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The possibility of an nn� bound state is investigated in the framework of pionless effective field theory at
leading order. A system of coupled integral equations are constructed in the spin-isospin basis, of which numerical
solutions are investigated. In particular, we make use of the limit cycle behavior, i.e., cyclic singularities of coupled
integral equations of the system, which would be associated with the formation of a three-body bound state,
the so-called Efimov state, in the unitary limit. Furthermore, we find that, when the sharp momentum cutoff
introduced in the integral equations is taken to be significantly larger than the hard scale of the effective theory,
the coupling of a three-body contact interaction becomes cyclically singular indicating the onset of an Efimov-like
bound state formation. However, the paucity of empirical information to determine the parameters of the theory
precludes a definitive conclusion on the existence of such a bound state. As a simple test of the feasibility of the
nn� bound system in nature, we explore the cutoff dependence of the theory, and uncertainties of the present
study are discussed as well.
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I. INTRODUCTION

Recently the formation of 3
�n, the bound state of two

neutrons and one � hyperon (nn� system), has been suggested
by the experimental investigation of the HypHI Collaboration
[1].1 If confirmed, this observation would be a crucial
indication of the discovery of a new exotic bound state, namely,
a nucleus without a proton. Subsequent theoretical studies
[3–6], however, questioned the claim of Ref. [1] because
of the inconsistencies of the putative nn� bound state with
other observables such as the N� scattering data, hypertriton
binding energy, and the energy gaps between the ground and
first excited states of 4

�H and 4
�He. Such theoretical works were

mostly based on the estimations employing standard potential
model approaches, which include the �N -�N mixing, that
play a crucial role in charge symmetry breaking effects and
determination of the spin-parity quantum numbers of the
ground state. In fact, the seminal theoretical work of Ref. [7]
already reported a long time ago on the nonexistence of the
nn� bound state where model parameters of a variational
calculation were tuned by the hypertriton binding energy.2

In the present exploratory study, we investigate the possibil-
ity of a bound nn� system employing a pionless effective field
theory (EFT) at leading order (LO) following the approach
of Ref. [10], which was used to investigate the pn� system
and the hypertriton bound state. Previously, low-energy EFTs

*sando@sunmoon.ac.kr
†udit.raha@iitg.ernet.in
‡yohphy@knu.ac.kr
1The possibility of such an nn� bound state was also suggested by

the lattice QCD simulation of Ref. [2] in the limit of flavor SU(3)
symmetry.

2Other earlier theoretical studies on this system can be found, e.g.,
in Refs. [8,9].

were constructed by two of the present authors [11,12] for
investigating the hypernuclei 4

��H and 6
��He as possible ��d

and ��α bound states, respectively. These investigations re-
vealed substantial indications, corroborating previous claims,
that 4

��H is likely to form a bound state and the bound state of
6

��He could be an Efimov state.
A low-energy EFT is constructed by introducing a hard

scale �H that separates the relevant low-energy degrees of
freedom from the irrelevant high-energy degrees of freedom
which are to be “integrated out.” The advantage of this
approach is that it provides us with a model-independent and
systematic calculational technique with a small number of
coupling constants that embody all the ignorance about the
short-distance dynamics. For a review on the details of this
subject we refer the reader to Refs. [13,14] and references
therein.

Throughout this work, we are dealing with a three-body
system which, if bound, is likely to have a binding energy much
smaller than the pion mass.3 Therefore, we can choose the pion
mass as the hard scale, i.e., �H ∼ mπ , so that the pions are
integrated out and are not explicitly introduced in the theory.
We may additionally regard the mass difference between the
� and � hyperons, i.e., δm = m� − m� � 80 MeV, as of
the same order as the hard scale �H . Then our effective
Lagrangian can be written explicitly in terms of the neutron and
� fields along with their interactions described by the contact
terms, which will be determined in a phenomenological way.

In addition, we will make use of the cyclic singularities that
arise in the solutions for the coupled integral equations in the
asymptotic limit [15]. Such singularities are renormalized by
introducing a suitably large momentum cutoff �c (�c � �H )

3The estimated binding energy of the putative nn� bound state in
Ref. [1] is at most a few MeV.
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in the loop integrations at the cost of introducing three-body
counter terms at LO. Consequently, in order to absorb this
cutoff dependence, the corresponding three-body coupling
may exhibit a cyclic renormalization group (RG) evolution
termed as the limit cycle [16]. The cyclic singularities are
associated with the occurrence of bound states, known as
the Efimov states, in the resonant/unitary limit [17]. In our
analysis, we vary the magnitude of the cutoff within a
reasonable range to investigate its sensitivity to the formation
of bound states. This is a simple test one can perform for
checking the feasibility of the nn� system as a three-body
bound system. The main purpose of the present investigation
is, thus, to explore the putative bound state of the nn� system
in the context of a modern EFT method mentioned above.

