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Non-Markovian fission rate within the Kramers model
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We investigate possible non-Markovian effects in fission dynamics of highly excited nuclei by using the
generalized Langevin approach for a single nuclear shape parameter. We estimate the effective friction and
stiffness coefficients of the non-Markovian dynamics for different values of the correlation time of the random
force in the Langevin equation of motion. We discuss the found nonmonotonic dependence of the fission rate on
the correlation time. We also show how to extend the Kramers theory of fission rate in the case of non-Markovian
thermal diffusion over barrier.
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I. INTRODUCTION

Starting from the pioneering work by Kramers [1], the
induced fission of highly excited nuclei is considered as a
diffusion process in the space of nuclear shape variables.
The Kramers approach is a classical one and it does not take
into consideration the Fermi statistic of nucleons, which is a
significant ingredient of nuclear dynamics. The Fermi motion
of nucleons creates the specific phenomenon of the Fermi
surface distortion, which produces the dissipation processes
and the non-Markovian (memory) effect on the nuclear
dynamics; see Ref. [2]. One of well-known manifestations
of such effects is a shift of the energy of the nuclear giant
multipole resonances to the high-energy region with respect to
the prediction of nuclear liquid drop model [3].

An advantage of the Kramers theory is that it connects
fission characteristics to both the nuclear viscosity and the
dissipation. On the other hand, the dissipation is related
to the fluctuations of the corresponding collective variables
because of the fluctuation-dissipation theorem. This fact allows
one to apply Langevin approaches to study nuclear fission
dynamics [4–6]. Both the dissipation and the fluctuations
can be described by the introduction of friction and random
forces, related to each other by the fluctuation-dissipation
theorem. In general, the basic equations of motion for the
nuclear shape parameters describing fission have a non-
Markovian structure [7], which is caused by the energy flow
between the macroscopic collective and intrinsic nucleonic
modes. In an attempt to describe the rate characteristics of
a nuclear fission process, the functional integral approach
has been widely used [8]. The quantum decay rate of the
nuclear compound state has been also derived within the local
harmonic approximation [9], where non-Markovian effects
were considered. In spite of such wide literature on the subject,
the problem of classical activated (escape) rate over a nuclear
fission barrier in the presence of non-Markovian effects has
been left without appropriate attention. We are going to renew
this deficiency by measuring a general quantitative impact of
memory effects on the nuclear fission dynamics. In this respect,
it is worth mentioning a series of works by Boilley [10],
where some quantitative features of non-Markovian diffusion
over a schematic parabolic barrier are discussed in terms
of over-passing probability and saddle-to-scission time. Our
main goal here is to investigate the non-Markovian effect on

the classical escape rate characteristics of the nuclear fission
dynamics and to try to derive analytical expression for the
escape rate. With this, we are aimed to extend the Kramers
theory of escape rate to non-Markovian systems.

The plan of the paper is as follows. In Sec. II, we set in
the generalized Langevin approach for a single nuclear shape
parameter and discuss small and large correlation time limits of
the fission dynamics. In Sec. III, we study the non-Markovian
diffusive motion over a simple parabolic barrier in terms of
some effective friction and stiffness coefficients, estimated
for the motion near both the potential minimum position and
barrier top. We compare the numerically found value of the
fission rate with the analytical expression derived from our
non-Markovian extension of the Kramers theory in Sec. IV.
Summary and conclusions are given in Sec. V.

II. FISSION DYNAMICS WITHIN THE NON-MARKOVIAN
LANGEVIN APPROACH

To describe a process of symmetric fission of atomic nuclei,
we use a phenomenological Langevin equation of motion for
a single time-dependent variable q(t), defining the shape of a
nucleus:

Bq̈(t) = −∂Epot

∂q
− κ0

∫ t

0
exp

(
−|t − t ′|

τ

)
q̇(t ′)dt ′ + ξ (t).

(1)

The generalized Langevin equation of the type (1) for
collective modes of motion in Fermi systems has been first
derived in Ref. [11] and rederived in many subsequent works;
see, for example, Refs. [7,12–14].

In Eq. (1), B stands for a nuclear mass parameter, Epot is the
potential energy, ξ (t) is the random force, and the correlation
time τ measures the time spreading of the memory integral. For
Epot, we use a simple parabolic barrier, smoothly joined at q =
q∗ with a harmonic oscillator potential (Kramers potential, see
Fig. 1),

Epot =
{

(CA/2)(q − qA)2, q � q∗,

Eb + (CB/2)(q − qB)2, q > q∗,
(2)
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FIG. 1. The memory-induced renormalization (18) of the po-
tential energy of the non-Markovian system (1)–(5), calculated at
κ0/|CB | = 0.15, is shown by the dashed line. The Kramers potential
Epot (2) is given by the solid line.

where Eb is a height of the barrier and CA,CB are the values
of a stiffness of the system,

C ≡ ∂2Epot(q)

∂q2
=

{
CA, q � q∗,
CB, q > q∗, (3)

in the vicinity of the potential minimum position qA and near
barrier top at qB , respectively.

