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The excitation of two-particle–two-hole final states in neutrino-nucleus scattering has been advocated by many
authors as the source of the excess cross section observed by the MiniBooNE Collaboration in the quasielastic
sector. We analyze the mechanisms leading to the appearance of these final states and illustrate their significance
through the results of accurate calculations of the nuclear electromagnetic response in the transverse channel. A
novel approach, allowing for a consistent treatment of the amplitudes involving one- and two-nucleon currents in
the kinematical region in which the nonrelativistic approximation breaks down, is outlined, and its preliminary
results are reported.
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I. INTRODUCTION

Experimental studies of neutrino-nucleus interactions car-
ried out over the past decade [1–4] have provided ample
evidence of the inadequacy of the relativistic Fermi gas
model (RFGM), routinely employed in event generators, to
account for both the complexity of nuclear dynamics and the
variety of reaction mechanisms—other than single-nucleon
knockout—contributing to the observed cross section.

A striking manifestation of the above problem is the
large discrepancy between the predictions of Monte Carlo
simulations and the double differential charged-current (CC)
quasielastic (QE) cross section measured by the MiniBooNE
Collaboration using a carbon target [4].

As pointed out by the authors of Ref. [5], improving the
treatment of nuclear effects, which turns out to be one of
the main sources of systematic uncertainty in the oscillation
analysis [6], will require the development of a comprehensive
and consistent description of neutrino-nucleus interactions,
validated through extensive comparison to the large body of
electron-nucleus scattering data [7,8].

The main difficulty involved in the generalization of the
approaches successfully employed to study electron scattering
to the case of neutrino interactions stems from the fact that,
while the energy of the electron beam is fixed, in neutrino
scattering the measured cross section results from the average
over different beam energies, broadly distributed according
to a flux �. Therefore, a measurement of the energy of
the outgoing charged lepton in a CC QE interaction does
not specify the energy transfer to the nuclear target, which
largely determines the reaction mechanism. As shown in
Refs. [9,10], the MiniBooNE double differential cross section
corresponding to a specific muon energy bin turns out to
receive comparable contributions from different mechanisms,
which must be all taken into account in a consistent fashion.

Many authors have suggested that the excess CC QE
cross section observed by the MiniBooNE collaboration is
to be ascribed to the occurrence of events with two-particle–
two-hole final states, not taken into account by the RFGM
employed for data analysis [5,11,12]. The description of these

processes within a realistic model of nuclear dynamics requires
that all mechanisms leading to their occurrence—initial-state
correlations (ISC) among nucleons in the target nucleus,
final-state correlations (FSC) between the struck nucleon and
the spectator particles, and interactions involving two-nucleon
meson-exchange currents (MEC)—be included. Within the
independent particle model (IPM) of the nucleus, however, cor-
relations are not taken into account, and two-particle–two-hole
final states can only be excited through the action of two-body
operators, such as those involved in the definition of MEC.

In this paper, we analyze the mechanisms leading to
the appearance of two-particle–two-hole final states in the
response of interacting many-body systems and argue that
the interference between amplitudes involving one- and two-
nucleon currents plays an important role. This feature clearly
emerges from the results of a calculation of the transverse
electromagnetic response of 4He and of the corresponding
sum rule of 12C, evaluated using state-of-the-art models of the
nuclear Hamiltonian and currents, within the Green’s function
Monte Carlo (GFMC) computational scheme [13].

In view of the extension of our study to the kinematical
regime in which the nonrelativistic approximation is no
longer applicable, we also outline a novel approach, based
on a generalization of the factorization ansatz, underlying
the spectral function formalism. This scheme, allowing
for a consistent treatment of one- and two-nucleon current
contributions, appears to be quite promising for applications
to neutrino scattering.