This paper is organized as follows. In Sec. II, the effective
Lagrangian at LO for the system is introduced. Then the renor-
malized dressed two-body propagators are defined and the
three-body coupled integral equations are derived in Sec. III.
Before numerically solving the coupled integral equations, we
obtain an analytical expression of a scale-invariant equation
needed to examine the limit cycle behavior in the asymptotic
limit by assuming that the neutron and � hyperon have the
same mass. Section IV is devoted to numerical solutions
of the coupled integral equations for the nn� system with
physical baryon masses, and we test if the three-body contact
interaction exhibits cyclic singularities, typically associated
with the Efimov states, even at low and intermediate momenta
being away from the unitary limit. We further investigate the
possibility of bound state formation in the absence of the
contact interaction, when the sharp cutoff �c is chosen to
be significantly larger than �H . Section V summarizes the
present work with possible implications of our results and the
uncertainties involved in the present approach.

II. EFFECTIVE LAGRANGIAN

The relevant nonrelativistic effective Lagrangian for the
nn� system at LO consistent with parity, charge conjuga-
tion symmetry, time-reversal invariance, and small-velocity
Lorentz transformation reads

L = Ln + L� + Ls(nn) + Ls(n�) + Lt(n�) + L3-body, (1)

where the elementary fields of our EFT are the neutron
field Bn and the � hyperon field B� of which one-body
Lagrangians are represented by Ln and L�, respectively. The
S-wave two-body Lagrangian for the spin singlet nn channel,
spin singlet n� channel, and spin triplet n� channel are
respectively represented by Ls(nn), Ls(n�), and Lt(n�). The
composite dibaryon fields are introduced and denoted by s(nn)

for the spin singlet nn, and s(n�) and t(n�) for the spin singlet
and spin triplet n� systems, respectively. The three-body
interaction Lagrangian is represented by L3-body.

The one-body Lagrangian Ln and L� of Eq. (1) are given
as [18,19]

Ln = B†
n

[
iv · ∂ + (v · ∂)2 − ∂2

2mn

]
Bn + · · · , (2)

L� = B†
�

[
iv · ∂ + (v · ∂)2 − ∂2

2m�

]
B� + · · · , (3)

where vμ is a velocity four-vector chosen as vμ = (1,0). The
neutron and � hyperon masses are given by mn and m�,
respectively. The ellipses denote higher order terms, which
are not required at the accuracy of the present analysis.

The S-wave two-body interactions are written in terms of
the dibaryon fields as [20–22]

Ls(nn) = σs(nn) s
†
(nn)

[
iv · ∂ + (v · ∂)2 − ∂2

4mn

+ 	s(nn)

]
s(nn)

− ys(nn)
[
s
†
(nn)

(BT
n P

(1S0)
(nn) Bn

) + H.c.
] + · · · , (4)

Ls(n�) = σs(n�) s
†
(n�)

[
iv · ∂ + (v · ∂)2 − ∂2

2(mn + m�)
+ 	s(n�)

]
s(n�)

− ys(n�)
[
s
†
(n�)

(BT
n P

(1S0)
(n�)B�

) + H.c.
] + · · · , (5)

Lt(n�) = σt(n�) t
†
(n�)k

[
iv · ∂ + (v · ∂)2 − ∂2

2(mn + m�)
+ 	t(n�)

]
t(n�)k

− yt(n�)
[
t
†
(n�)k

(BT
n P

(3S1)
(n�)kB�

) + H.c.
] + · · · , (6)

where σs(nn), σs(n�), and σt(n�) are sign factors, and 	s(nn),
	s(n�), and 	t(n�) are the respective mass differences between
the corresponding dibaryon and its constituent elementary
particles. The coupling constants are denoted by ys(nn), ys(n�),
and yt(n�), which will be determined by the S-wave effective
range parameters such as the scattering lengths and effective
ranges [20–22] as will be discussed in the next section. The
spin projection operators introduced in the above Lagrangian
are defined as