Dissipative and fluctuating properties of the nuclear shape
variable q(t) are determined by the random force ξ (t) Eq. (1)
through the fluctuation-dissipation theorem:

〈ξ (t)ξ (t ′)〉 = κ0exp

(
−|t − t ′|

τ

)
, (4)

where angular brackets mean the ensemble averaging. The
correlation time τ defines the characteristic interval within
which the values of the random force ξ at different moments of
time t and t ′ correlate significantly. The random force term ξ (t)
in Eq. (1) corresponds to the Ornstein-Uhlenbeck process [15]
defined as

ξ̇ (t) = −ξ (t)

τ
+

√
κ0T

τ
ζ (t), (5)

where ζ (t) is a Gaussian white noise with

〈ζ (t)〉 = 0, 〈ζ (t)ζ (t ′)〉 = 2δ(t − t ′). (6)

The nuclear mass parameter B in Eq. (1) is taken as (see
Ref. [7])

B = 1

5
AmR2

0

(
1 + 1

2q3

)
, (7)

where the shape parameter q of the deformed nucleus is
measured in terms of a radius R0 of the equal volume spherical
nucleus, A is a mass number of the nucleus, and m is the
nucleon mass. In the sequel, we ignore the q dependence
of the mass parameter B by putting q = qB in Eq. (7). The
stiffness coefficients CA and CB , characterizing the Kramers
potential (2), are taken from Ref. [16]:

CA = 182.4 MeV, CB = −91.3 MeV. (8)

Numerical calculations were performed for a symmetric
fission of the nucleus 236U at temperature T = 2 MeV and with

qA = 1, qB = 1.6, q∗ = 1.22, Eb = 11 MeV. (9)

The parameter κ0, measuring the strength of the dissipative and
fluctuating properties (5) of the nuclear fission dynamics (1),
is taken from the nuclear Fermi liquid-drop model [2,7]

κ0 = 6

5
AεF

1

q2
, (10)

where εF is the Fermi energy and it is assumed that q = qB .
At last, the correlation time τ in Eq. (1) is considered as a free
parameter of the model varying in the range

τ ∈ (0 ÷ 10) × 10−23 s. (11)

Such a characteristic interval for the correlation time’s
variations appears in the calculations of the total kinetic
energy and the variance of kinetic energy of fission fragments
within the non-Markovian model (1)–(5) of nuclear fission
dynamics; see Ref. [4]. Note that the range of the correlation
time’s variations (11) is in order smaller than the estimations
of the corresponding time parameters used in the random
matrix approach [17] or the linear response theory [18].

A. Small-correlation-time limit of non-Markovian dynamics

In order to clarify the role of non-Markovian effects in
the Langevin fission dynamics (1)–(5), we shall consider
qualitatively different regimes of the dynamics depending on
the correlation time τ .

At quite small correlation times τ , one can use the following
expansion for the time-retarded force in Eq. (1):

−κ0

∫ t

0
exp

(
−|t − t ′|

τ

)
q̇(t ′)dt ′

= −κ0τ q̇(t) + O[(
√

|C|/Bτ )2],
√

|C|/Bτ � 1, (12)

In the same limit, we have for the random force ξ (t) (5)

ξ (t) =
√

κ0τT ζ (t) + O[(
√

|C|/Bτ )3/2],
√

|C|/Bτ � 1.
(13)

Therefore, at sufficiently small correlation times τ we obtain
the Markovian Langevin limit of the fission dynamics (1)–(5),

Bq̈(t) = −C(q(t) − qA,B) − κ0τ q̇(t) +
√

κ0τT ζ (t)

+O[(
√

|C|/Bτ )2],
√

|C|/Bτ � 1, (14)

described by a linear in τ friction coefficient κ0τ . Note that
the memory-induced correction to the stiffness coefficient C
appears in Eq. (14) from τ 2-order terms only.