The structure of the nuclear cross section, as well as its
expression in terms of longitudinal and transverse structure
functions, are reviewed in Sec. II, while Sec. III describes the
theoretical approaches, based on nuclear many-body theory,
developed to study electron-nucleus scattering. In Sec. III A
we discuss the nonrelativistic regime and the results of GFMC
calculations, while in Secs. III B and III C we derive the explicit
expression of the two-particle–two-hole contribution to the
cross section obtained from our approach and discuss the
preliminary results of its application. Finally, in Sec. IV we
summarize our findings and state the conclusions.
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II. NUCLEAR CROSS SECTION AND RESPONSE
FUNCTIONS

In the one-photon-exchange approximation, the double
differential electron-nucleus cross section can be written in
the form

d2σ

dEe′d�e′
= α2

q4

Ee′

Ee

LμνW
μν
A , (1)

where ke = (Ee,ke) and ke′ = (Ee′ ,ke′ ) are the four-momenta
of the incoming and outgoing electrons, respectively, α =
1/137 is the fine structure constant, d�e′ is the differential
solid angle in the direction specified by ke′ , and q = ke − ke′ =
(ω,q) is the four-momentum transfer.

The lepton tensor Lμν is completely determined by lepton
kinematics, while the nuclear response is described by the
tensor W

μν
A , defined as

W
μν
A (q,ω) =

∑
N

〈0|Jμ
A |N〉〈N |J ν

A|0〉δ(4)(P0 + q − PN ), (2)

where |0〉 and |N〉 denote the initial and final hadronic
states, the four-momenta of which are P0 ≡ (E0,p0) and
PN ≡ (EN,pN ). The nuclear current can be written as a sum
of one- and two-nucleon contributions, according to (see, e.g.,
Ref. [14])

J
μ
A =

∑
i

j
μ
i +

∑
j>i

j
μ
ij . (3)

The current j
μ
i describes interactions involving a single

nucleon. In the QE sector, it can be expressed in terms
of the measured vector form factors [15]. The two-nucleon
contribution j

μ
ij , however, accounts for processes in which

the beam particle couples to the currents arising from meson
exchange between two interacting nucleons.

Equation (1) can be rewritten in terms of two response func-
tions, denoted RL(q,ω) and RT (q,ω), describing interactions
with longitudinally (L) and transversely (T) polarized photons,
respectively. The resulting expression reads

d2σ

dE′
ed�e

=
(

dσ

d�e

)
M

[AL(|q|,ω,θe)RL(|q|,ω)

+AT (|q|,ω,θe)RT (|q|,ω)], (4)

where

AL =
(

q2

q2

)2

, AT = −1

2

q2

q2
+ tan2 θe

2
, (5)

and (dσ/d�e)M = [α cos(θe/2)/4Ee sin2(θe/2)]2 is the Mott
cross section.

The L and T structure functions can be readily expressed
in terms of the components of the response tensor of Eq. (2).
Choosing the z axis along the direction of the momentum
transfer one finds

RL = W 00
A , (6)

RT =
3∑

ij=1

(
δij − qiqj

q2

)
W

ij
A = Wxx

A + W
yy
A . (7)

Note that the above expressions are completely general
and describe processes involving both one- and two-nucleon
current operators.

It follows from Eqs. (1) and (2) that the nuclear cross section
and response functions can be written as a sum of contributions
corresponding to different hadronic final states |N〉. Consider,
for example, the case of QE scattering, in which the final-state
particles are nucleons only. For a carbon target we find

|N〉 = |11B,p〉, |11C,n〉,|10B,pn〉,|10Be,pp〉, . . . , (8)

where the residual nucleus can be in any bound state.
The states |N〉 are usually classified according to the

number of nucleons excited to the continuum and referred to as
one-particle–one-hole (1p1h), two-particle–two-hole (2p2h),
etc. In Eq. (8), |11B,p〉 and |11C,n〉 are 1p1h states, while
|10B,pn〉 and |10Be,pp〉 are 2p2h states.

Neglecting the contributions of final states involving more
than two nucleons in the continuum, the cross section can be
written as

dσ = dσ1p1h + dσ2p2h ∝ Lμν

(
W

μν
1p1h + W

μν
2p2h

)
. (9)

We recall that, in scattering processes involving interacting
many-body systems, 2p2h final states can be produced through
the action of both one- and two-nucleon currents.1 However,
for the matrix element of a one-body operator between the
target ground state and a 2p2h final state to be nonvanishing, the
effects of dynamical nucleon-nucleon (NN ) correlations must
be included in the description of the nuclear wave functions.