P
(1S0)
(nn) = − i

2
σ2 , P

(1S0)
(n�) = − i√

2
σ2 ,

(7)
P

(3S1)
(n�)k = − i√

2
σ2 σk,

where the difference in the factors in the definitions of the spin

singlet projection operators, P
(1S0)
(nn) and P

(1S0)
(n�) , arises from the

existence of two identical particles in the nn channel.
As will be demonstrated in the next section, the solutions

for the coupled integral equations in the spin doublet channel
of the nn� system exhibit cyclic singularities in the asymptotic
limit. To renormalize the cyclic singularities, it mandates
the inclusion of three-body counter terms already at LO,
where the singularities associated with the short range part of
the one-neutron/�-exchange interactions need to be canceled
out. In three-nucleon systems, the general expression for
the three-nucleon counterterm is constructed in the Wigner
SU(4)-symmetric limit [23,24]. Moreover, in the case of the
hypertriton, i.e., the spin doublet np� channel, the general
expression for the three-body counterterm is obtained in the
limit where the mass difference between the nucleon and the
� hyperon is ignored [10]. Following this approach, as will
be shown in the next section, one may construct an analogous
expression for the counterterm using the projection operator
for the specific diagonal mode required to renormalize the
asymptotic cyclic singular behavior in the same mass limit.
However, with the physical value of the mass difference
m� − mn taken into account, a more systematic way of
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FIG. 1. Diagrams for the dressed dibaryon propagator for the spin singlet nn channel. The single and double lines denote the neutron and
dibaryon fields, respectively.

analytical determination of the counterterm is challenging.
Furthermore, we will make use of the RG evolution of the
bound states that exhibits the periodic occurrence of critical
cutoff values, corresponding to the vanishing points of the
three-body contact interaction, in studying the limit cycle
behavior of this system at threshold, i.e., with zero three-body
binding energy.

In our present investigation, therefore, we introduce the
three-body counterterm Lagrangian for the spin-doublet chan-
nel as

L3-body = −1

6
m�y2

t(n�)
g(�c)

�2
c

t
†
(n�)iB†

nσiσjBnt(n�)j + . . . ,

(8)

where g(�c) is a cutoff-dependent coupling constant. In
general, the three-body contact interaction of Eq. (8) contains
other terms that involve the nn dibaryon and � hyperon fields
as well as the spin singlet n� dibaryon and neutron fields with
different coupling strengths. However, as will be discussed
later, the paucity of data on the nn� system at the present stage
does not allow the estimation of these couplings. Thus, the term
shown in Eq. (8) will adequately serve our purpose in this
explorative study where we hope to capture certain universal
features of such bound systems even without resorting to
a more sophisticated EFT analysis. In principle, the above
coefficient g(�c) should be renormalized as a function of the
same cutoff parameter �c that is introduced in the coupled
integral equations for the three-body system and thereby fixed
by the experimental/empirical data on a three-body observable
of the nn� system such as the three-body binding energy.

III. AMPLITUDES AND COUPLED INTEGRAL
EQUATIONS

Throughout this study we employ the power counting rules
suggested by Kaplan, Savage, and Wise (KSW) for the two-
body sector [25,26]. At LO we consider the S-wave two-body
nn and n� interactions that leave us with the three channels
in the two-body sector, namely, the nn in 1S0 state, n� in
1S0 state, and n� in 3S1 state. The KSW rules require the
“bubble” diagrams in the two-body propagators of nn and
n� to be resummed to infinite order, while the propagators are

renormalized at LO using a single parameter, i.e., the respective
S-wave scattering length.

For the three-body sector, we generally follow the pre-
scription suggested by Bedaque, Hammer, and van Kolck
[27]. Namely, a three-body contact interaction, which would
otherwise be naively considered as a subleading contribution,
should be promoted to LO. This is because of the nonanalytic
ultraviolet (UV) enhancements from the cutoff dependence
which appears whenever the three-body system exhibits the
limit cycle behavior. Since there is no empirical information
to fix the strength of the three-body interaction, however,
the three-body contact interaction is taken into account only
when the limit-cycle behavior is explored, while we assume
a vanishing binding energy of the nn� system.4 When we
explore the nn� binding energy, on the other hand, we exclude
the contributions of the three-body contact term by focusing on
the role of the two-body interactions. In other words, instead of
making a definite prediction on the binding energy of the nn�
system, we try to reveal some general features of the system.