B. Large-correlation-time limit of non-Markovian dynamics

At fairly large correlation times τ , one can show that

−κ0

∫ t

0
exp

(
−|t − t ′|

τ

)
q̇(t ′)dt ′

= −κ0(q(t) − q[t = 0]) + O

(
1√|C|/Bτ

)
,

√
|C|/Bτ
1,

(15)
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and

ξ (t) =
√

κ0T

τ

∫ t

0
ζ (t ′)dt ′ + O

(
1

(
√|C|/Bτ )3/2

)
,

√
|C|/Bτ 
 1. (16)

As in the case of quite small correlation times τ [see Eq. (14)],
we get the Markovian equation of motion for the nuclear shape
variable q(t):

Bq̈(t) = −∂Ẽpot

∂q
+

√
κ0T

τ

∫ t

0
ζ (t ′)dt ′, (17)

where

Ẽpot(q) = Epot(q) + (1/2)κ0(q − q[t = 0])2 (18)

is a renormalized potential energy.
To demonstrate the memory-induced renormalization (18)

of the potential energy of the non-Markovian system (1)–(5)
we plotted in Fig. 1 the value of Ẽpot by dashed curve,
calculated at κ0/|CB | = 0.15. Such a quite small value for the
ratio κ0/|CB | is used here just to demonstrate how the memory
effects’ renormalization of the system’s potential energy (18)
shows up. In all the subsequent calculations, it is used the value
κ0/|CB | = 42 [2,7]. The Kramers potential Epot (2) is plotted
in Fig. 1 by the solid line.

We see that at fairly large correlation times τ the non-
Markovian effects in the fission dynamics significantly en-
hance the system’s stiffness (3), C̃ = C + κ0. Also one can
claim that the memory-induced correction to the potential
energy Epot(q) greatly suppresses the escape over the fission
barrier.

III. FRICTION AND STIFFNESS COEFFICIENTS
OF NON-MARKOVIAN DYNAMICS

In the general case, one can assume that the time-retarded
force in the Langevin equation of motion (1) contains some
time-irreversible (friction) part, −γ (t)q̇(t), and time-reversible
(conservative) part, −C ′(t)[q(t) − q(t = 0)],

−κ0

∫ t

0
exp

(
−|t − t ′|

τ

)
q̇(t ′)dt ′

= −γ (t)q̇(t) − C ′(t)[q(t) − q(t = 0)]. (19)

Such a friction-conservative splitting of the time-retarded
force (19) at any value of the correlation time τ is a natural
generalization of the short-correlation time limit (12) (when
the time-retarded force is reduced to Markovian friction force)
and long-correlation time limit (15) (when the time-retarded
force gives rise to the appearing of conservative force). As we
will see below, this splitting is exact as far as the linearized
motion of Eq. (1) is considered. We also point out that formally
one can represent the time integral in Eq. (1) as a sum,

− κ0

∫ t

0
exp

(
−|t − t ′|

τ

)
q̇(t ′)dt ′ = −κ0

∞∑
n=1

In(t)q(n)(t),

(20)

where

In(t) =
∫ t

0
exp

(
− t ′

τ

)
(t ′)n

n!
dt ′ (21)

and q(n)(t) stands for the nth-order time derivative of q(t).
In Eq. (20), the odd-order derivatives of the coordinate q(t)
contribute to the time-irreversible friction part while the even-
order derivatives give rise to the time-reversible conservative
part of the retarded force. But higher-order (higher than the
second one) derivatives q(n)(t) can be expressed in terms of
q(t), q̇(t), and q̈(t) by subsequent time differentiation of the
Langevin equation of motion (1). This makes the splitting (19)
reasonable.

For the motion near the potential minimum or barrier top
(where the integrodifferential equation (1) may be linearized),
the functions γ (t) and C ′(t) in Eq. (19) can be found explicitly
as

γ (t) = (−B)
Ä(t)B(t) − A(t)B̈(t)

Ȧ(t)B(t) − A(t)Ḃ(t)
,

(22)

C ′(t) = C + B
Ä(t)Ḃ(t) − Ȧ(t)B̈(t)

Ȧ(t)B(t) − A(t)Ḃ(t)
,

where A(t) and B(t) determine a general solution,

q(t) − qA,B = A(t)q(t = 0) + B(t)v(t = 0)

+
∫ t

0
B(t − t ′)ξ (t ′)dt ′, (23)

of the linear integrodifferential equation of motion (1). The
result, Eq. (22), is obtained by plugging Eqs. (19) and (23) into
Eq. (1) and equating coefficients in front of the initial position
q(t = 0) and initial velocity v(t = 0) ≡ q̇(t = 0). Moreover,

A(t) = 1 − C

B

∫ t

0
B(t ′)dt ′,

B(t) = D1e
s1t + D2e

s2t + D3e
s3t , (24)

where s1,s2, and s3 are roots of the secular equation

s3 + 1

τ
s2 + C + κ0

B
s + C

τ
= 0 (25)

and the coefficients D1,D2, and D3 are equal to

D1 = (s1 + 1/τ )

(s1 − s2)(s1 − s3)
, D2 = −(s2 + 1/τ )