Correlations give rise to virtual scattering between nucleons
in the target nucleus, leading to the excitation of the partici-
pating particles to continuum states. The ISC contribution to
the 2p2h amplitude arises from processes in which the beam
particle couples to one of these high-momentum nucleons.
The FSC contribution, however, originates from scattering
processes involving the struck nucleon and one of the spectator
particles, which also result in the appearance of 2p2h final
states.

III. MANY-BODY THEORY OF THE NUCLEAR RESPONSE

As discussed in the previous section, the calculation of
the nuclear response requires the evaluation of the transition
amplitudes 〈0|Jμ

A |N〉, involving both one- and two-nucleon
current operators, as well as all possible final states. The initial
state can be accurately described within the framework of
nonrelativistic many-body theory using realistic models of the
nuclear Hamiltonian, strongly constrained by nucleon-nucleon
scattering data and nuclear phenomenology. The final state and
the current operator, however, depend on momentum transfer,
and their calculation in the kinematical region in which the non
relativistic picture breaks down necessarily implies additional
assumptions.

1It should be kept in mind that 1p1h final states can also be excited
by both one- and two-nucleon currents.
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A. Nonrelativistic regime

The approach based on the GFMC computational scheme
provides a suitable framework to carry out accurate calcu-
lations of a variety of nuclear properties in the nonrelativistic
regime, typically corresponding to |q| <∼ 500 MeV (for a recent
review of quantum Monte Carlo methods for nuclear physics,
see, e.g., Ref. [16]).

Valuable information on the L and T responses can be
obtained from their Laplace transforms, also referred to as
Euclidean responses, defined as

ẼT ,L(q,τ ) =
∫ ∞

ωel

dωe−ωτRT,L(q,ω). (10)

The lower integration limit ωel = q2/2MA, MA being the mass
of the target nucleus, is the threshold of elastic scattering—
corresponding to the |N〉 = |0〉 term in the sum of Eq. (2)—the
contribution of which is excluded.

Within GFMC, the Euclidean responses are evaluated from

ẼL(q,τ ) = 〈0|ρ∗(q)e−(H−E0)τ ρ(q)|0〉 − |〈0|ρ(q)|0〉|2e−ωelτ ,

(11)

and

ẼT (q,τ ) = 〈0|j†T (q)e−(H−E0)τ jT (q)|0〉 − |〈0|jT (q)|0〉|2e−ωelτ ,

(12)

where ρ(q) and jT (q) denote nonrelativistic reductions of
the nuclear charge and transverse current operators, respec-
tively [13].

Note that, although the states |N〉 
= |0〉 do not appear
explicitly in Eqs. (11) and (12), the Euclidean responses
include the effects of final-state interactions (FSI) of the
particles involved in the electromagnetic interaction, both
among themselves and with the spectator nucleons.

The Euclidean responses at τ = 0 are directly related to
the sum rules of the L and T responses, obtained from ω
integration after removing the trivial energy and momentum
dependence associated with the nucleon form factor [17]:

ST,L(|q|) = CT,L[
G

p
E

(
Q2

QE

)]2

∫ ∞

ωel

dωRT,L(q,ω). (13)

In the above equation, G
p
E(Q2

QE) is the electric proton form
factor evaluated in QE kinematics, i.e., at Q2

QE = q2 − ω2
QE,

with ωQE = (
√

q2 + m2 − m), where m is the proton mass.
The coefficients appearing in Eq. (13) are defined as

CL = 1

Z
, CT = 2

Zμ2
p + Nμ2

n

m2

q2
, (14)

where Z is the proton charge, N = A − Z is the number of
neutrons and μp and μn are the proton and neutron magnetic
moments, respectively.

The inversion of the Laplace transform, needed to retrieve
the energy dependence of the responses, is long known to
involve severe difficulties. A groundbreaking result has been
recently reported by the authors of Ref. [18], who exploited the
maximum entropy technique to obtain the L and T responses
of 4He.

FIG. 1. (Color online) Transverse response function of 4He, ob-
tained within the approach of Ref. [18]. The shaded area shows the
results of the full calculation, with the associated uncertainty arising
from the inversion of the Euclidean response, while the dotted line has
been obtained including the one-nucleon current only. The dot-dashed
line represents the response computed neglecting the interference
term, the contribution of which is displayed by the dashes. The data
are taken from Ref. [13].