For the two-body sector, the Feynman diagrams for the
dressed dibaryon field in the nn(1S0) channel are shown in
Fig. 1, which leads to the renormalized dressed dibaryon
propagator at LO as

Ds(nn)(q0,q) = 4π

y2
s(nn)mn

1

1
ann

−
√

1
4 q2 − mnq0 − iε − iε

,

(9)

where ann is the scattering length of the neutron-neutron
scattering in the 1S0 channel, and q0 and q are generic off-shell
energy and three-momentum, respectively. The loop diagrams
are calculated using dimensional regularization with the power
divergence subtraction scheme [25,26] which introduces the
subtraction scale parameter μ. The coupling constants in the
Lagrangian are renormalized by using the S-wave effective
range parameters, namely, the scattering length ann and the
effective range rnn. Furthermore, the analyses in Refs. [20–22]
yield the sign factor σs(nn) = −1 and

1

ann

= −4π	s(nn)

mny
2
s(nn)

+ μ , rnn = 8π

m2
ny

2
s(nn)

. (10)

Similarly, for the n� channels, Fig. 2 displays the Feynman
diagrams for the dressed n� propagators whose renormalized
expressions are given by5

Ds(n�)(q0,q) = 2π

y2
s(n�)μ(n�)

[
1

as(n�)

−
√

−2μ(n�)

(
q0 − 1

2(mn + m�)
q2

)]−1

, (11)

4Therefore, this corresponds to the case when the energy of the system equals to its threshold energy.
5The iε prescription in the dressed propagators is understood in the same way as in Eq. (9) for Ds(nn)(q0,q).

024325-3



SHUNG-ICHI ANDO, UDIT RAHA, AND YONGSEOK OH PHYSICAL REVIEW C 92, 024325 (2015)

= + + + ...

FIG. 2. Diagrams for the dressed dibaryon propagator for the spin singlet and triplet n� channels. The double line denotes the dibaryon
field and the thin (thick) line the neutron (� hyperon) field.

for the spin singlet channel and

Dt(n�)(q0,q) = 2π

y2
t(n�)μ(n�)

[
1

at(n�)

−
√

−2μ(n�)

(
q0 − 1

2(mn + m�)
q2

)]−1

, (12)

for the spin triplet channel, respectively, where as(n�) (at(n�)) is the S-wave scattering length of n� scattering in the spin singlet
(triplet) channel, and μ(n�) is the reduced mass of the n� system. Again the coupling constants of the two-body Lagrangian are
renormalized by the S-wave effective range parameters and, as detailed in Refs. [20–22], we have σs,t(n�) = −1 and

1

as,t(n�)

= − 2π	s,t(n�)

μ(n�)y
2
s,t(n�)

+ μ, rs,t(n�) = 2π

μ2
(n�)y

2
s,t(n�)

. (13)

For the three-body part, we derive a set of coupled integral equations for the S-wave scattering of the neutron and the composite
dibaryon triplet state t(n�) in the momentum space. There are two possible allowed total-spin channels, namely, spin-3/2 and
spin-1/2. Since the integral equation for the spin-3/2 channel does not exhibit a limit cycle,6 we shall henceforth consider only
the spin-1/2 channel as demonstrated by the diagrams in Fig. 3. The coupled integral equations are expressed in terms of the three
half-off-shell amplitudes, a(p′,p), b(p′,p), and c(p′,p), where a(p′,p) is the amplitude of elastic nt(n�) scattering, b(p′,p) is
that of inelastic nt(n�) to ns(n�) scattering, and c(p′p) is that of inelastic nt(n�) to �s(nn) scattering, with p′ (p) being the
relative off-shell (on-shell) momentum of the final (initial) two-body system. Explicitly, we have

a(p′,p) = 1

2
m�yt(n�)K(a)(E; p′,p) − 1

2π

m�

μ(n�)

∫ �c

0
dl l2K(a)(E; p′,l)

a(l,p)
1

at(n�)
−

√
μ(n�)

μn(n�)
l2 − 2μ(n�)E

−
√

3

2π

m�

μ(n�)

∫ �c

0
dl l2K(a)(E; p′,l)

b(l,p)
1

as(n�)
−

√
μ(n�)

