 �= 0
contributions.

The observed agreement with the experimental data
indicates that correlation operators acting on IPM Sn=0 pairs
are responsible for the largest fraction of the high-momentum
nucleons in nuclei. This gives further support to the assumption
that the number of IPM pairs with quantum numbers Sn=0 is a
good proxy for the number of correlated pairs in any nucleus
A [18,29,30]. This is also consistent with an analysis of the
cross section of the ground-state to ground-state transition in
high-resolution 16O(e,e′pp)14C measurements [31,32] which
provided evidence for the 1S0(1) dominance in SRC-prone pp
pairs.

V. CONCLUSIONS

We have extracted the relative number of pn and pp
SRC correlated pairs in nucleus A relative to carbon from
previously published measured A(e,e′pp)/C(e,e′pp) and
A(e,e′p)/C(e,e′p) cross-section ratios corrected for final
state interactions. The relative number of pn and pp pairs
increases much more slowly with A than expected from simple
combinatorics.

We calculated the cross section in a framework which shifts
the complexity of the nuclear SRC from the wave functions to
the operators by calculating independent-particle model (IPM)
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Slater determinant wave functions and acting on them with
correlation operators to include the effect of SRCs [18–20].
The uncorrected A(e,e′pp)/C(e,e′pp) cross-section ratios are
consistent with a zero range approximation (ZRA) calculation
that includes the effects of FSI.

Due to factorization, the ratio of calculated cross sections
is approximately equal to the ratio of the distorted c.m.
momentum distributions. In the absence of FSI, the integrated
c.m. momentum distribution equals the total number of SRC-
prone pairs in that nucleus. We compared three choices of
SRC-prone pairs to the data: (a) all pairs, (b) pairs in a nodeless
relative-S state (Sn=0), and (c) L � 1 pairs (i.e., both S and P ).

We found that the soft mass dependence of the measured
A(e,e′pp) cross-section ratios agrees with scattering from
highly selective close-proximity pairs (i.e., only IPM relative
Sn=0 pairs). The mass dependence of the extracted ratios
of the number of short-range correlated pp and pn pairs
provides additional support for this conclusion. All these
results consistently hint at a physical picture whereby the
aggregated effect of SRC in the nuclear wave function is
determined to a large extent by mass-independent correlation
operators on Sn=0 pairs. This provides additional evidence
for the scale separation between the mean-field and SRC

dynamics that has, for example, been used in calculations of
NMD of Refs. [18–20]. Among other things, these conclusions
are likely to affect the models used to estimate the effect
of correlated pairs on neutrino-nucleus cross sections [33]
and studies of the nuclear equation-of-state in conditions of
increased density, i.e., enhanced sensitivity of SRC [34].
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