Figure 1 shows the breakdown of the transverse response
of 4He at |q| = 500 MeV—computed within the approach of
Ref. [18]—into one-nucleon current, two-nucleon current, and
interference contributions. Note that the quantity displayed in
the figure is normalized dividing by the squared proton form
factor.

It clearly appears that including the two-nucleon currents
leads to a sizable enhancement of the response and that the
large positive contribution of the interference term peaks at
energy loss ω < ωQE. This feature is a direct consequence
of nucleon-nucleon correlations, neglected in the mean-field
approach. The agreement between the GFMC results and the
data of Ref. [13] turns out to be remarkably good.

The extension of the procedure employed to obtain the 4He
response to heavier nuclei, such as carbon, is still out of reach
of the available computational capabilities. However, valuable
information can be extracted from the analyses of the sum
rules.

The results of numerical calculations of the carbon ST (|q|),
displayed in Fig. 2, clearly show that interference terms pro-
vide a sizable fraction of the sum rule. At momentum transfer
|q| >∼ 300 MeV, their contribution turns out to be comparable
to—in fact even larger than—that obtained squaring the matrix
element of the two-nucleon current.

B. Relativistic regime: The factorization ansatz

The results of Figs. 1 and 2 clearly point to the need
for a consistent treatment of correlations and MEC, within
a formalism suitable for application in the kinematical region
in which the nonrelativistic approximation is known to fail.
This section describes the derivation of the approach based
on factorization of the nuclear matrix elements. For ease
of presentation, we consider the response of uniform and

024602-3



OMAR BENHAR, ALESSANDRO LOVATO, AND NOEMI ROCCO PHYSICAL REVIEW C 92, 024602 (2015)

FIG. 2. (Color online) Sum rule of the electromagnetic response
of carbon in the transverse channel. The dashed line shows the results
obtained including the one-nucleon current only, while the solid line
corresponds to the full calculation. The dot-dashed line represents the
sum rule computed neglecting the interference term, the contribution
of which is displayed by the dotted line. The results are normalized
so that the dashed line approaches unity as |q| → ∞. Monte Carlo
errors bars are not visible on the scale of the figure.

isospin-symmetric nuclear matter. However, the generalization
to atomic nuclei does not involve any substantial problems.

The effects of ISC on the nuclear cross section at large
momentum transfer can be taken into account using the
spectral function formalism [19,20]. The conceptual frame-
work underlying this approach is provided by the impulse
approximation (IA), i.e., the assumption that at momentum
transfer such that |q|−1 � d, d being the average separation
distance between nucleons in the target nucleus, the nuclear
cross section reduces to the incoherent sum of cross sections
describing scattering processes involving individual nucleons.
As a consequence, the contribution of the two-nucleon current
can be disregarded, and the final state |N〉 of Eq. (2) can be
written in the factorized form

|N〉 = |p〉 ⊗ |nA−1,pn〉. (15)

In the above equation, |p〉 is the state of a noninteracting
nucleon carrying momentum p, while |nA−1,pn〉 describes
the (A − 1)-particle spectator system in the state n, with
momentum pn. Note that, owing to NN correlations, |nA−1〉
is not restricted to being a bound state [see Eq. (8)].

Within the IA, the contribution to the nuclear cross section
arising from interactions involving the one-nucleon current
can be written in terms of the cross sections of elementary
scattering processes off individual nucleons, the momentum
(k) and removal energy (E) of which are distributed according
to the spectral function P (k,E) [19], defined as

P (k,E) =
∑

n

|〈nA−1,pn|ak|0〉|2δ(E + E0 − En). (16)

In the above equation, En is the energy of the (A − 1)-nucleon
state, and the operator ak removes a nucleon of momentum k
from the nuclear ground state.

The resulting expression of the cross section is [8]

dσIA =
∑

i

∫
d3kdEPi(k,E)dσi. (17)

Note that Pi(k,E) describes an intrinsic property of the target
nucleus, independent of momentum transfer, and as such can
be safely obtained from nonrelativistic many-body theory.
However, the matrix elements of the nucleon current entering
the definition of dσi can be computed using its fully relativistic
form.