μn(n�)
l2 − 2μ(n�)E

−
√

6

π

∫ �c

0
dl l2K(b2)(E; p′,l)

c(l,p)
1

ann
−

√
mn

2μ(nn)�
l2 − mnE

, (14)

b(p′,p) =
√

3

2
m�yt(n�)K(a)(E; p′,p) −

√
3

2π

m�

μ(n�)

∫ �c

0
dl l2K(a)(E; p′,l)

a(l,p)
1

at(n�)
−

√
μ(n�)

μn(n�)
l2 − 2μ(n�)E

+ 1

2π

m�

μ(n�)

∫ �c

0
dl l2K(a)(E; p′,l)

b(l,p)
1

as(n�)
−

√
μ(n�)

μn(n�)
l2 − 2μ(n�)E

+
√

2

π

∫ �c

0
dl l2K(b2)(E; p′,l)

c(l,p)
1

ann
−

√
mn

2μ(nn)�
l2 − mnE

, (15)

c(p′,p) =
√

3

2
mnyt(n�)K(b1)(E; p′,p) −

√
3

2

1

π

mn

μ(n�)

∫ �c

0
dl l2K(b1)(E; p′,l)

a(l,p)
1

at(n�)
−

√
μ(n�)

μn(n�)
l2 − 2μ(n�)E

+ 1√
2π

mn

μ(n�)

∫ �c

0
dl l2K(b1)(E; p′,l)

b(l,p)
1

as(n�)
−

√
μ(n�)

μn(n�)
l2 − 2μ(n�)E

, (16)

6In the spin-3/2 channel, one obtains a single integral equation of which numerical solution does not yield the limit cycle behavior.
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where K(a)(E; p′,p) is the one-�-exchange interaction kernel,
and K(b1)(E; p′,p) and K(b2)(E; p′,p) are the two possible
one-neutron-exchange interaction kernels with E being the
total center-of-momentum energy of the three-body system.
These interaction kernels are written as

K(a)(E; p′,p)

= 1

2p′p
ln

⎛
⎝p′2 + p2 + 2μ(n�)

m�
p′p − 2μ(n�)E

p′2 + p2 − 2μ(n�)

m�
p′p − 2μ(n�)E

⎞
⎠, (17)

K(b1)(E; p′,p)

= 1

2p′p
ln

( mn

2μ(n�)
p′2 + p2 + p′p − mnE

mn

2μ(n�)
p′2 + p2 − p′p − mnE

)
, (18)

K(b2)(E; p′,p)

= 1

2p′p
ln

(
p′2 + mn

2μ(n�)
p2 + p′p − mnE

p′2 + mn

2μ(n�)
p2 − p′p − mnE

)
, (19)

where μn(n�) and μ(nn)� are reduced masses de-
fined as μn(n�) = mn(mn + m�)/(2mn + m�) and μ(nn)� =
2mnm�/(2mn + m�). As mentioned earlier, the sharp mo-
mentum cutoff �c is introduced in the above integral equations
assuming E,p ∼ 1/ann,1/as,t(n�) � p′ � �c.

While the inhomogeneous parts of the integral equations
only set the overall low-energy scale of the problem in
the asymptotic limit of the off-shell momenta p′ and l,
i.e., p′,l ∼ �c, the behavior of the solutions are completely
determined by the homogeneous parts. This, however, leads to
ambiguities in the solution when the equations are numerically
solved in the UV limit (�c → ∞) without the three-body
contact interaction. As evident in the analysis below, we need
to introduce a three-body counterterm only for one of the
three elastic scattering modes in the diagonal basis associated
with the asymptotic limit cycle behavior. Nevertheless, when
the integral equations of Eqs. (14)–(16) are numerically

= + + +

= + + +

= + +

FIG. 3. Diagrammatic representation of the coupled integral
equations for the neutron and spin triplet n� dibaryon elastic
scattering in the spin-doublet channel without three-body contact
interaction. Blobs with the horizontal lines denote the elastic
amplitudes for the neutron and spin triplet n� dibaryon [nt(n�)]
channel, while those with the vertical and crossed lines denote the
two inelastic channels, namely, nt(n�) to neutron and spin singlet n�

dibaryon, and � hyperon and the spin singlet nn dibaryon channels.
See the captions of Figs. 1 and 2 as well.

solved in the spin-isospin basis for intermediate momenta,
one requires three-body contact interaction terms with several
different unknown couplings. In this preliminary analysis, this
is represented by Eq. (8), and we only need to modify the
one-�-exchange kernel in the first two terms in Eq. (14) as