(s1 − s2)(s2 − s3)
,

D3 = (s3 + 1/τ )

(s1 − s3)(s2 − s3)
. (26)

Different solutions of the cubic secular equation (25) are
defined by a sign of the discriminant,


(τ ) = 18C(C + κ0)

Bτ 2
− 4C

τ 4
+ (C + κ0)2

B2τ 2

−4(C + κ0)3

B3
− 27C2

τ 2
. (27)

If 
 > 0, then the cubic equation has three distinct real roots.
If 
 < 0, then one root (let us call it s1) is real, while the other
two roots, s2 and s2, are complex conjugated. In this respect,
it is relevant to introduce into consideration a threshold value,
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FIG. 2. Time dependences of the functions γ (t), C ′(t) (22), defining the general friction-conservative splitting (19) of the time-retarded
force in the Langevin equation of motion (1), for the motion near the barrier top and at correlation times τ < τthresh.

τthresh, of the correlation time τ at which the discriminant (27)
of the cubic equation (25) changes its sign,


(τ = τthresh) = 0. (28)

For the present choice of the model parameters (7)–(10) the
threshold value of the correlation time τthresh is about 4 ×
10−23 s.

A. Motion near the barrier top

In the case of motion near the barrier top at q = qB [when
C ≡ CB < 0 in Eq. (25)], the first root s1 of the cubic secular
equation (25) is positive at any value of the correlation time τ .
This root sets in an exponentially unstable mode of motion in
Eq. (24), describing a subsequent drift from the barrier top.

The other two roots s2 and s3 of the cubic equation (25) are
both real and negative at τ < τthresh [see Eqs. (27) and (28)].
Modes of motion, associated with them, are exponentially
decaying in time and of minor importance in comparing to
the es1t mode. This fact can be illustrated in terms of the
functions γ (t),C ′(t) (22), defining the friction-conservative
splitting (19) of the time-retarded force in the non-Markovian
Langevin equation of motion (1), which are shown in Fig. 2.

We see that both functions γ (t),C ′(t) subsequently saturate
with time and approach the values [see Eqs. (22) and (24)]

γ0,B = (−2B)[s1 + min(s2,s3)],
(29)

C ′
0,B = (−B)[s1 − min(s2,s3)]2, τ < τthresh,

which can be treated as some effective friction, γ0,B , and
stiffness correction, C ′

0,B , coefficients. In other words, at
τ < τthresh in the long time limit the non-Markovian dynamics
(1)–(5) can be reduced to the corresponding Markovian one,
in the presence of usual friction −γ0,B q̇(t) and conservative
−CB(q − qB) forces.

The situation is principally different at the correlation times
τ , which are larger than the threshold value τthresh. Now, if the
first root s1 of the secular equation (25) remains positively
defined, the second s2 and third s3 roots become complex
conjugated numbers. This means that the system (23) and (24)
are initially trapped in the memory-induced dynamical barrier
Ẽpot(q) (18) (see also Fig. 1), where it undergoes damped
oscillations with a frequency (s2 − s3)/[2i] and damping rate
−(s2 + s3)/2. Due to oscillatory character of motion at large
correlation times τ , the functions γ (t) and C ′(t) have complex
time behavior and do not have well-defined long time limits. In
spite of that, we associate the effective friction coefficient γ0 to
the damping rate −(s2 + s3)/2 of the characteristic coordinate

FIG. 3. The correlation-time dependence of the effective friction coefficient γ0,B and the memory-induced correction C ′
0,B to the stiffness (29)

and (31) of the non-Markovian Langevin system (1)–(5) for the motion near the barrier top.
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FIG. 4. The correlation-time dependence of the effective friction coefficient γ0,A and the memory-induced correction C ′
0,A to the stiffness (32)

of the non-Markovian Langevin system (1)–(5) for the motion near the potential minimum.

oscillations, while the effective correction C ′
0 to the stiffness

of the system can be estimated from the condition that√(
γ (t)

2B

)2

− (CB + C ′(t))
B

− γ (t)

2B
→ s1,

√
|CB |/Bt 
 1.

(30)
Thus,

γ0,B = (−B/2)(s2 + s3),
(31)

C ′
0,B = −CB − B

(
4s2

1 + 4s1γ0,B/B
)
, τ > τthresh.

In Fig. 3, we reproduced the whole dependence of the effective
friction coefficient γ0,B and the memory-induced correction
C ′

0,B to the system’s stiffness (3) on the correlation time τ ,
given by the expressions (29) and (31).

We see that at sufficiently small correlation times τ the
friction coefficient γ0,B grows linearly with τ in accordance
with the analytical result (14) and drops out at large values of
τ [see Eq. (17)]. On the other hand, the system’s stiffness (3)
gets a negative quadratic in τ correction C ′

0 at small correlation
times τ while at fairly large correlation times (τ > τthresh) the
system’s stiffness increases due to the positive additive C ′

0,B .

