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We present a model which describes the properties of odd-even nuclei with one nucleon more, or less, with
respect to the magic number. In addition to the effects related to the unpaired nucleon, we consider those
produced by the excitation of the closed shell core. By using a single-particle basis generated with Hartree-Fock
calculations, we describe the polarization of the doubly magic-core with random phase approximation collective
wave functions. In every step of the calculation, and for all the nuclei considered, we use the same finite-range
nucleon-nucleon interaction. We apply our model to the evaluation of electric quadrupole and magnetic dipole
moments of odd-even nuclei around oxygen, calcium, zirconium, tin, and lead isotopes. Our random phase
approximation description of the polarization of the core improves the agreement with experimental data with
respect to the predictions of the independent particle model. We compare our results with those obtained in
first-order perturbation theory, with those produced by Hartree-Fock-Bogolioubov calculations and with those
generated within the Landau-Migdal theory of finite Fermi systems. The results of our universal, self-consistent,
and parameter-free approach have the same quality of those obtained with phenomenological approaches where
the various terms of the nucleon-nucleon interaction are adapted to reproduce some specific experimental data.
A critical discussion on the validity of the model is presented.
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I. INTRODUCTION

The description of the angular momenta of odd-even nuclei
is one of the greatest successes of the nuclear shell model.
The angular momentum and the parity of the single-particle
(s.p.) level of the unpaired nucleon correspond to those of
the whole nucleus. This extreme shell model picture, where
the s.p. properties are imposed to the whole interacting
many-body system, is weakened when observables which
are not quantized are investigated. For example, the values
of electric quadrupole and magnetic dipole moments are
somewhat different from those predicted by the extreme
shell model. For these quantities, the interaction between the
unpaired nucleon and the other nucleons plays an important
role, strongly modifying the pure shell model predictions.

One expects that in odd-even nuclei around doubly magic
ones, the effects related to the extreme shell model picture,
which we shall name henceforth independent particle model
(IPM), are dominant with respect to those induced by the two-
body part of the nuclear Hamiltonian, usually called residual
interaction. This has induced the development of various
perturbative models [1,2]. A class of these models is based on
the straightforward application of the traditional perturbation
theory, which, however, has convergence problems, at least for
the terms beyond those of the first order [3].

Another perturbative approach consists in considering the
residual interaction within the framework of the random phase
approximation (RPA) theory. This approach is based on the
extension of the Landau theory of quantum liquids to finite

Fermi systems (FFS) done by Migdal [4]. This theory was
applied with great success to describe the properties of odd-
even nuclei in the region of 208Pb [5–7]. In these works the s.p.
wave functions are generated by diagonalizing a Woods-Saxon
well, and the residual interaction is a zero-range Landau-
Migdal force [4]. More recently, this approach was extended
to use the same interaction in the production of the s.p. wave
functions and in the RPA calculations [8–12]. Furthermore,
pairing effects also have been considered. This self-consistent
theory of FFS was applied also to the tin and to the calcium
isotopes. In these approaches, the use of the concept of
quasiparticles implies the definition of the effective charge
which contains free parameters whose values are chosen to
have a good description of the data. In the phenomenological
approach of Refs. [5–7] the constants defining the strength of
the various channels of the Landau-Migdal nucleon-nucleon
effective interaction also have been used as free parameters.
In this case, the values of these parameters are related to the
dimension of the s.p. configuration space. The application of
these methods to a different region of the nuclear chart, or,
more simply, to a different s.p. configuration space, requires a
new selection of the free parameter values. The self-consistent
FFS approach of Refs. [8–12] does not have cutoff problems
in the RPA calculations, because it considers the full s.p.
configuration space, continuum included. The problems arise
in the pairing calculations, where the free parameter is the
value of the cutoff energy used as regulator, in analogy to the
renormalization procedure adopted in effective field theories.
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Inspired by these works, we propose here an extension
of the RPA formalism to construct a fully self-consistent
approach. For each nucleus considered, we use a set of s.p.
wave functions generated by a Hartree-Fock (HF) calculation.
The same, effective, nucleon-nucleon interaction used in HF is
adopted in the RPA calculations, which allows the evaluation
of the odd-even nucleus observables. The parameters of the
force, which we consider having finite range, have been chosen
once forever in a global HF fit of properties mainly related to
the ground state of a large set of nuclei in all the regions of the
nuclear chart [13]. The use of a finite-range interaction ensures
the stability of our results whose values, after convergence
was reached, do not depend any more on the size of the s.p.
configuration space.

The basic ideas of our work are relatively simple and
straightforward. First, we use effective nucleon-nucleon inter-
actions whose parameters have been chosen to reproduce data
which are not directly related to the observables we investigate.
Second, the chain of calculations needed to arrive at the
final results does not contain any additional free parameter,
but they depend exclusively on the effective nucleon-nucleon
interaction. To be sure of identifying features related to the
theory, and not to the specific choice of the interaction or to the
nucleus investigated, we carried out calculations with different
nucleon-nucleon forces, for a set of nuclei in a large region of
the nuclear chart. We mainly concentrate our investigation on
two observables, the electric quadrupole Q, and the magnetic
dipole μ, moments of a selected set of odd-even nuclei.
The evaluation of these quantities requires, respectively, the
description of the 2+ and 1+ excitations of the even-even core
nuclei which we obtain by using an RPA approach [14].

In Sec. II we present the basic ideas our model. In this
section we also specify the form of the electromagnetic
operators that we have adopted to describe Q and μ. The
expression of the operator for Q is simple and straightforward.
More complex is the situation for μ, where, in addition to
the traditional one-body operator, we consider also two-body
currents generated by the exchange of charged pions. We
shall refer to these latter currents as meson exchange currents
(MEC). In Sec. III we discuss some details of the calcula-
tions related to the specific applications of the model. The
results obtained for Q and μ are presented in Sec. IV. In both
cases we also study the excitation of the even-even core nuclei
for the two multipolarities involved. In Sec. V we summarize
the main results of our study, and we draw our conclusions.

II. THE MODEL

The starting point of our model is the construction of
the basis of s.p. states |φα〉, which we generate by solving
the HF equations. We used the symbol α to indicate all
the quantum numbers characterizing the s.p. state, i.e., the
principal quantum number nα , the orbital angular momentum
lα , the total angular momentum jα , its third component mα ,
and the third component of the isospin tα = −1/2 for protons,
and tα = 1/2 for neutrons.

In the IPM picture, all the s.p. states below the Fermi
energy are completely occupied, and those above it are empty.
We indicate with |�0〉 the Slater determinant describing the

IPM ground state of the doubly magic nucleus composed
by A nucleons. By definition, the RPA ground state of the
doubly magic nucleus, which we indicate as |�0〉, contains
correlations beyond the IPM.

The odd-even nuclei we want to describe are obtained
by adding, or subtracting, one nucleon to the doubly magic
A-nucleon system. We label the states of these nuclei as
|A ± 1; α〉, where the symbol α indicates the set of quan-
tum numbers characterizing the s.p. state of the added, or
subtracted, nucleon.

We describe the response of the odd-even nucleus to the
perturbation induced by an external operator B by considering
separately two effects. The first one is the action of the external
operator on the unpaired nucleon, while the doubly magic
core remains unperturbed. The second effect considers the
interaction of the external probe with one of the nucleons of
the doubly magic core. In this case, the whole nucleus responds
to the external perturbation because the nucleon struck by the
external probe interacts strongly with all the other nucleons,
included the unpaired one.