Exploiting the Källén-Lehman representation of the two-
point Green’s function, the spectral function appearing in
Eq. (17), can be conveniently split into two parts, displaying
distinctly different energy dependencies [21]. The single-
particle part P1h(k,E), obtained from Eq. (16) including bound
1h states only, exhibits a pole at E = −ek,ek being the energy
of a nucleon in the hole state of momentum k. The continuum
part, however, is smooth and extends to large values of energy
and momentum. Its leading term, corresponding to 2h1p states
of the residual (A − 1)-particle system in which one nucleon
is excited to a state outside the Fermi sea, can be written in the
form

P2h1p(k,E) =
∫

d3hd3h′d3p′∣∣�hh′p′
k

∣∣2
θ (kF − |h|)

× θ (kF − |h′|)θ (|p′| − kF )

× δ(E + eh + eh′ − ep′ ), (18)

where the integration includes a sum over the indices associ-
ated with discrete degrees of freedom, and

�
hh′p′
k = 〈0|{|k〉 ⊗ |hh′p′〉}. (19)

Note that momentum conservation requires that the expression
of �

hh′p′
k involve a δ(h + h′ − p′ − k).

As pointed out above, in the presence of ground-state corre-
lations both parts of the spectral function provide nonvanishing
contributions to the cross section of Eq. (17).

Figure 3 shows the 1p1h and 2p2h components of the
electron-carbon cross section arising from ISC. The calcula-
tions have been performed at Ee = 961 MeV and θe = 37.5◦,
using Eq. (17) with the spectral function of Ref. [20] and the
parametrization of the nucleon form factors of Ref. [22]. The
solid line corresponds to the results of the full calculation,
while the dot-dashed and dashed lines have been obtained
using the pole and continuum parts of the spectral function,
which amounts to taking into account only 1p1h or 2p2h
final states, respectively. The distinct energy dependence of
the 2p2h contribution, providing ∼10% of the total QE cross
section, is clearly visible.

The importance of relativistic effects can be gauged
comparing the solid and dashed lines of Fig. 4, representing the
carbon cross sections obtained from Eq. (17) using relativistic
and nonrelativistic kinematics, respectively. It clearly appears
that in a kinematical setup corresponding to |q| ∼ 585 MeV at
ω = ωQE relativistic kinematics sizeably affects both position
and width of the QE peak.

The factorization ansatz of Eq. (15) can be readily extended
to allow for a consistent treatment of the amplitudes involving
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FIG. 3. (Color online) Cross section of the process e + 12C →
e′ + X at beam energy Ee = 961 MeV and electron scattering angle
θe = 37.5◦, computed using Eq. (17) with the spectral function of
Ref. [20]. The solid line shows the results of the full calculation,
while the breakdown into 1p1h and 2p2h contributions is illustrated
by the dot-dashed and dashed lines, respectively.

one- and two-nucleon currents. The resulting expression is

|N〉 = |pp′〉 ⊗ |mA−2,pm〉, (20)

where the states |pp′〉 and |mA−2,pm〉 describe two noninter-
acting nucleons of momenta p and p′ and the (A − 2)-particle
residual system, respectively.

Using Eq. (20), the nuclear matrix element of the two-
nucleon current can be written in terms of two-body matrix
elements according to

〈N |jμ
ij |0〉 =

∫
d3kd3k′Mm(k,k′)〈pp′|jμ

ij |kk′〉, (21)

FIG. 4. (Color online) Electron-carbon cross section obtained
from Eq. (17) using relativistic (solid line) and nonrelativistic (dashed
line) kinematics. The experimental data are from Ref. [23].

with Mm(k,k′) given by

Mm(k,k′) = {〈m(A−2),pm| ⊗ 〈kk′|}|0〉. (22)

From the above equations it follows that the evaluation
of the nuclear transition matrix element involving the two-
nucleon current reduces to the calculations of the nuclear
amplitude Mm(k,k′) and of the matrix element of the current
operator between free nucleon states. The former, being
independent of momentum transfer, can be carried out using
the nonrelativistic formalism, while the latter does not involve
any approximations.