B. Motion near the potential minimum

Taking into account of the memory effects in the fission
dynamics does not violate the oscillatory character of motion
of the system (1)–(5) near the potential minimum at qA [when
C ≡ CA > 0 in Eq. (25)]. Thus, the time oscillations of the
system’s coordinate q(t) (23) are still defined by the complex
conjugated roots s2 and s3 of the secular equation (25) and the
root s1 is of minor importance as far as it is negative and the
corresponding mode of motion es1t , associated with this root,
drops out much faster than the periodic modes es2t and es3t . In
view of this circumstance, we associate the effective friction
coefficient γ0,A of the non-Markovian fission dynamics (1)–
(5) with damping rate of the system’s oscillations and define
the correction factor C ′

0 to the system’s stiffness (3) through
the difference between the memory-renormalized frequency
of the oscillations and unperturbed value ωA (2),

γ0,A = (−B/2)(s2 + s3), C ′
0,A = (B/4)(s2 − s3)2 − CA.

(32)

The parameters γ0,A and C ′
0,A as functions of the correlation

time τ are plotted in Fig. 4.
As in the case of motion near the barrier top (see Fig. 3),

the friction coefficient γ0 behaives nonmonotonically with
the correlation time τ , increasing linearly [according to the
result (14)] with τ at quite small correlation times and dropping
out [in agreement with the result (17)] at fairly large correlation
times. Notice that at τ < τthresh, the memory effects diminish
the system’s stiffness (3) and significantly enhance it at
τ � τthresh; see Eq. (18).

IV. FISSION RATE

It is of interest to look at how the previously described time
features of the non-Markovian Langevin dynamics (1)–(5)
manifest themselves in observable characteristics like fission
rate. With this purpose, we introduce a rate, R(t), of probability
over the barrier as

R(t) = − 1

P(q[t] � qB)

d[P(q[t] � qB)]

dt
, (33)

where P(q[t] � qB) is a probability of finding the system q(t)
on the left from the barrier top qB up to time t . In Fig. 5,
we present the time-dependent probability rate R(t) (33) of

FIG. 5. Time dependence of the probability rate R(t) (33) at the
correlation times τ = 2 × 10−23 s and τ = 10 × 10−23 s.
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FIG. 6. The fission rate Rf as an asymptotic value of the
probability rate (33) (solid line) as a function of the correlation time
τ . The standard Kramers formula (34) for the fission rate with the
τ -dependent friction coefficient γ0,B of Eqs. (29) and (31) is given by
the dashed line.

the non-Markovian dynamics (1)–(5) at τ = 2 × 10−23 s and
τ = 10 × 10−23 s.

Importantly that the rate R(t) of the probability flow across
the barrier subsequently saturates with time and approaches
some constant value Rf both at sufficiently small correlation
times τ = 2 × 10−23 s (when the memory effects in the fission
dynamics are relatively weak) and at quite large correlation
time τ = 10 × 10−23 s (when the memory effects are strong
enough). The constancy of the probability rate R(t) at large
times t implies the stationary regime of thermal nuclear
diffusion (1)–(5) over the fission barrier, which is characterized
by the fission rate Rf . The fission rate Rf (33) as a function of
the correlation time τ is displayed in Fig. 6 by a solid line. For
comparison, we showed in Fig. 6 by a dashed line the fission
rate calculated within the standard Kramers formula [1], which
in our notation reads as

RKr = 1

2π

√
CA

B

⎛
⎝

√(
γ0,B

2
√

B|CB |
)2

+ 1 − γ0,B

2
√

B|CB |

⎞
⎠

× exp

(
−Eb

T

)
, (34)

where the τ -dependent friction coefficient γ0,B is given by the
expressions (29) and (31).

The fission rate increases from zero up to some value at
τ ≈ 0.5 × 10−23 s. We believe that for our choice κ0exp(−|t −
t ′|/τ ) for the memory kernel in the non-Markovian Langevin
equation of motion (1) the initial growth of the fission rate at
small correlation times τ has a threshold character. It follows

from Eq. (14) that the thermal diffusion across the barrier
is absent at τ = 0 and rises linearly with the correlation
time τ . The relative role of the friction force |γ0q̇(t)| in
the fission dynamics also grows linearly with τ [according
to Eq. (14)] but it remains much smaller than the effect
of the conservative force |C(q − qA,B )| on the dynamics
γ0/