We express the expectation value of the external operator B
between two states of the odd-even nucleus with one nucleon
more than the doubly magic one as [4–7]

〈A + 1; α|B|A + 1; β〉
= 〈�0|aαBa+

β |�0〉 + 〈�0|aαa+
β VresPA(εαβ)B|�0〉, (1)

where a+ and a are the usual creation and annihilation
operators, Vres is the residual nucleon-nucleon interaction,
and PA is a propagator which describes the excitation of
the doubly magic core and depends on εαβ = εα − εβ , the
difference between the energies of the two states of the A + 1
system. A similar equation can be written for the A − 1 nucleus
by exchanging creation and annihilation operators.

In our approach, the excitation of the doubly magic core is
described by using the RPA theory. In terms of an excitation
operator Q+

ν , we define the excited states of the A-nucleon
system as

|�ν〉 = Q+
ν |�0〉, (2)

while the relation,

Qν |�0〉 = 0, (3)

defines the ground state. The label ν indicates all the quantum
numbers needed to characterize the excited state. The RPA
excitation operator is defined as

Q+
ν =

∑
ph

(
Xν

pha
+
p ah − Y ν

pha
+
h ap

)
, (4)

where the index p refers to s.p. states above the Fermi surface
(particles) and h to s.p. states below it (holes). The RPA
propagator can be written as [4,7,15]

PRPA
A (εαβ) =

∑
ν

Q+
ν |�0〉

(
1

εαβ − ων

− 1

εαβ + ων

)
〈�0|Qν,

(5)
where ων is the excitation energy of the state |�ν〉. By using
this propagator, we express the second term in the right-hand
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side of Eq. (1) as〈
�0|aαa+

β VresPRPA
A (εαβ)B|�0

〉
= 〈�0|aαa+

β Vres

∑
ν

Q+
ν |�0〉

(
1

εαβ − ων

− 1

εαβ + ων

)
×〈�0|QνB|�0〉

=
∑

ν

〈�0|[aαa+
β Vres,Q

+
ν ]|�0〉

(
1

εαβ − ων

− 1

εαβ + ων

)
×〈�0|[Qν,B]|�0〉, (6)

where we have exploited Eq. (3) to insert the commutator [,]
between operators, with the aim of using the quasi-boson-
approximation [16]:〈

�0|aαa+
β VresPRPA

A (εαβ)B|�0
〉

�
∑

ν

〈�0|[aαa+
β Vres,Q

+
ν ]|�0〉

(
1

εαβ − ων

− 1

εαβ + ων

)
×〈�0|[Qν,B]|�0〉. (7)

The operator describing the action of the external probe on
the nuclear system can be expressed in terms of a multipole
expansion. Each term of this expansion, BJM , is characterized
by the angular momentum J , and its projection M on the
quantization axis. In our calculations we consider the spherical
symmetry of the problem. We use a set of s.p. wave functions
with the following angular momentum coupling structure:

φα(r) = R
tα
nαlαjα

(r)
∑
μαsα

〈
lαμα

1

2
sα|jαmα

〉
Ylαμα

(θ,φ)χsα
, (8)

where (r,θ,φ) are the usual polar coordinates, Ylμ are the
spherical harmonics, χ the Pauli spinor, and the symbol 〈|〉
indicates the Clebsch-Gordan coefficient. We calculate the
matrix elements by applying the Wigner-Eckart theorem with
the phase conventions of Ref. [17], and we sum on all the
possible values of mα and mβ . For the matrix element in Eq. (1)
we obtain

〈A + 1; α||BJ ||A + 1; β〉
= 〈φα||BJ ||φβ〉 + δα,β

∑
h

〈φh||BJ ||φh〉

+
∑

ν

⎡⎣Dν
αβ

∑
ph

Aν
ph〈φp||BJ ||φh〉

+Gν
αβ

∑
ph

(−1)jh+jpAν
ph〈φp||BJ ||φh〉

⎤⎦, (9)

where the two kernels are defined as

Dν
αβ =

∑
ph

vJ
αβph

(
Xν

ph

εαβ − ων

+ (−1)jh+jp
Y ν

ph

εαβ + ων

)
, (10)

and

Gν
αβ =

∑
ph

vJ
αβhp

(
Xν

ph

εαβ + ων

+ (−1)jh+jp
Y ν

ph

εαβ − ων

)
, (11)

with

Aν
ph = Xν

ph + (−1)jh−jpY ν
ph. (12)

In Eq. (9) the double bars indicate that in the matrix elements
between the two s.p. wave functions the angular part is
evaluated in terms of reduced matrix elements. The calculation
of the radial integrals is understood.

The expression of the interaction terms vJ is analogous to
that of the RPA [15]:

vJ
αβγ δ =

∑
K

(−1)K+jβ+jδ K̂

{
jα jβ J

jδ jγ K

}
×[〈jαjγ K‖Vres‖jβjδK〉 − (−1)jβ+jδ−K

×〈jδjβK‖Vres‖jαjγ K〉]. (13)

In the above equation we used the Wigner 6-j symbol [17], and
ĵ ≡ √

2j + 1, where j is referred to an angular momentum.
The interaction Vres is described as

Vres = v1(rij ) + v2(rij )τ (i) · τ (j ) + v3(rij )σ (i) · σ (j )

+ v4(rij )σ (i) · σ (j )τ (i) · τ (j )

+ tρ[1 − τ (i) · τ (j )]ρ1/3

(
ri + rj

2

)
δ(rij )

+ 2iW0[←−p ij × δ(rij )−→p ij ] · S + vCoul(rij ), (14)

where tρ and W0 are real constants, v(rij ) are scalar functions
of the distance between the two nucleons, and vCoul(rij ) is the
Coulomb interaction acting between two protons. In the above
equations σ and τ are the usual Pauli matrices for the spin
and isospin operators respectively, ρ is the nucleon density,
S = [σ (i) + σ (j )]/2, and p is the relative momentum of the
interacting pair with the arrows indicating the side on which
the operator acts. It is worth pointing out that the same effective
nucleon-nucleon interaction is used in the HF and in all the
RPA calculations.

The sum over ν in Eq. (9) runs over all the excited states of
the A-nucleon core with the same multipolarity and parity of
the transition operator. Equation (9) is the basic expression of
our model and is analogous to those obtained in Refs. [5–7]
within the FFS theory.

The results obtained by using the whole expression in
Eq. (9) have been labeled as RPA. We compare them with
those of the IPM, i.e., those provided by the first term of
Eq. (9). In addition we consider also the results obtained within
the framework of the traditional time-independent first-order
perturbation theory (FOPT), which we obtain by calculating

〈A + 1; α||BJ ||A + 1; β〉FOPT

= 〈φα||BJ ||φβ〉 + δα,β

∑
h

〈φh||BJ ||φh〉

+
∑
ph

vJ
αβhp

(
1

εαβ − εph

+ 1

εαβ + εph

)
〈φp||BJ ||φh〉.