K(a)(E; p′,l) → K(a)(E; p′,l) − g(�c)

�2
c

. (20)

Before discussing the numerical solutions of the coupled
integral equations of Eqs. (14)–(16), let us consider the approx-
imation suggested in Ref. [10] for investigating the asymptotic
nature of the solutions excluding the three-body interaction.
Namely, since the mass difference between the � hyperon and
neutron is small, i.e., δ = (m� − mn)/(m� + mn) ∼ 0.1, the
corrections due to small δ to the integral equations may be
ignored in the asymptotic limit. Then we have

⎛
⎝a(p′)

b(p′)
c(p′)

⎞
⎠ ≈ 1

π

∫ ∞

0
dl l K̃(p′,l)

⎛
⎜⎜⎝

2√
3

2 2
√

2

2 − 2√
3

−2
√

2
3

2
√

2 −2
√

2
3 0

⎞
⎟⎟⎠

×
⎛
⎝a(l)

b(l)
c(l)

⎞
⎠, (21)

where

K̃(p′,l) = 1

2p′l
ln

(
p′2 + l2 + p′l
p′2 + l2 − p′l

)
. (22)

In the asymptotic limit of the respective amplitudes, the depen-
dence on the on-shell momentum p is implicitly understood.
The integral equations can then be diagonalized to obtain
generic homogeneous eigenvalue equations as

An(p′) = λn

2π

∫ ∞

0

dl

p′ ln

(
p′2 + l2 + p′l
p′2 + l2 − p′l

)
An(l) , (23)

where λn with n = 1,2,3 are the eigenvalues of the above 3 × 3
matrix obtained as

λn = 8√
3

cos

(
2n

9
π

)
. (24)

Numerically, we have λ1 ≈ 3.54, λ2 ≈ 0.80, and λ3 ≈ −4.34.
The amplitudes An(p′,p) are given by

An(p′) = −
√

3λn

(
4√
3

− λn

)
a(p′)

+
(

4√
3

− λn

)(
8√
3

− λn

)
b(p′)

+
√

2λn

(
8√
3

− λn

)
c(p′) (25)

with an arbitrary normalization.
The expression in Eq. (23) has no scale dependence.

The scale invariance in the asymptotic limit, p′,l ∼ �c 
 p,
suggests that the S-wave projected amplitudes An(p′) must
exhibit a power-law behavior as [27]

An(p′) ∼ p′s−1 . (26)
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Then, by the Mellin transformation, Eq. (23) becomes

1 = λn

2π

∫ ∞

0
dx ln

(
x2 + x + 1

x2 − x + 1

)
xs−1

= λn

s

sin
(

π
6 s

)
cos

(
π
2 s

) , (27)

where the solutions, in general, are complex-number functions
and always come in pairs due to the additional inversion
symmetry of A(p′) → A(1/p′) in Eq. (23), which is equivalent
to x → 1/x in Eq. (27). Thus, there can be up to a quadruplet
set of solutions, i.e., {±s, ± s∗}, to the algebraic part of
Eq. (27), all of which may not solve the integral equation.
Of these, the physically acceptable solutions correspond only
to those amplitudes which converge as p′ → ∞ and for which
the Mellin transformation exists [23,24]. This scale-invariant
equation then gives the condition to examine the limit cycle
behavior of the spin-doublet nn� system in the asymptotic
limit. It is found that whenever the value of λn exceeds
the critical value λc, i.e., when λn > λc = 6/π ≈ 1.91 [27],
the solutions become imaginary and a limit cycle appears
in the system. Thus, only the first mode with λ1 ≈ 3.54
should correspond to a limit cycle behavior with an imaginary
solution, s = is0 with s0 = 0.803 39 . . .. In addition, for the
purpose of renormalization it may be convenient to project
out this mode from the other diagonal modes that do not
exhibit the limit cycle. To this end, the expression of the
counterterm in the limit, where the mass difference between
neutron and � hyperon is ignored, can be constructed by
considering the projection operator for the first mode, i.e.,
(M − λ2I )(M − λ3I ), where M is the 3 × 3 matrix appearing
in Eq. (21) and I is the 3 × 3 unit matrix.