√
B|C| � 1 at τ < 0.5 × 10−23 s (see Figs. 3 and 4). Only

at the correlation time ≈0.5 × 10−23 s are the contributions
from the friction and conservative forces comparable and
the thermal diffusion across the barrier stops rising. From
0.5 × 10−23 s to the threshold value 4.5 × 10−23 s (when
the memory effect on the fission dynamics is still relatively
weak), the friction part of the time-retarded force in Eq. (1)
dominates over the conservative part |C ′

0(q − qA,B)| and we
observe the corresponding decrease of the fission rate with
the correlation time τ . When the non-Markovian effects in the
fission dynamics (1)–(5) are relatively strong (as at τ � τthresh),
the decrease of the rate Rf of thermal diffusion over the
barrier is caused by the growing role of the conservative part
|C ′

0(q − qA,B)| of the time-retarded force in Eq. (1), when the
system’s stiffness is enlarged by amount C ′

0 > 0; see Figs. 3
and 4.

We see that taking into account of only the friction part
|γ0q̇(t)| of the time-retarded force in Eq. (1) leads to the
increase of the fission rate with the correlation time at τ �
τthresh. The same quantitative conclusion on the non-Markovian
impact on the fission dynamics can be met in Ref. [10], where
it is made by evaluating the overpassing probability over
a schematic parabolic barrier. There, because of a different
choice, (1/τ )exp(−|t − t ′|/τ ), of the memory kernel in the
generalized Langevin equation of the type (1), the relative role
of the time-retarded force

∫ t

0 (1/τ )exp(−|t − t ′|/τ )q̇(t ′)dt ′
diminishes with the correlation time τ . This, in turn, leads to
the non-Markovian acceleration of thermal diffusion over the
barrier. In our case of the memory kernel exp(−|t − t ′|/τ ) of
the Langevin equation of motion (1), the friction part |γ0q̇(t)|
of the time-retarded force drops out at the long correlation
time limit while the conservative part C0(q(t) − q0) survives
and significantly enhances the system’s stiffness; see Eq. (15).
Therefore, the system’s stiffness near the barrier top CB in the
Kramers formula (34) should be appropriately renormalized
in order to correctly reproduce the decrease of the fission
escape rate at large values of the correlation time τ . With
this purpose, we are going to extend the Kramers theory [1]
on non-Markovian diffusion over the barrier, Eqs. (1)–(5).

A. Non-Markovian extension of the Kramers theory

The non-Markovian dynamics (1)–(5) may be con-
sidered as a two-dimensional Gaussian random process
(q(t),q0; v(t),v0; t), defined by the probability distribution
function [15],

W (q,q0; v,v0; t) = 1

2πσq(t)σv(t)
√

1 − rqv(t)

× exp a

(
− 1

2
[
1 − r2

qv(t)
]
{

[q − 〈q(t)〉]2

σ 2
q (t)

+ [v − 〈v(t)〉]2

σ 2
v (t)

− 2rqv(t)[q − 〈q(t)〉][v − 〈v(t)〉]
σq(t)σv(t)

})
,
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where, as it follows from Eq. (23),

〈q(t)〉 = A(t)q0 + B(t)v0, 〈v(t)〉 = Ȧ(t)q0 + Ḃ(t)v0, (35)

and

σ 2
q (t) ≡ 〈q2(t)〉 − 〈q(t)〉2 = κ0T

∫ t

0
dt1

∫ t

0
dt2B(t − t1)B(t − t2)exp

(
−−|t1 − t2|

τ

)
,

rqv(t) ≡ 〈q(t)v(t)〉 = κ0T

∫ t

0
dt1

∫ t

0
dt2B(t − t1)Ḃ(t − t2)exp

(
−−|t1 − t2|

τ

)
, (36)

σ 2
v (t) ≡ 〈v2(t)〉 − 〈v(t)〉2 = κ0T

∫ t

0
dt1

∫ t

0
dt2Ḃ(t − t1)Ḃ(t − t2)exp

(
−−|t1 − t2|

τ

)
.

Knowing the probability distribution function W(q,q0; v,v0; t), one can obtain the corresponding Fokker-Planck equation of the
non-Markovian fission dynamics (1)–(5). By using the result of Ref. [19], we write the Fokker-Planck equation as

∂W

∂t
+ v

∂W

∂q
+ [C + C ′(t)]

B
q

∂W

∂v
= γ (t)

B

∂

∂v
[vW ] + T γ (t)

B

∂2W

∂v2
+ C ′(t)

C
T

∂2W

∂v∂q
, (37)

where the functions γ (t), C ′(t) are given by Eq. (22) and the system’s stiffness C is defined by Eq. (3). The non-Markovian
character of the fission dynamics shows up in the Fokker-Planck equation (37) through the time dependencies of the functions
γ (t), C ′(t) and in the presence of a cross-term, ∼∂2W/∂v∂q.