(15)

For nuclei with one nucleon less than the doubly magic ones
we obtain equations similar to (9) and (15) with an additional
overall phase.
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The first operator we consider in this paper is a one-body
electric operator,

EJM = e

A∑
i

[
1

2
− ti

]
rJ
i YJM (�i), (16)

where e is the elementary charge. We express the reduced s.p.
matrix element of this operator as

〈φα‖EJ ‖φβ〉 = e√
4π

(
1

2
− tα

)
δtαtβ (−1)jα−1/2

×ξ (lα + lβ + J )ĵαĵβ Ĵ

(
jα J jβ

− 1
2 0 1

2

)
IJ

αβ.

(17)

In the above expression we used the Wigner 3-j symbol [17],
and ξ (l) = 1 if l is even and zero otherwise. We have indicated
with IJ

αβ the integral,

IJ
αβ =

∫
drrJ+2R

tα
nαlαjα

(r)R
tβ
nβ lβjβ

(r). (18)

Specifically, we calculate the electric quadrupole moment Q
defined as

Q =
√

16π

5

(
jα 2 jα

−jα 0 jα

)
〈A ± 1; α‖E2‖A ± 1; α〉. (19)

The second operator we consider in this work is the
magnetic operator, composed by one- and two-body terms.
We express the one-body (OB) part of the magnetic operator
as

MOB
JM = μN

A∑
i=1

[
2

J + 1
gl(ti)l(i) + gs(ti)σ (i)

]
·∇i

[
rJ
i YJM (�i)

]
, (20)

where μN is the nuclear magneton, and we have for the
gyroscopic constants the values gl=1 and 0, and gs = 2.793 and
−1.913, for protons and neutrons, respectively. The expression
for the s.p. matrix element is

〈φα‖MOB
J ‖φβ〉

= 1√
4π

δtαtβ (−1)jβ−1/2+J

×ξ (lα + lβ + J + 1)ĵαĵβ Ĵ

(
jα jβ J
1
2 − 1

2 0

)

×(J − καβ)

[
gl(tα)

(
1 + καβ

J + 1

)
− gs(tα)

]
IJ−1

αβ , (21)

where we have defined

καβ = (lα − jα)(2jα + 1) + (lβ − jβ)(2jβ + 1). (22)

In addition to the one-body operator, we consider two-body
terms generated by the exchange of a single, charged pion, the
so-called seagull Ms, represented by the A diagram of Fig. 1,
and pionic Mπ , represented by the B diagram of the same
figure. We give in Appendix A the expressions of the matrix
elements of these two MEC operators. In the FFS theory, these

(a) (b)

γ

π π π

γ

FIG. 1. Schematic representation of the MEC diagrams consid-
ered in this work. The wavy lines represent the external electromag-
netic probe, the dashed lines the exchanged charged pion, and the full
lines the nucleons. The (a) diagram is normally called seagull and the
(b) diagram pionic.

MEC corrections to the OB operator are taken into account
by considering the effective charge of the quasiparticle and by
including an effective tensor term.

Specifically, we calculate the magnetic dipole moment
defined as

μ =
√

4π

3

(
jα 1 jα

−jα 0 jα

)
〈A ± 1; α‖M1‖A ± 1; α〉, (23)

where M1 = MOB
1 + MMEC

1 . In IPM calculations, by con-
sidering M1 = MOB

1 , we obtain the well-known Schmidt
values [16,18] which depend only on the angular momentum
j of the s.p. level of the unpaired nucleon and are given by

μSch =
⎧⎨⎩
[(

j − 1
2

)
gl + gs

]
μN, forj = l + 1

2 ,

j
j+1

[(
j + 3

2

)
gl − gs

]
μN, forj = l − 1

2 .
(24)

A remarkable difference between our calculations and those
based on the FFS theory is that we use bare, not effective,
electromagnetic operators, therefore we do not include free
parameters in our theory. Furthermore, we do not include in
the magnetic operator (20) the tensor terms often added to
take care of magnetic dipole �l = 2 transitions in the IPM
picture [6,8,19].

III. SPECIFIC APPLICATIONS

As pointed out in the Introduction, we carried out our
calculations by using two different parametrizations of the
finite-range density-dependent Gogny interaction. These de-
fine the scalar functions v(rij ) of Eq. (14), and the values
of the tρ and W0 constants. We have chosen the traditional
D1S force [20] and the more recent D1M one [21], which
improves the behavior of the neutron matter equation of state
at high density values. We would like to emphasize the fact
that the parameters of these interactions have been chosen once
forever in a fit process, described in detail in Ref. [13], and
they have not been modified in the present work. Because the
effective nucleon-nucleon interaction is the only input of our
calculations, we may state that they are parameter free.

For each nucleus considered, the calculations of Q and μ
are carried out in three steps. In the first one we generate the
set of s.p. wave functions by means of an HF calculation. In
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the second step, for a selected multipole excitation of angular
momentum J and parity �, we solve the RPA equations. In the
third step we calculate the expectation value of the operators
E2 and M1 by using the expression (9) or the ones for IPM
and FOPT.

From the computational point of view, it is necessary
to ensure the numerical convergence of each of these three
steps. In our calculations we use a set of s.p. wave functions
with bound boundary conditions at the edge of an r-space
box. In this manner all the s.p. states are bound, even those
with positive energy. In the common jargon these are called
discrete calculations. For the first two steps, the numerical
stability of the results is related to the dimensions of the
r-space integration box and to the size of the s.p. configuration
space used in the discrete RPA calculations. We handle these
problems by using the strategy described in Ref. [22], i.e., by
choosing the size of the integration boxes and the dimensions
of the s.p. configuration spaces such as the centroid energies
of the electric giant dipole resonances do not change by more
than 0.5 MeV if the value of any of the two parameters is
increased. In this respect, the most demanding calculations are
those carried out for the 208Pb nucleus where we have used a
box radius of 25 fm and a maximum s.p. energy of 100 MeV.

The stability of the results of the third step is related to the
maximum value of the RPA excitation energy Emax, which is
the upper limit of the sum on ν in Eq. (9) and of the sum on ph
in Eq. (15). We carried out convergence tests for each nucleus
considered. An example of these tests is presented in Fig. 2,
where we show the values of the quantities |Q/e|/ZR2, with

0.0

0.2

0.4

0.6

10 30 50 70 900.6

0.8

1.0

1.2

1.4

1.6

|Q
/e
|

Z
R

2

μ

μ
S
ch

Emax (MeV)

209Bi (208Pb; 1h9/2)

41Ca (40Ca; 1f7/2)

89Zr (90Zr; 1g−1
9/2)

15N (16O; 1p−1
3/2)

15N (16O; 1p−1
1/2)

41Sc (40Ca; 1f5/2)

89Zr (90Zr; 1g−1
9/2)

209Bi (208Pb; 1h9/2)

(a)

(b)

FIG. 2. Convergence test of the stability of our results against
Emax, the upper limits of the sum on ν in Eq. (9), for Q (a), and μ

(b), as given by Eqs. (19) and (23), respectively. The vertical lines
indicate the 70-MeV values which we have adopted as the value of
Emax in our calculations.

R = 1.2A1/3 in the upper panel, and μ/μSch in the lower one,
for the ground states of various nuclei, as a function of Emax.
We observe that in Fig. 2 all the results have already converged
at Emax = 70 MeV, and this is the minimum value of Emax we
adopted in our calculations.