In the following section we investigate the numerical
solution of the coupled integral equations of Eqs. (14)–(16)
valid for the nonasymptotic momentum range p � p′ � �c

with the physical �-n mass difference. Our analysis will
reveal that the characteristic cyclic behavior reminiscent of the
asymptotic limit cycle clearly survives at low and intermediate
momentum range. The solutions exhibit the strong cutoff
dependence and are very likely sensitive to the short-distance
dynamics. This is similar to what was seen, e.g., in the case
of the triton [28] as well as the hypertriton [10] channels.
In contrast, the other two modes have well-behaved UV
stable solutions that do not need a leading-order three-body
renormalization. These modes do not exhibit the limit cycle
and insensitive to the short-distance physics as seen, e.g.,
in the case of the spin quartet channel of nd scattering
[29,30].

IV. NUMERICAL RESULTS

In this section, we present our numerical results and
investigate the singularities of the coupled integral equations
for the nn� system. Our EFT has four parameters at LO to
be determined in a phenomenological way. They are the nn
and n� S-wave scattering lengths, namely, ann, as(n�), and
at(n�), and the three-body coupling g(�c) with the cutoff
�c. In the present study, we determine these parameters as
follows. First, we use the standard experimentally extracted

value of the nn scattering length, ann ≈ −18.5 fm [31]. Since
there is no empirical data for n� scattering, however, we
quote the theoretically calculated values of 1ap� and 3ap�

reported in Ref. [32], which are obtained based on the potential
constructed in the chiral effective theory up to next-to-leading
order (NLO). Then, invoking isospin symmetry leads to the
estimates: as(n�) � −2.90 fm and at(n�) � −1.60 fm. Finally,
there is no experimental or empirical information to fix the
strength of the contact interaction g(�c). Thus, we investigate
the limit cycle behavior tuning the energy of the nn� system
to the threshold value, i.e., to vanishing three-body binding
energy B = 0.

In Fig. 4, we plot the strength of the three-body contact
interaction g(�c) as a function of the cutoff �c, which gives
zero binding energy of the three-body system. The periodic
RG evolution of g(�c) clearly indicates that the short-range
part of the one-baryon-exchange interactions become singular,
and thus the contact interaction is needed at LO for the
renormalization of the singularities. In addition, one finds that
the interactions without the three-body force become stronger
for larger values of the cutoff �c. However, in the region
of small �c ∼ �H , the two-body interactions alone cannot
generate attractive forces strong enough to form a bound
state. This is manifest through the large negative values of
g(�c) required to supplement the deficit in attractive forces
for bound state formation. The lowest critical value of �c,
where g(�c) changes its sign in the above scenario, is found
to be at around 1.5 GeV. Consequently, if �c � 1.5 GeV, an
nn� bound state can be generated from two-body dynamics
alone without the necessity of introducing three-body terms.
On further increasing �c, the second critical cutoff appears at
�c ∼ 80 GeV, which indicates the onset of a second bound
state.

Based on the universality of the Efimov-like states, the
occurrence of periodic critical points is expected as g(�n+1) =
g(�1) = 0 for �n+1 = �1 exp (nπ/s0). The result shown in
Fig. 4 reveals that �1 � 1.54 GeV and �2 � 77.8 GeV,

-10
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 10
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Λ

c)

Λc (GeV)

FIG. 4. (Color online) Strength of the coupling g(�c) of the
three-body contact interaction as a function of the cutoff �c, where
zero binding energy (B = 0) of the three-body nn� system is
maintained.

024325-6



INVESTIGATION OF THE nn� BOUND STATE . . . PHYSICAL REVIEW C 92, 024325 (2015)

10-2

10-1

100

101

102

103

104

105

106

100 101 102

B
 (

M
eV

)

Λc (GeV)

FIG. 5. (Color online) Binding energy of the nn� three-body
system as a function of the cutoff �c without the three-body contact
interaction.

which leads to s0 = π/ ln(�2/�1) ≈ 0.801. This is surpris-
ingly in good agreement with the value of s0 obtained in the
previous section, suggesting an inherent universal behavior of
the nn� system governed by the asymptotic limit cycle behav-
ior that is not ‘washed away’ even for nonasymptotic momenta
without considering the degenerate mass approximation.

We now turn to the cutoff-dependence of the binding
energy of the nn� system without the contact term, i.e., by
setting g(�c) = 0. In Fig. 5 we display the result for the the
three-body binding energy B without including the contact
interaction. Clearly, the first three-body bound state appears
at �c ∼ 1.5 GeV, and the second one at �c ∼ 80 GeV. This
shows the periodic nature of the binding energies as a function
of �c. As seen in the figure, the binding energies of the shallow
bound states, as they are formed, progressively increase from
zero with increasing �c, and eventually becoming very large,
associated with deeply bound states.