The connection with the spectral function formalism be-
comes apparent noting that the two-nucleon spectral function
P (k,k′,E), yielding the probability of removing two nucleons
of momenta k and k′ from the nuclear ground state leaving
the residual system with excitation energy E, is defined as
[compare to Eq. (16)] [24]

P (k,k′,E) =
∑
m

|Mm(k,k′)|2δ(E + E0 − Em), (23)

with Mm(k,k′) given by Eq. (22).
The two-nucleon spectral function of uniform and isospin-

symmetric nuclear matter at equilibrium density has been
calculated by the authors of Ref. [24] using a realistic
Hamiltonian. The resulting relative momentum distribution,
defined as

n(Q) = 4π |Q|2
∫

d3Kn

(
K
2

+ Q,
K
2

− Q
)

, (24)

where K = k + k′, Q = (k − k′)/2, and

n(k,k′) =
∫

dEP (k,k′,E), (25)

is shown by the solid line of Fig. 5. Comparison with
the prediction of the Fermi gas (FG) model, represented
by the dashed line, indicates that correlations give rise to a
sizable quenching of the peak of the distribution, along with
the appearance of a high-momentum tail.

FIG. 5. (Color online) Relative momentum distribution of a nu-
cleon pair in isospin-symmetric nuclear matter at equilibrium density.
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C. 1p1h and 2p2h contributions to the transition matrix element

The extended factorization ansatz discussed in the previous
section provides a scheme allowing for a clear-cut identifica-
tion of the 1p1h and 2p2h contributions to the nuclear cross
section in the presence of two-nucleon currents.

Let us consider the contribution of 2p2h final states to the
response tensor of Eq. (2),

W
μν
2p2h =

∫
d3hd3h′d3pd3p′θ (kF − |h|)θ (kF − |h′|)

× θ (|p| − kF )θ (|p′| − kF )〈0|Jμ|hh′pp′〉
× 〈hh′pp′|J ν |0〉δ(ω + E0 − Ehh′pp′ )

× δ(q + h + h′ − p − p′), (26)

where q is the total momentum transfer, while h,h′ and p,p′
are the momenta of the hole and particle states, respectively.
The structure of the current operator, involving one- and
two-body terms, can be best understood from its momentum
space expression,

Jμ(k1,k2) =
∫

d3x1d
3x2 Jμ(x1,x2) e−i(k1·x1+k2·x2)

= j
μ
1 (k1)δ(k2) + j

μ
2 (k2)δ(k1) + j

μ
12(k1,k2), (27)

showing how the total momentum transfer, q = k1 + k2,
is shared between the two nucleons involved in the
electromagnetic interaction, labeled by the indices 1 and 2.

Within the factorization scheme, the matrix element of the
one-nucleon current operator can be readily evaluated inserting
a complete set of states describing a noninteracting nucleon.
The resulting expression is

〈0|jμ
1 |hh′pp′〉 =

∫
d3k�

hh′p′
k 〈k|jμ

1 |p〉, (28)

with �
hh′p′
k defined by Eq. (19).

The calculation of the matrix element of the two-nucleon
current exploits the fact that, in analogy with P (k,E), the
two-nucleon spectral function of Eq. (23) can be separated
into two parts, characterized by their analytical structure. The
component corresponding to bound 2h states of the (A − 2)-
nucleon system exhibits a pole located at E = −(ek + ek′),
whereas the continuum states, the dominant of which is the
3h1p state, give rise to a smooth background.

It follows that, within the factorization scheme, the con-
tribution to W

μν
2p2h arising from amplitudes involving only the

two-nucleon current is obtained from the 2h component of
P (k,k′,E), which can be written in the form [24]

P2h(k,k′,E) =
∫

d3hd3h′∣∣�hh′
kk′

∣∣2
δ(E + eh + eh′),

× θ (kF − |h|)θ (kF − |h′|). (29)

In the above equation, �hh′
kk′ is related to the overlap between

the target ground state and the 2h state of the (A − 2)-nucleon
system through

�hh′
kk′ = 〈0|{|kk′〉 ⊗ |hh′〉}. (30)

The diagrammatic analysis of the cluster expansion of �hh′
kk′ in

uniform and isospin-symmetric nuclear matter, carried out by

the authors of Ref. [24], shows that only unlinked graphs (i.e.,
graphs in which the points reached by the k, k′ lines are not
connected to one other by any dynamical or statistical corre-
lation lines) survive in the A → ∞ limit, the contributions of
linked diagrams being of order 1/A. It follows that

�hh′
kk′ = φh

k φh′
k′ δ(h − k)δ(h′ − k′), (31)

where φh
k is the the Fourier transform of the overlap between

the ground state and the 1h (A − 1)-nucleon state, the
calculation of which is discussed in Ref. [19].