IV. RESULTS

We have applied the model presented in the previous
sections to various nuclei in different regions of the nuclear
chart. The core nuclei have been selected to have closed shells
and spherical symmetry, therefore, in these nuclei, deformation
and pairing effects do not play any role [23,24]. We have
identified isotopes of oxygen, calcium, zirconium, tin, and lead
endowed with these characteristics. We have investigated the
role of the pairing in these nuclei by carrying out calculations
in a HF plus Bardeen Cooper and Schrieffer framework [24].
The protons and neutrons energy gaps between particle and
hole states are so large that we did not find pairing effects.
We found only one exception, the case of the protons in 90Zr,
where the particle fluctuation number is not exactly zero. The
evaluation of the occupation probabilities of the single-particle
levels indicates deviations of few percent from that predicted
by a sharp Fermi distribution. Only the proton 2p1/2 state,
which in IPM does not contributes to the Q, is sensitively
affected by the pairing with an occupation probability of 85%.
This s.p. state does not contributes to the Q.

We first present the results obtained for Q, and, in a second
step, those related to μ.

A. The 2+ excitations and the Q values

We show in Table I the excitation energies and the B(E2)↑
values of the first 2+ state obtained in our RPA calculations
for the various nuclei studied, and we compare them with
the available experimental values taken from the compilations
of Refs. [25–27]. We notice a large difference between the
RPA values and the experimental ones in 16O and 40Ca nuclei.
The experimental energies are smaller than those predicted by
our calculations, and the experimental B(E2)↑ values much

TABLE I. Excitation energies, ω and B(E2)↑ values of the lowest
2+ state for the core nuclei considered. The results obtained with the
two interactions we have adopted are shown. The experimental values
are taken from Refs. [25–27].

ω (MeV) B(E2)↑ (e2fm4)

Nucleus D1M D1S Expt. D1M D1S Expt.

16O 17.61 18.13 6.92 16.76 22.85 40.64
22O 2.34 2.65 3.19 15.84 14.72 28.12
24O 4.10 3.97 – 4.95 4.50 –
40Ca 13.41 14.63 3.90 3.08 3.66 99.17
48Ca 3.80 4.04 3.83 91.65 87.91 95.32
60Ca 5.82 5.63 – 0.39 0.40 –
90Zr 4.67 4.95 2.19 353.5 350.4 610.4
100Sn 4.13 4.40 – 1950 2055 –
132Sn 4.26 5.08 4.04 1574 1444 –
208Pb 4.91 5.05 4.09 4083 4244 3003
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larger, especially in 40Ca. Evidently, for 16O and 40Ca, the
lowest 2+ states cannot be properly described by the RPA
approach because their structure is more complex than a simple
combination of one-particle one-hole excitations. In effect, the
experimental excitation spectrum of 16O presents at least six
other 2+ states up to 15 MeV, and that of 40Ca about 50 of
them below 10 MeV [25,26].

The situation for the other nuclei is different. We found
reasonable agreement with the available empirical data in
48Ca, 132Sn, and 208Pb. The 2+ states in these nuclei are
dominated by particle-hole (ph) transitions between bound
s.p. states. The simplest case is that of the 48Ca nucleus
where we found that the neutron (2p3/2 1f −1

7/2) transition is the
dominant component of the first 2+ excited state. We identify
analogous situations in 132Sn, with the proton (2d5/2 1g−1

9/2) and

neutron (2f7/2 1h−1
11/2) transitions, and in 208Pb with the proton

(2f7/2 1h−1
11/2) and (1h9/2 1h−1

11/2) and neutron (2g9/2 1i−1
13/2)

transitions. In these nuclei, the 2+ strength is concentrated in
the s.p. transitions above mentioned with little fragmentation
produced by the coupling with the continuum and/or with more
complex excitations modes.

The role of the continuum in this type of calculations was
studied in Ref. [28] where a detailed discussion about the
position of the centroid energies and the sum rule exhaustion of
the 2+ strength distribution is presented, resulting compatible
with the theoretical expectations [29]. There is a difference
between the results of Ref. [28] and those of the present work,
because in these latter RPA calculations the spin-orbit and
Coulomb terms of the effective nucleon-nucleon interaction
have been considered by using the procedure of Ref. [14]. We
have verified that for the Q values, and also for those of μ, the
differences between the two types of calculations are of the
order of few percents.

If we neglect the cases of the 16O and 40Ca nuclei, the
average relative difference between our excitation energies
and the experimental ones is about 15%. Even though our RPA
description of the low-lying 2+ excitation of the core nuclei
is not satisfactory, we have to consider that, in the calculation
of Q in the odd-even nearby nuclei, the relevant quantity to
be considered is the global strength distribution. Our RPA
calculations generate the expected amount of 2+ strength, but
it is not properly distributed. This may affect our Q results
because the energy denominators of the kernels (10) and (11)
indicate that the low-lying excited states are more important
than those with high energies in the evaluation of the matrix
element in Eq. (9). We have tested this sensitivity by artificially
changing of the 10% the values of the ων energies calculated
with the D1M force. The largest deviations of the Q values
we have identified are of about 10%, much smaller in any case
than the differences with the IPM values.

Around the core nuclei, listed in Table I, we have selected
48 states of several isotopes and isotones with one nucleon
more or less, which allow us to compare our results with the
experimental data of the compilation of Ref. [30] and also with
the results of Ref. [5] obtained within the FFS theory.

In Table II, we show the RPA results obtained in our
model by using the D1M and D1S nucleon-nucleon effective
interactions. In this table we indicate the core nuclei, the

specific isotopes for which Q was calculated, and the s.p. states
characterizing them. In general, we have considered the states
with lowest energy and Q �= 0. For example, the true ground
states of 207Tl and 207Pb are 1/2+ and 1/2− states, respectively,
but both have Q = 0. For this reason, in these two cases, we
have indicated the 3/2+ and 5/2− states, respectively. In the
table, the states of the same isotope with higher energy are
indicated by a superscript Latin letter.

Our calculations confirm the well-known fact that the Q
values of nuclei with one nucleon more than the doubly
closed shell core are negative, and those with a nucleon less
are positive [19]. A first general remark about the results of
Table II, is that the values we have obtained by using the two
different interactions are very similar. The average relative
difference between the RPA results calculated with D1M and
D1S interactions is of few percent. Henceforth, if not explicitly
stated, we shall discuss only the results obtained with the D1M
interaction.

We compare in Fig. 3 the results of the IPM (triangles),
FOPT (squares), and RPA (circles) calculations. The four
panels show separately the results obtained for hole and
particlelike states and for protons and neutrons. Because we
do not use effective charge, the IPM results for the neutron
states are zero.

A first, general, remark is that, in absolute value, the RPA
results are always larger than those obtained in the other
calculations. It is interesting to observe that, in the proton
case, the FOPT results are very close to those of the IPM, and,
sometimes, even smaller in absolute value. In general, the RPA
results produce a relatively small correction with respect to the
IPM values.

We carried out an additional test of our model by com-
paring our results with those of other theoretical approaches,
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(neutron) states, while the upper (lower) panels show the results for
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The Latin upper indexes indicate excited states following the nomen-
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core, drawn as open circles, have been multiplied by 0.25.
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TABLE II. Values of QRPA, in e fm2, obtained in our model for the two interactions considered. We present the core nuclei, the associated
A ± 1 nuclei, and the s.p. states which characterize them. The upper Latin letters indicate the excited states of the isotope.