We would like to find a stationary solution, Wstat, to the Fokker-Planck equation (37). In the vicinity of the potential minimum
qA, the stationary solution is given by modified a Maxwell-Boltzmann distribution,

Wstat,A(q ≡ q − qA; v) = const · exp

(
− (B/2)v2

T
− (CA/2)q2

T (1 + C ′
0,A/CA)

)
, (38)

while near the barrier top qB , it can be seen in the following form:

Wstat,B(q ≡ q − qB ; v) = const · F (q,v) · exp

(
− (B/2)v2

T
− [Eb + (CB/2)q2]

T (1 + C ′
0,B/CB)

)
. (39)

In Eqs. (38) and (39) it is assumed that in the long time limit the functions γ (t), C ′(t) (22) may be associated with the effective
friction coefficient γ0 and the memory-induced correction C ′

0 to the system’s stiffness at any value of the correlation time τ ; see
our remarks on the validity of this assumption before Eqs. (31) and (32).

By substituting the solution (39) into Eq. (37), we obtain an equation for unknown function F (q,v):(
1 + C ′

0,B

CB

)
v
∂F

∂q
+

(
− CB

B(1 + C ′
0,B/CB)

q + γ0,B

B
v

)
∂F

∂v
= T γ0,B

B

∂2F

∂v2
+

(
1 + C ′

0,B

CB

)
T

B

∂2F

∂v∂q
. (40)

Let us make the ansatz for the function F :

F ≡ F (v − aq) ≡ F (χ ), (41)

where a constant a is defined by the boundary conditions:

F → 1, χ → −∞; F → 0, χ → +∞. (42)

Here, we assumed that the relative locations q ≡ q − qB of the potential minimum and the barrier top are far from each other so
that initially almost all the particles concentrate near the potential minimum (F → 1, χ → −∞), while there is no particles on
the right from the barrier top (F → 0, χ → +∞ ).

One can show that

F (χ ) = F0

∫ χ

−∞
exp

[
− [(1 + C ′

0,B/CB)a − γ0,B/B]

(2T/B)[γ0,B/B − (C ′
0,B/CB)a]

χ ′2
]
dχ ′, (43)

with

F0 =
√

[(1 + C ′
0,B/CB)a − γ0,B/B]

(2πT/B)[γ0,B/B + (C ′
0,B/CB)a]

(44)
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and

a = 1

(1 + C ′
0,B/CB)

√
|CB |
B

⎡
⎣

√(
γ0,B

2
√

B|CB |
)2

+ (1 + C ′
0,B/CB) + γ0,B

2
√

B|CB |

⎤
⎦. (45)

Following Kramers [1], we calculate a number of particles, νA, in the vicinity of the potential minimum as [see Eq. (38)]

νA =
∫ +∞

−∞

∫ +∞

−∞
Wstat,A(q; v)dqdv (46)

and a particle’s current, jB , across the barrier top as [see Eq. (39)]

jB =
∫ +∞

−∞
Wstat,B(q = qB ; v)vdv. (47)

In Eq. (46), the integration limits over q ≡ q − qA were extended from −∞ to +∞ as far as the main contribution to the integral
arises from a small region near q = 0. We define a stationary rate of escape of particles over the barrier as a ratio

RKr−nonMark = jB

νA

. (48)

The result reads

RKr−nonMark = 1

2π

√
CA

B

⎛
⎝

√(
γ0,B

2
√

B|CB |
)2

+ (1 + C ′
0,B/CB) − γ0,B

2
√

B|CB |

⎞
⎠exp

(
−Eb

T

)
. (49)

In fact, the non-Markovian character of the thermal diffusion
across the barrier (1)–(5) reveals itself in the renormalization
of the system’s stiffness coefficient near the barrier top, CB →
CB + C ′

0,B . We point out that our result (49) for the non-
Markovian Kramers rate coincides with the result of transition-
state theory, developed by Grote and Hynes in Ref. [20]:

RT ST
Kr = 1

2π

√
CA

|CB | s1exp

(
−Eb

T

)
, (50)

where s1 is the largest positive root of the secular equation (25)
and where Eq. (30) was used.

FIG. 7. The fission rate Rf as an asymptotic value of the
probability rate (33) (solid line) vs the correlation time τ . The
non-Markovian extension of the Kramers theory (49) for the fission
rate is shown by the dashed line. The dotted line represents the fission
rate Rf calculated as inverse first-passage time (51).