Collecting the above results, we can write the expression of
the response tensor obtained from the extended factorization
ansatz as a sum of three contributions. The terms involving the
squared amplitudes of the matrix elements involving one- and
two-nucleon currents can be written in terms of the appropriate
contributions to the one- and two-nucleon spectral functions,
according to

W
μν
2p2h,11 =

∫
d3k

∫
dEP2h1p(k,E)〈k|jμ

1 |k + q〉
× 〈k + q|jν

1 |k〉δ(ω − E − e|k+q|)θ (|k + q| − kF )

(32)

and

W
μν
2p2h,22 =

∫
d3kd3k′d3pd3p′

∫
dEP2h(k,k′,E)

×〈kk′|jμ
12|pp′〉〈pp′|jν

12|kk′〉
× δ(k + k′ + q − p − p′)δ(ω − E − ep − ep′ )

× θ (|p| − kF )θ (|p′| − kF ). (33)

The interference term, however, involves a product of
the nuclear amplitudes entering the definition of the spectral
functions. The resulting expression is

W
μν
2p2h,12 =

∫
d3kd3ξd3ξ ′d3hd3h′d3pd3p′φh

ξ

∗
φh′

ξ ′
∗
δ(h − ξ )

× δ(h′ − ξ ′)
[
�

hh′p′
k 〈k|jμ

1 |p〉 + �
hh′p
k 〈k|jμ

2 |p′〉]
×〈p,p′|jν

12|ξ ,ξ ′〉 δ(h + h′ + q − p − p′)

× δ(ω + eh + eh′ − ep − ep′ )θ (|p| − kF )

× θ (|p′| − kF ) + H.c. (34)

Extensive numerical calculations of the electron-carbon
cross section based on the formalism described in this paper are
under way. However, they involve a number of nontrivial novel
developments, e.g., the derivation of the two-hole contributions
to the nuclear spectral function, the discussion of which will
require a separate presentation.

Figure 6 shows the transverse electromagnetic response
of carbon at |q| = 570 MeV computed using the carbon
spectral function of Ref. [20] and approximating the two-hole
spectral function of carbon with that of uniform nuclear
matter, at density corresponding to Fermi momentum
kF = 221 MeV. Note that this is not the same as working within
the FG model. We use overlaps—the functions φh

k defined
by Eqs. (30) and (31)—obtained from the ab initio approach
of Refs. [19,21,24], based on a realistic nuclear Hamiltonian
including two- and three-nucleon interactions.
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FIG. 6. (Color online) Electromagnetic response of carbon in the
transverse channel, at momentum transfer |q| = 570 MeV. The solid
line represents the results of the full calculation, whereas the dashed
line has been obtained including only amplitudes involving the one-
body current. The contributions arising from the two-nucleon current
are illustrated by the dot-dashed and dotted lines, corresponding to
the pure two-body current transition probability and the interference
term, respectively. The experimental data are taken from Ref. [28].

Owing to short-range correlations, which move strength
from the 1p1h to the 2p2h sector, the resulting occupation of
the momentum eigenstates is reduced by ∼20%.

Interaction effects also affect the initial-state energies of
the knocked-out nucleons [19,20], thus shifting the threshold
of the two-nucleon current contributions with respect to the
predictions of the FG model [25,26].

It has to be pointed out that the correlation contribution
to the carbon spectral function of Ref. [20] is obtained from
nuclear-matter results. Therefore, the use of nuclear matter
overlaps in the matrix elements of the two-nucleon current
entering the interference terms appears to be consistent.

We have used the fully relativistic expression of the two-
nucleon current described in Refs. [25,26], with the same form
factors and � width.