Core Nucleus s.p. State D1M D1S Core Nucleus s.p. State D1M D1S

16O 15N 1p−1
3/2 2.07 2.17 100Sn 99In 1g−1

9/2 22.48 23.03
17F 1d5/2 −4.50 −4.74 101Sb 1g7/2 −25.04 −25.32
17O 1d5/2 −1.61 −1.55 99Sn 1g−1

9/2 16.21 16.31
22O 21N 1p−1

3/2 3.69 3.55 101Sn 1g7/2 −19.12 −18.95
23F 1d5/2 −6.53 −6.35 132Sn 131In 1g−1

9/2 18.61 17.70
24O 23N 1p−1

3/2 2.34 2.47 133Sb 1g7/2 −20.13 −23.02
25F 1d5/2 −4.58 −4.82 131Sn 1h−1

11/2 14.65 12.41
40Ca 39K 1d−1

3/2 4.33 4.51 133Sn 1h9/2 −16.45 −13.45
39Ka 1d−1

5/2 5.51 5.75 208Pb 207Tl 2d−1
3/2 11.33 11.93

41Sc 1f7/2 −8.30 −8.78 207Tla 1h−1
11/2 25.62 27.08

41Sca 1f5/2 −10.80 −10.36 207Tlb 2d−1
5/2 15.59 16.45

39Ca 1d−1
3/2 2.20 2.23 209Bi 1h9/2 −27.71 −29.11

41Ca 1f7/2 −3.68 −3.66 209Bia 2f7/2 −21.31 −22.28
48Ca 47K 1d−1

3/2 5.90 5.97 209Bib 1i13/2 −29.27 −30.79
47Ka 1d−1

5/2 7.34 7.43 207Pb 2f −1
5/2 11.62 11.40

49Sc 1f7/2 −10.32 −10.45 207Pba 3p−1
3/2 7.49 7.37

49Sca 1f5/2 −10.52 −10.63 207Pbb 1i−1
13/2 18.54 18.58

47Ca 1f −1
7/2 4.95 4.86 207Pbc 2f −1

7/2 12.97 12.80
49Ca 2p3/2 −2.58 −2.40 207Pbd 1h−1

9/2 19.53 19.80
60Ca 59K 1d−1

3/2 4.28 4.61 209Pb 2g9/2 −14.42 −13.93
59Ka 1d−1

5/2 5.67 6.08 207Pb 2f −1
5/2 11.62 11.40

61Sc 1f7/2 −8.17 −8.70 209Pba 1i11/2 −21.80 −21.58
61Sca 1f5/2 −7.63 −8.16 209Pbb 1j15/2 −20.11 −19.81

90Zr 91Nb 1g9/2 −15.55 −15.94
89Zr 1g−1

9/2 8.04 8.01
91Zr 1g7/2 −8.62 −8.48

the Hartree-Fock-Bogolioubov (HFB) and the FFS theory
[7,10–12]. This comparison is shown in Fig. 4. The HFB
calculations have been performed by using the technique
developed by Robledo et al. [31], based on the gradient
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FIG. 4. Values of Q, in e fm2, obtained in our RPA calculations
with D1S interaction (solid circles), compared to the FFS results taken
from Refs. [7,10–12] (open squares) and to the HFB results found for
D1S interaction (open circles).

method. In the minimization procedure both time-even and
time-odd fields are considered in the calculation of the
energy functional and this allows us to avoid the equal filling
approximation [32]. In the figure, we show the RPA and HFB
results obtained with the D1S interaction. The relevant point
for the present study is the remarkable agreement between the
HFB and our RPA results.

The other comparison proposed in Fig. 4 is that with the
results of FFS calculations. This last approach is somewhat
similar to ours, and the differences are from the use of different
interactions, and s.p. bases. The results of the nuclei around
208Pb taken from Ref. [7], have been obtained by fully exploit-
ing the philosophy of the Landau-Migdal approach. The s.p.
wave functions have been generated by using a Woods-Saxon
potential well, and the RPA calculations have been conducted
with a Landau-Migdal interaction whose parameters have been
chosen to reproduce at best the data. The results of nuclei
lighter than 208Pb are taken from Refs. [10–12], and have been
obtained by using a slightly different computational scheme.
Skyrme interactions of a different type have been used in HF
calculations to generate the s.p. basis wave functions and,
in the second step, also to solve the RPA equations. The
zero-range characteristics of this type of interaction require
the use of a cutoff renormalization parameter whose value
depends on the size of the s.p. configuration space used in
the RPA calculations. The Q values obtained with the FFS
approach are, in absolute value, larger than ours.
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TABLE III. Values of Q, in e fm2, for IPM, FOPT, and RPA, calculated with the D1M interaction, compared to the experimental data taken
from the compilation [30] and from Ref. [33]. The s.p. states refer to the corresponding doubly magic cores.

Expt.

Core Nucleus s.p. State IPM FOPT RPA Ref. [30] Ref. [33]

16O 17F 1d5/2 −4.12 −3.74 −4.50 −5.80 –
17O 1d5/2 0.0 −1.51 −1.61 −2.60 –

40Ca 39K 1d−1
3/2 3.37 3.04 4.33 5.90 –

41Sc 1f7/2 −7.01 −6.31 −8.30 −15.60 –
39Ca 1d−1

3/2 0.0 1.78 2.20 3.60 –
41Ca 1f7/2 0.0 −3.17 −3.68 −9.00 –

48Ca 47Ca 1f −1
7/2 0.0 2.43 4.95 2.10 8.46

49Ca 2p3/2 0.0 −1.24 −2.58 – −3.63
90Zr 91Zr 2d5/2 0.0 −3.15 −5.68 −17.60 –
208Pb 209Bi 1h9/2 −16.39 −13.84 −27.71 −51.60 –

209Pb 2g9/2 0.0 −7.55 −14.42 −30.00 –

In Table III we compare our results with the experimental
values taken from the compilation of Ref. [30] and with those
given in Ref. [33]. The RPA description of these experimental
data is not particularly satisfactory. All the experimental
values are larger than our predictions. In heavier nuclei our
calculations are able to account only for about half of the
observed Q values. This indicates that our approach is not
fully able to describe the large collectivity of the 2+ excitations.
On the other hand, the improvement with respect to the IPM
predictions, and also with respect to the FOPT predictions, is
remarkable.

B. The μ and the 1+ excitation

We use the same set of even-even core nuclei adopted for
the calculation of Q also for the investigation of the magnetic
dipole moment μ. Around each core nucleus we calculate the
μ values for the four nuclei with one nucleon more or less.
We present our results by following the strategy adopted in
the investigation of Q. We first discuss the features of the 1+
excitation in the core nuclei and, after, we present the results

of the calculation of μ and we compare them with the
experimental values.

We present in Table IV the excitation energies and the
B(M1)↑ values of the main low-lying 1+ states, and we
compare them with the experimental values taken from
Refs. [25,26]. We indicate in the table also the dominant ph
transitions.

The table shows that the B(M1)↑ values of the 16O,
40Ca, and 60Ca nuclei, where all the spin-orbit partner levels
are occupied, are orders of magnitudes smaller than the
other ones. This confirms the well-known fact [19,34] that
the M1 excitation is strongly excited in nuclei where ph
transitions between spin-orbit partner levels are allowed. We
have presented in Ref. [35] a detailed discussion of the M1
strength distribution in oxygen and calcium isotopes.