V. SUMMARY AND DISCUSSION

In the present study we investigated the possibility of a
bound nn� system in the pionless EFT at LO by exploring
the structure of the coupled integral equations describing
the system. Because of the limited information to fix the
parameters of EFT, we are unable to arrive at a definitive
conclusion on the formation of a bound nn� state. However, by
numerically solving the coupled integral equations including
the three-body interaction with the binding energy fixed to
a certain three-body threshold value, e.g., B = 0 as used in
this study, the coupling g(�c) was found to develop cyclic
singularities, which is a characteristic of Efimov-like bound
states. In addition, we studied the role of short range two-body
mechanisms involving the one-� and one-neutron exchange
interactions by setting g(�c) = 0. Our analysis reveals that
bound states appear without the requirement of the contact
interaction only if the cutoff was chosen unnaturally large,
�c � 1.5 GeV 
 �H , which indicates the nontrivial role of
short-range two-body mechanisms that are beyond the scope
of this work.

As mentioned before, the predictability of our approach
relies on the knowledge of the values of four low-energy
parameters. In the present study, we use the empirically
known value of the nn scattering length, i.e., ann ≈ −18.5
fm [31]. Since there is no data for the n� scattering lengths,
we invoke isospin symmetry to determine their values from
the p� scattering lengths. However, the poor statistics of
experimental data do not allow precise partial wave analyses
and the estimated scattering lengths have inevitably large
uncertainties. For example, in Ref. [33], the ranges of the p�
scattering lengths are given as as(n�) � (−1.85 ∼ −2.78) fm
and at(n�) � (−1.04 ∼ −1.90) fm depending on the model
potential. In the present study we used the NLO chiral EFT
results reported in Ref. [32]: as(n�) = −2.90 fm and at(n�) =
−1.60 fm. However, the previous version of the chiral EFT
calculation at LO reported significantly small values for the
scattering lengths, as(n�) � −1.91 fm and at(n�) � −1.23 fm
[34]. (See also Ref. [35].) Thus, the currently estimated values
of the p� scattering lengths are beset with certain uncertainties
which evidently propagate into our analysis.7 For instance, if
we use the values of Ref. [34], the first bound state of the
system appears at �c � 2 GeV, which should be compared
with �c � 1.5 GeV obtained with the values of Ref. [32].
However, this does not have any significant effect on the cyclic
nature of the bound system.

In contrast with the case of the scattering lengths, there is no
a priori way to determine the strength of the three-body contact
interaction without an essential information on a measured
three-body observable. Thus, owing to the absence of enough
information to fix the parameters of the EFT developed in this
work, our current results are not conclusive on the existence
of the putative nn� bound state. Since we treat the effective
N� interaction as point-like, short range mechanisms such as
the two-pion exchange interactions appearing as box diagrams
with N�-N� mixing, or other meson exchanges such as the
η and K are to be implicitly taken into account by the contact
interactions. Thus, without a three-body contact interaction, a
reasonable value of the cutoff would be commensurate with the
energy scale of the two-pion/η-meson/K-meson exchanges of
the N� interaction, which leads to �c ∼ 300–500 MeV. This
value is consistent with the values of �c found in similar
context in the literature. For example, when the triton and

6
��He are treated as three-nucleon and ��α bound systems,
respectively, the cutoff values are obtained as �c � 380 MeV
for the case of the triton [36], and �c � 400–570 MeV for
the case of 6

��He [12], depending on the adopted value of
the S-wave �� scattering length with the three-body contact
interactions turned off. This contrasts with our case as we
indeed need a very large cutoff to a form bound state without
the three-body contact term. Therefore, the short-range two-
body attractive mechanisms discussed above are unlikely to
generate enough attractions in the one-�-exchange or one-
neutron-exchange interaction channels that could lead to nn�
bound states. This ultimately would make it difficult to form an

7From Refs. [32,35], we find that the N� scattering lengths
converge to values around −2.9 to −2.5 fm for the singlet case
and −1.7 to −1.4 fm for the triplet case.
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nn� state in nature. However, further rigorous investigations,
both theoretical and experimental, are necessary to pin down
to true character of the nn� system.
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