The solid line of Fig. 6 represents the results of the
full calculation, whereas the dashed line has been obtained
including only the amplitudes involving the one-body current.
The contributions arising from the two-nucleon current are
illustrated by the dash-dotted and dotted lines, corresponding
to the pure two-body current transition probability and the
interference term, respectively. The latter turns out to be
sizable, its contribution being comparable to the total two-body
current response for ω <∼ 350 MeV. Although our results still
need to be improved and do not include the corrections
taking into account the effects of FSI, in Fig. 6 we have also
included, for comparison, the data resulting from the analysis
of Ref. [28].

IV. CONCLUSIONS

We have analyzed the mechanisms—correlations in the
initial and final states and coupling to MEC—leading to
the excitation of 2p2h final states in the nuclear response to

electromagnetic interactions. In the nonrelativistic regime, in
which highly accurate calculations consistently taking into
account all these mechanisms are feasible, our results confirm
the findings of Ref. [13].

In the transverse channel, the contribution of processes
involving the two-nucleon current is sizable and extends well
into the kinematical region corresponding to energy transfer
ω ∼ ωQE, in which single-nucleon knockout is dominant.

The important role played by interference between the
amplitudes involving one- and two-body currents clearly
implies that correlation effects must be included in any model
aimed at describing the nuclear cross section in the 2p2h
sector. This point was clearly stated, over three decades
ago, in the pioneering work of Ref. [27], the authors of
which also remarked on the inadequacy of the treatment of
correlations based on lowest-order perturbative pion exchange.
However, combining a realistic and consistent description of
correlations and MEC in the kinematical region in which the
nonrelativistic approximation is no longer applicable involves
serious difficulties.

To overcome this problem, we have developed a novel
approach based on the factorization ansatz underlying the
spectral function formalism, widely and successfully em-
ployed to describe the nuclear response in the 1p1h sector.
The preliminary results obtained within this approach, shown
in Fig. 6, provide a fairly good description of the measured
transverse response of carbon at |q| = 570 MeV.

A comparison between the results of Fig. 6 and the
GFMC results of Fig. 1 shows distinctive discrepancies in
both magnitude and energy dependence of the two-body
current contributions. While part of the disagreement is likely
to originate from differences in the two-nucleon currents
employed in Ref. [18], as well as from the nonrelativistic nature
of the GFMC calculations, the large interference contribution
in the region of the QE peak observed in Fig. 1 may arise
from interference between amplitudes involving the one- and
two-body currents and 1p1h final states. A careful analysis of
these terms, which were found to be sizable in the pioneering
work of Ref. [29], is being carried out, and will be discussed
elsewhere.

The main assumption implied in the factorization of
the 2p2h final states is the treatment of the knocked-out
nucleons as free particles, which amounts to neglecting their
interactions, both among themselves and with the specta-
tor nucleons. Antisymmetrization under exchange between
any of the outgoing particles and the spectators is also
disregarded.

The factorized nuclear transition amplitudes involving
the one-nucleon current can be corrected—to include the
effects of final-state interactions in the QE sector—using an
extension of the spectral function formalism, as discussed in
Ref. [30]. The resulting modifications lead to (i) a shift in
energy transfer of the differential cross section, arising from
interactions between the knocked-out nucleon and the mean
field of the recoiling nucleus and (ii) a redistribution of the
strength from the quasifree peak to the tails, resulting from
rescattering processes. Theoretical studies of electron-nucleus
scattering suggest that in the kinematical region relevant to
the MiniBooNE analysis the former mechanism—which does
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not involve the appearance of 2p2h final states—provides the
dominant contribution and can be taken into account through
an optical potential [31].

The corrections to the factorized amplitudes involving the
two-nucleon current also include interactions between the two
knocked-out particles. A careful analysis of these processes
is certainly needed. However, the results of Shen et al., who
carried out an accurate calculation of the neutrino-deuteron
cross section over a broad kinematical range, suggest that their
effect becomes negligibly small at beam energies larger than
∼500 MeV [32].

In conclusion, we believe that the approach described in
this paper provide a viable and promising scheme for the
development of a unified treatment of processes involving one-
and two-nucleon currents, applicable in the kinematical region
relevant to accelerator-based neutrino oscillation searches.

Therefore, it may, in fact, be regarded as a step towards the
new paradigm advocated by the authors of Refs. [5,9].
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