The agreement with the experimental energies is reasonable
for almost all the cases, but for 16O and 40Ca. We have already
pointed out the fact that in the first two nuclei the 1+ excitation
is somewhat weak because all the spin-orbit partner levels are
occupied. In these nuclei it is not easy to find out the 1+ states
to be compared with those predicted by our model, because,

TABLE IV. Energies, ω, and B(M1)↑ values of the main low-lying 1+ excited state obtained in our calculations for the core nuclei
considered, with the two interactions we have adopted. The experimental values are taken from Refs. [25,26].

ω (MeV) B(M1)↑ (μ2
N ) Main s.p. transitions

Nucleus D1M D1S Expt. D1M D1S Proton Neutron

16O 17.76 18.37 13.66 0.01 0.01 (2p3/21p−1
1/2)

22O 8.35 8.97 – 5.81 5.18 (1d3/21d−1
5/2)

24O 8.50 9.06 9.50 5.75 5.13 (1d3/21d−1
5/2)

40Ca 14.62 15.03 9.87 0.006 0.006 (2d5/21d−1
3/2)

48Ca 9.30 10.19 10.23 10.23 9.66 (1f5/21f −1
7/2)

60Ca 6.73 6.76 – 0.04 0.04 (3p3/22p−1
1/2)

90Zr 9.08 9.98 9.37 13.98 13.49 (1g7/21g−1
9/2)

100Sn 7.49 9.13 – 0.65 0.97 (1f5/21f −1
7/2)

132Sn 6.78 8.00 – 6.05 9.84 (1f5/21f −1
7/2)

208Pb 6.30 7.60 5.85 7.80 11.89 (1i11/21i−1
13/2) (1h9/21h−1

11/2)
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FIG. 5. Comparison between the values of μIPM, left panels, and
μRPA, right panels, expressed in nuclear magnetons, and the Schmidt
values, as a function of the angular momentum j of the odd-even
nucleus. The results obtained with the full electromagnetic operator,
M1 = MOB

1 + MMEC
1 , are indicated by the symbols and the Schmidt

values by the solid lines. Open squares and solid circles represent
the results obtained, respectively, for nuclei characterized by hole or
particlelike s.p. states. The calculations have been carried out with
the D1M interaction.

experimentally, the M1 strength is somewhat fragmented. For
example, in 40Ca we found more than 20 1+ states below
12 MeV [25,26].

Our description of the 1+ excitation is somewhat good in
the situations where these excitations are dominated by a few
ph transitions. In these cases our approach works at its best.
The main features of the transitions are already well described
within the IPM which is corrected by the RPA by including
other, less important, ph transitions.

The 10 doubly magic nuclei listed in Table IV have been
considered as core nuclei where we add or remove one
nucleon at the time to form odd-even nuclei with magnetic
dipole moment μ. Before discussing the effects of the core
polarization, i.e., of the excitation of the even-even core, we
clarify the role played by the MEC in the calculation of μ.

In Fig. 5 we adopt the usual representation of μ [16] against
the angular momentum j of the odd-even nucleus, to show our
results obtained with the D1M force. In Figs. 5(a) and 5(b)
the symbols represent the μIPM values obtained by consider-
ing the full electromagnetic operator M1 = MOB

1 + MMEC
1 ,

while the lines indicate the Schmidt values found for MOB
1

[see Eq. (24)]. The MEC produce relatively small changes
with respect to the Schmidt values, usually of the order of few
percent up to a maximum value of about 10%. These changes
have a consistent behavior over all the various regions of the
nuclear chart, and we did not observe remarkable differences
between nuclei characterized by a hole- (open squares)
or a particle-like (solid circles) structure.

Another perspective to observe these results is given in
Fig. 6 where we show the differences μIPM − μSch as a function
of the mass number of the nuclei investigated. The results of
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the D1M interaction.

Fig. 6(a) correspond to the odd-proton nuclei while those of
Fig. 6(b) are those obtained for the odd-neutron nuclei. In the
odd-proton cases the MEC always increase the μ values with
respect to the Schmidt ones, but for the 21N and 23N nuclei.
The results of Fig. 6(b) show that the effect of the MEC on the
odd-neutron nuclei consists in a lowering with respect to the
Schmidt values, without exceptions. It is possible to outline a
general overall tendency of the MEC effects to increase with
the mass number, even though there are quite a few exceptions.

The effects we have just described are consistent for all the
nuclei, and, in terms of the agreement with the experimental
data imply two contrasting aspects. Because the experimental
data are lying between the two Schmidt lines, the inclusion
of the MEC improves the agreement for odd-proton nuclei
with j< ≡ l − 1/2, while they are worsening it for odd-proton
nuclei with j> ≡ l + 1/2. We have a similar situation also for
the odd-neutron nuclei where we observe an improvement in
the case of j< and a worsening for j>.

In Table V we present the RPA results obtained with
the two interactions we have adopted, and by using the full
electromagnetic operator which includes the MEC. We have
considered those configurations which generate the ground
state of the odd-even nuclei, and some excited state of interest.
In the table, our results are compared to the available data
taken from the compilation of Ref. [30].

With the exceptions of the 21N, 23N, and 131Sn cases,
some of which we shall discuss in more detail, the relative
differences between the D1M and D1S results are of the
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TABLE V. Values of μ, in nuclear magnetons, obtained in our RPA model with the full MOB
1 + MMEC

1 operator for the two interactions
considered. We present the core nuclei, the specific A ± 1 nuclei, and the s.p. states which characterize them. The upper Latin letters indicate
the excited states of the isotope.

Core Nucleus s.p. State D1M D1S Core Nucleus s.p. State D1M D1S

16O 15N 1p−1
1/2 −0.137 −0.142 90Zr 89Y 2p−1

1/2 −0.108 −0.152
17F 1d5/2 4.884 4.885 91Nb 1g9/2 6.727 6.996
15O 1p−1

1/2 0.638 0.638 89Zr 1g−1
9/2 −1.937 −1.813

17O 1d5/2 −2.088 −2.007 91Zr 2d5/2 −1.808 −1.715
22O 21N 1p−1

1/2 0.001 −0.042 100Sn 99In 1g−1
9/2 6.559 6.593

23F 1d5/2 4.397 4.779 101Sb 2d5/2 4.448 4.476
21O 1d−1

5/2 −1.667 −1.487 99Sn 1g−1
9/2 −1.638 −1.771

23O 2s1/2 −1.610 −1.485 101Sn 2d5/2 −1.507 −1.614
24O 23N 1p−1

1/2 0.013 −0.024 132Sn 131In 1g−1
9/2 6.788 6.767

25F 1d5/2 4.444 4.801 133Sb 1g7/2 2.579 2.546
23O 2s−1

1/2 −1.628 −1.482 131Sn 2d−1
3/2 0.684 0.758

25O 1d3/2 0.842 0.841 131Sna 1h−1
11/2 −1.520 −1.688

40Ca 39K 1d−1
3/2 0.358 0.350 133Sn 1h9/2 0.596 0.746

41Sc 1f7/2 5.971 5.972 208Pb 207Tl 3s−1
1/2 2.528 2.538

39Ca 1d−1
3/2 0.910 0.918 209Bi 1h9/2 3.604 3.548

41Ca 1f7/2 −2.096 −2.098 209Bia 1i13/2 8.859
48Ca 47K 2s−1

1/2 2.384 2.695 207Pb 3p−1
1/2 0.437 0.463

49Sc 1f7/2 5.577 5.888 207Pba 2f −1
5/2 0.764 0.857

47Ca 1f −1
7/2 −1.809 −1.664 207Pbb 1i−1

13/2 −1.655
49Ca 2p3/2 −1.709 −1.605 209Pb 2g9/2 −1.635 −1.756

60Ca 59K 1d−1
3/2 0.347 0.338

61Sc 1f7/2 6.146 6.147
59Ca 2p−1

3/2 −1.954 −1.951
61Ca 1g9/2 −2.015 −2.011

order of 1%. This indicates that the effects we are discussing
are almost independent of the specific implementation of the
interaction used.