In Fig. 7, we compared the fission rate Rf (33), numeri-
cally calculated from the non-Markovian Langevin dynamics
(1)–(5) and which is shown by solid line, with our analytical
estimation (49) of the fission rate, represented in the figure by
the dashed line. Also, in the figure we present (by dotted line)
the value of the fission rate Rf calculated as

Rf = 1

〈tAB〉 , (51)

where 〈tAB〉 is the mean time of motion from the potential
minimum position (point A in Fig. 1) to the barrier top (point
B in Fig. 1).

We see that the memory-modified Kramers formula (49)
correctly reproduces the decrease of the fission rate R0 at
moderate and fairly large values of τ . Notice that the difference
between the result (49) and numerically calculated value of
the fission rate grows with the correlation time τ , due to the
possibly inaccurate estimation (31) of the memory-induced
correction C ′

0,B to the system’s stiffness near the barrier top.
It is interesting that the inverse mean first-passage time

estimation (51) for the fission rate perfectly describes the Rf

at large correlation times τ . As the correlation time τ increases,
the expression (51) better fits the numerically calculated value
of the fission rate. The reason for that is probably the over-
damped character of motion at large values of the correlation
times, when the memory effects are relatively strong but
the effective friction coefficient γ0,B is much larger than the
renormalized stiffness coefficient |CB + C ′

0,B |; see Fig. 3.

V. SUMMARY

In attempt to understand the influence of non-Markovian
character of collective motion on the rate of symmetric
fission of highly excited atomic nuclei, we have applied the
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generalized Langevin approach (1)–(5) for a single nuclear
shape variable q(t). The potential energy of the deformation
of a nucleus Epot (2) has been taken in a simple form of a
smooth joining of the harmonic oscillator potential with the
inverted parabolic potential [see Eq. (2)]. The strength of the
non-Markovian effects in the nuclear fission dynamics (1)–(5)
has been measured by the correlation time τ , defining different
regimes of the motion. We have demonstrated that the non-
Markovian effects disappear either (i) at quite small correlation
times, when the motion undergoes in the presence of usual fric-
tion and δ-correlated random forces (14), or (ii) at fairly large
correlation times, when the stiffness of the system (3) is signif-
icantly enhanced; see Eq. (18) and the dashed lines in Fig. 1.

At moderate values of the correlation time τ , we have
assumed general friction-conservative splitting (19) of the
time-retarded force in the Langevin equation of motion (1).
The time-dependent functions γ (t),C ′(t), determining such
a splitting, have been found analytically (22) through the
solution to the secular equation (25), and those roots define
different modes of motion of the system. We have shown that in
the case of weak memory effects (when all roots of the secular
equation are real) the functions γ (t),C ′(t) go with time to
finite limiting values, which may be naturally associated with
some effective friction coefficient γ0 and memory-induced
correction C ′

0 to the system’s stiffness C (3); see Figs. 3
and 4. The proposed analytical expressions for the coefficients
γ0,C

′
0 [Eqs. (31) and (32)] in the opposite case of quite strong

memory effects (when two roots of the secular equation (25)
are complex conjugated and the motion of the system becomes
oscillating) show the decrease of friction with the size τ of the
memory effects and the enhancement of the system’s stiffness
C + C ′

0 with the growth of τ .

To calculate the rate characteristics of symmetric fission
of heavy nuclei, we have solved numerically the Langevin
equation of motion (1) for the probability flow R(t) (33)
across the parabolic barrier and have defined the fission rate
Rf as a corresponding long time limit of R(t); see Fig. 5.
Nonmonotonic dependence of the fission rate on the size τ
of the non-Markovian effects in the Langevin dynamics (1),
when the rate of symmetric fission grows initially at small
values of τ and decreases at large correlation times τ , has been
observed (see Fig. 6). We have attributed the initial growth of
the fission rate to the action of the usual conservative force
−∂Epot/∂q, which is slightly enhanced by the non-Markovian
effects (see Figs. 3 and 4) and which remains sufficiently
larger than the friction force −γ0q̇(t). The subsequent decrease
of the fission rate in Fig. 6 at moderate correlation times
τ has been explained by the growing role of the friction,
when the motion of the system becomes overdamped. At
large correlation times τ , the fission rate drops out due to
the blocking of the system, appearing as a result of the
non-Markovian renormalization of the stiffness coefficient
(18).

In addition to the numerical calculations of the fission
rate, we have suggested the non-Markovian extension of the
classical Kramers result for the escape rate over the parabolic
barrier. We have shown that the memory effects are manifested
in the Kramers rate formula (49) as a modification of the
system’s stiffness at the barrier top, C → C + C ′

0,B . Such kind
of modification reduces the fission rate Rf in the long-time
correlation regime, improving the agreement of the Kramers
rate formula (49) with the result of exact solution of the
non-Markovian Langevin equation of motion (1); see the
dashed line in Fig. 7.
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