The quantitative stability of our results can be observed
by considering that, in our approach, the 23O nucleus can be
obtained by adding a neutron to the 22O core or subtracting one
to 24O. The differences between the two procedures are related
to the different s.p. states produced by the HF calculations and
the results obtained for D1M and D1S interactions show μ
values that differ on the third and fourth significant figures,
respectively.

We compare the D1M results of Table V with the Schmidt
values in the Figs. 5(c) and 5(d). In general, the μRPA values
are situated between the two Schmidt lines, as it is observed
for the experimental values. The deviation from the Schmidt
values is particularly evident in the neutron case for the nuclei
with j< above 5/2, which correspond to the 207Pba and 133Sn
isotopes.

In Fig. 7 we compare the RPA, FOPT, and IPM results.
All the calculations have been carried out with the D1M
interaction, and by using the complete electromagnetic oper-
ator M1 = MOB

1 + MMEC
1 . The results are shown as relative
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TABLE VI. Comparison between μ values, expressed in nuclear magnetons, calculated in IPM, FOPT, and RPA by using the complete
electromagnetic operator MOB

1 + MMEC
1 with the Schmidt values (24), the FFS results of Ref. [8], and the experimental data of Ref. [30].

Core Nucleus s.p. State Schmidt IPM FOPT RPA FFS Expt.

16O 15N 1p−1
1/2 −0.264 −0.153 −0.133 −0.137 — −0.283

17F 1d5/2 4.793 4.896 4.882 4.884 — 4.721
15O 1p−1

1/2 0.638 0.524 0.506 0.510 — 0.720
17O 1d5/2 −1.913 −2.018 −2.003 −2.088 — −1.894

40Ca 39K 1d−1
3/2 0.124 0.340 0.361 0.358 0.329 0.391

41Sc 1f7/2 5.793 5.983 5.963 5.971 5.485 5.431
39Ca 1d−1

3/2 1.148 0.928 0.910 0.910 0.888 1.022
41Ca 1f7/2 −1.913 −2.109 −2.088 −2.096 −1.626 −1.595

48Ca 47K 2s−1
1/2 2.793 3.011 2.173 2.384 — 1.933

47Ca 1f −1
7/2 −1.913 −2.112 −1.732 −1.809 −1.556 −1.380

49Ca 2p3/2 −1.913 −1.954 −1.654 −1.709 −1.156 —
90Zr 89Y 2p−1

1/2 −0.264 −0.221 −0.114 −0.108 −0.125 −0.137
89Zr 1g−1

9/2 −1.913 −2.212 −1.872 −1.937 −1.304 −1.046
91Zr 2d5/2 −1.913 −2.022 −1.769 −1.808 −1.214 −1.304

132Sn 133Sb 1g7/2 1.717 1.987 2.826 2.579 2.693 3.000
131Sn 2d−1

3/2 1.148 1.029 0.601 0.684 0.681 0.747
131Sna 1h−1

11/2 −1.913 −2.191 −1.227 −1.520 — −1.276
208Pb 207Tl 3s−1

1/2 2.793 2.990 2.379 2.528 1.857 1.876
209Bi 1h9/2 2.624 3.025 3.827 3.604 3.691 4.110
207Pb 3p−1

1/2 0.638 0.549 0.472 0.437 0.473 0.593
207Pba 2f −1

5/2 1.366 1.159 0.677 0.764 0.720 0.800
209Pb 2g9/2 −1.913 −2.110 −1.486 −1.635 −1.337 −1.474

difference with respect to the Schmidt values [Eq. (24)]. We
observe the great similarity between our RPA results and those
obtained in FOPT. This indicates that the structure of the 1+
states is not as collective as that of the 2+ states, but it is
somewhat dominated by single-particle excitations.

The FOPT and RPA results show very similar behaviors.
In general, the FOPT deviate more from the Schmidt values
than the RPA ones. We remark that the FOPT approach, often
utilized in the literature [3,36–39], performs much better in
this case than for the electric quadrupole moment case, as it is
shown in Fig. 4.

Our results agree with those of the nonrelativistic calcula-
tions of Refs. [3,38]. More precisely, and always with respect
to the Schmidt values, we observe the following: (i) both MEC
and RPA increase the μ values in 209Bi; (ii) in 207Tl we find an
enhancement from the MEC while the RPA effects produce a
lowering of μ; (iii) in 209Pb we have opposite effects, and (iv)
in 207Pb both MEC and RPA lower the μ values.

The μ values obtained in RPA show a remarkable difference
with respect to the IPM results. The case of the 39K and 59K
nuclei is particularly interesting because the three calculations
provide very similar results and all of them noticeably deviate
from the Schmidt values. This is only because of the presence
of MEC in the operator. This effect should be investigated

better, by considering also that the 47K nucleus does not present
this feature.

A direct comparison between our results and the available
experimental data taken from Ref. [30] is presented in
Table VI. In this table we also include the results of the
FFS calculation of Ref. [8]. We observe that the effects of
the core polarization become more important in the heavier
nuclei. The differences between the results of IPM, FOPT, and
RPA calculations are somewhat small in the nuclei around 16O
and 40Ca.

In the great majority of the cases the RPA results are closer
to the experimental values than the other ones, indicating that
the inclusion of the core polarization improves the agreement
with the available experimental data. However, this is not
a universal behavior because there are very specific cases,
where the IPM approach produces a better description of the
observed μ values. As expected the FFS results, which use
effective electromagnetic operators, are in general closer to
the experimental values than ours.

We conclude this section by analyzing in detail the cases of
the 21N and 23N nuclei. In Table VII we show the μ values for
these two nuclei calculated by using different approximations.
We observe that the Schmidt values have negative sign.
The inclusion of the MEC in the IPM calculations gives
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TABLE VII. Values of μ, in nuclear magnetons, of the 21N
and 23N nuclei. The Schmidt values are compared to those found
within IPM, FOPT, and RPA approaches with the fullMOB

1 + MMEC
1

operator.

Nucleus Interaction Schmidt IPM FOPT RPA

21N D1M −0.264 −0.341 0.030 0.001
D1S −0.264 −0.339 0.003 −0.042

23N D1M −0.264 −0.323 0.025 0.013
D1S −0.264 −0.322 −0.002 −0.024

a negative contribution, further lowering these values. The
core polarization plays an important role as the results of
two last columns indicate. In both nuclei, the effect of the
residual interaction has the opposite sign with respect to the
contribution of the MEC. This effect is larger in the FOPT than
in RPA results. In RPA calculations, the effects of the D1M
force are large enough to change the sign of μ with respect
to the Schmidt value. Experimental μ values for these two
nuclei are not available. In any case, our RPA results follow
the trend of the known experimental values of lying between
the Schmidt values.

V. CONCLUSIONS

In this work, we have presented the results of a parameter-
free theoretical approach which describes the properties of
odd-even nuclei with one nucleon more, or less, than a doubly
magic one. The convergence of the energy sum in Eq. (9),
the fundamental equation of our model, is ensured by the
use of finite-range nucleon-nucleon effective interaction. The
use of zero-range interactions, as it is done, for example, in
Refs. [5–7], requires the inclusion of additional free parame-
ters. The universality of our approach allows us to apply it in
each region of the nuclear chart, from light to heavy nuclei.

We have considered two parametrizations of the finite-range
effective Gogny nucleon-nucleon interaction taken from the
literature, the D1S and D1M. Our calculations are fully self-
consistent, meaning that all results have been obtained by using
the same interaction in each of the three steps of the calculation:
the generation of the s.p. configuration space by means of a
HF procedure, the solution of the RPA equations, and, finally,
the evaluation of the response of the odd-even nucleus to the
external probe. In each step of the calculation the complete
interaction was used, including the spin-orbit and the Coulomb
terms, commonly neglected in RPA.

We have tested the validity of our approach by calculating
the values of the electric quadrupole moment Q of 48 different
states, and the magnetic dipole moment μ of 44 states,
in various regions of the nuclear chart. We have used the
traditional one-body operator for the calculation of Q, while
for the μ we have considered also the contribution of MEC. We
use bare electromagnetic operators whose coupling constants
are those of free nucleons.

In the absolute value, the results obtained by considering
the MEC are always larger than the Schmidt values, implying

an improvement of the agreement with experimental data for
odd-proton nuclei with j< and with odd-neutron nuclei with
j>, and a worsening for the other type of nuclei.

The differences between the results obtained with the two
forces are small, negligible if compared to the differences be-
tween RPA and IPM results. This indicates that the quantitative
description of the core polarization effects in our calculations
is more related to the theoretical approach, rather than to the
use of a specific interaction.

Our calculations require the description of the excitation
of 2+ and 1+ states in doubly closed shell nuclei, in the
framework of the RPA theory. We observe that our model
describes better the 1+ excitations than the 2+ ones. This
occurs because the most important 1+ states, those where the
largest part of the strength is concentrated, are dominated by
a single ph transition. In this case, our approach works at its
best, by correcting the main ph transition with the presence
of other one-particle one-hole transitions. On the other hand,
the structure of many of the 2+ states is very collective, and
a good description of it requires one to go beyond the linear
combination of one-particle one-hole transitions which is what
the RPA considers.

This difference in the description of the two multipolarities
is reflected in the results we have obtained for the values of
Q and μ. The description of the magnetic dipole moments is
certainly better than that of the electric quadrupole moments.
The similarity between our results and those obtained in FOPT
is a further indication of the perturbative structure of the 1+
excitations. In any case, we have to point out that our results
show a remarkable improvement of the description of the
experimental values with respect to the IPM predictions, and
also with respect to the FOPT for Q.

We found a good agreement between our results and those
of the FFS theory given in the literature [5–12]. The basic
theoretical hypotheses of the two approaches are somewhat
similar. More remarkable is the agreement with the Q values
obtained in the HFB calculations. Our approach and the
HFB treat the core polarization in a completely different
manner, but they produce similar results. In our approach the
IPM response is corrected by the core polarization described
in terms of particle-hole excitations. Alternatively the HFB
theory corrects the IPM by considering the effects of the
pairing force. These two alternative visions of effects beyond
the IPM picture generate very similar quantitative results. It
would be interesting to identify specific observables which
allow us to disentangle the two effects.

Despite the limitations we have pointed out, we think that
our parameter-free, self-consistent approach is adequate to
make predictions of the properties of odd-even nuclei nearby
the doubly magic ones in regions of the nuclear chart not yet
experimentally explored.
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APPENDIX: MEC MATRIX ELEMENTS

In this appendix we give the explicit expressions of the matrix elements of the MEC inserted in Eq. (9) to calculate the values
of μ. We have considered the contribution of the two diagrams indicated in Fig. 1 and called them seagull and pionic. We give
here the final results of a calculation which describes these contributions in terms of Feynman’s diagrams, makes a nonrelativistic
reduction, a multipole expansion, and the use of s.p. wave functions with the angular coupling indicated in Eq. (8).

We call q the modulus of the momentum that the photon is exchanging with the nucleus, and ω the photon energy. In the
specific case under study we have ω = εαβ and q = ω/(�c).

The contribution of the seagull term is given by

〈φa‖Ms
J ‖φb〉 = ξ (lα + lβ + J + 1)(−1)ja−1/2 ĵa ĵbĴ√

J (J + 1)

(
ja jb J
1
2 − 1

2 0

)[
GP

E(q,ω) − GN
E (q,ω)

] ∫
drr2jJ (qr)F (s)

a,b,J (r),

where GP
E and GN

E are, respectively, the proton and neutron electromagnetic form factors, and we have defined

F (s)
a,b,J (r) = −2

f 2
π

m2
π

∑
h<εF

ĵ 2
h [δab,pδh,n − δab,nδh,p]

⎧⎨⎩∑
L1

ξ (la + lh + L1 + 1)L̂2
1

(
ja jh L1
1
2 − 1

2 0

)2

κabTah(L1,r)Rh(r)Rb(r)

+
∑
L2

ξ (lb + lh + L2 + 1)L̂2
2

(
jh jb L2
1
2 − 1

2 0

)2

κabThb(L2,r)Ra(r)Rh(r)

⎫⎬⎭, (A1)

where f 2
π = 0.079 is the pion-nucleon coupling constant, mπ is the pion mass, κ is defined in Eq. (22), ξ (l) = 1 if l is even and

zero otherwise, R(r) is the radial part of the s.p. wave function (8), and T is defined as

Tab(L,x) =
∫ ∞

0
drr2

{(
d

dr
+ κab + 2

r

)
Ra(r)Rb(r)

}∫ ∞

0
dkk2 2

π
vπ (k,εab)jL(kr)jL(kx). (A2)

In the above equations we have indicated with vπ the pion propagator,

vπ (k,ε) = 1

k2 − ε2 + m2
π

. (A3)

The contribution of the pionic term is

〈φa‖Mπ
J ‖φb〉 = ξ (lα + lβ + J + 1)ĵa ĵbĴ Fπγ (q,ω)

∫
drr2jJ (qr)F (π)

a,b,J (r), (A4)

where

Fπγ (q,ω) = 1

1 + (q2 − ω2)/m2
ρ

(A5)

is the electromagnetic form factor of the pion, with mρ = 776.0 MeV the ρ-meson mass, and

F (π)
a,b,J (r) = 4

f 2
π

m2
π

1

r

∑
h<εF

(−1)jh+jb ĵ 2
h [δab,pδh,n − δab,nδh,p]

∑
L1L2

ξ (la + lh + L1 + 1)ξ (lb + lh + L2 + 1)L̂2
1L̂

2
2

×
{
L1 L2 J

jb ja jh

}(
ja jh L1
1
2 − 1

2 0

)(
jh jb L2
1
2 − 1

2 0

)(
L1 J L2

1 −1 0

)√
L2(L2 + 1)Tah(L1,r)Thb(L1,r). (A6)
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