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Direct microscopic calculation of nuclear level densities in the shell model Monte Carlo approach
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Nuclear level densities are required for estimating statistical nuclear reaction rates. The shell model Monte
Carlo method is a powerful approach for microscopic calculation of state densities in very large model spaces.
However, these state densities include the spin degeneracy of each energy level, whereas experiments often
measure level densities, in which each level is counted only once. To enable the direct comparison of theory
with experiments, we introduce a method to calculate directly the level density in the shell model Monte Carlo
approach. The method employs a projection on the minimal absolute value of the magnetic quantum number. We
apply the method to nuclei in the iron region and to the strongly deformed rare-earth nucleus 162Dy. We find very
good agreement with experimental data obtained by various methods, including level counting at low energies,
charged particle spectra and Oslo method data at intermediate energies, neutron and proton resonance data, and
Ericson’s fluctuation analysis at higher excitation energies. We also extract a thermal moment of inertia from the
ratio between the state density and the level density, and observe that in even-even nuclei it exhibits a signature
of a phase transition to a superconducting phase below a certain excitation energy.
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I. INTRODUCTION

The level density is among the most important statistical
properties of atomic nuclei. It appears explicitly in Fermi’s
golden rule for transition rates and in the Hauser-Feshbach
theory [1] of statistical nuclear reactions. Yet its microscopic
calculation presents a major theoretical challenge. In par-
ticular, correlations have important effects on nuclear level
densities but are difficult to include quantitatively beyond
the mean-field approximation. The configuration-interaction
(CI) shell model is a suitable framework, in which both shell
effects and correlations are included. However, the dimension
of the required model space increases combinatorially with
the number of single-particle states and/or the number of
nucleons, and conventional shell model calculations become
intractable in medium-mass and heavy nuclei. This difficulty
has been overcome using the shell model Monte Carlo
(SMMC) approach [2–5]. The SMMC has proved to be a
powerful method to calculate microscopically nuclear state
densities [6–11].

The SMMC method is based on a thermodynamic approach
in which observables such as thermal energy are calculated by
tracing over the complete many-particle Hilbert space at fixed
numbers of protons and neutrons. Thus, the calculated density
is the state density, which takes into account the magnetic
degeneracy of the nuclear levels, i.e., each level of spin J is
counted 2J + 1 times.

However, experiments often measure the level density, in
which each level is counted exactly once, irrespective of its
spin degeneracy [12–14]. To directly compare theory with
experiments, it is necessary to calculate the level density within
the SMMC approach. A spin-projection method, introduced in
Ref. [10], can be used to calculate the level density ρJ (Ex) for
spin J and excitation energy Ex . While the state density is
given by ρ(Ex) = ∑

J (2J + 1)ρJ (Ex), the total level density
is ρ̃(Ex) = ∑

J ρJ (Ex). However, this latter formula is not
useful for practical calculations because the statistical errors

of ρJ (Ex) increase with J , and the resulting statistical errors
in ρ̃(Ex) are too large.

Here we introduce a simple method to calculate directly
and accurately the level density in SMMC. We present level
density calculations of medium-mass nuclei in the iron region
and of the heavy well-deformed nucleus 162Dy. We find very
good agreement with experimental data obtained by a variety
of methods, including level counting at low energies, charged
particle spectra and Oslo method data at intermediate energies,
neutron and proton resonance data, and Ericson’s fluctuation
analysis at higher excitation energies. We note that our method
can be applied more generally to many-particle systems with
good total angular momentum.

II. LEVEL DENSITY IN SMMC

For any nuclear level with spin J and magnetic quantum
number degeneracy of 2J + 1, the state with the lowest
possible non-negative spin projection M appears exactly once.
Denoting by ρM the level density for a given value of the
spin projection M , the total level density for even-mass nuclei
(whose spin is integer) is given by ρ̃ = ρM=0, while for
odd-mass nuclei (whose spin is half-integer), the total level
density is ρ̃ = ρM=1/2.

The M-projected level density can be calculated as
in Ref. [10]. For a nucleus described by a shell model
Hamiltonian H and at inverse temperature β = 1/T , the
SMMC method is based on the Hubbard-Stratonovich (HS)
transformation [15] e−βH = ∫

D[σ ]GσUσ , where Gσ is a
Gaussian weight and Uσ is a one-body propagator describing
non-interacting nucleons in time-dependent auxiliary fields σ .
For a quantity X that depends on the auxiliary fields σ , we
define

Xσ ≡
∫

D[σ ]W (σ )Xσ�σ∫
D[σ ]W (σ )�σ

, (1)
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where W (σ ) = Gσ |Tr Uσ | is the positive-definite weight used
in the Monte Carlo sampling and �σ = Tr Uσ/|Tr Uσ | is
the Monte Carlo sign function. Here and in the following,
the traces are evaluated in the canonical ensemble for fixed
numbers of protons and neutrons, which in turn can be
calculated from grand-canonical traces by particle-number
projections.

The M-projected thermal energy EM (β) = 〈H 〉M is calcu-
lated using

〈H 〉M ≡ TrM (He−βH )

TrMe−βH
=

[TrM (HUσ )
TrUσ

]

[TrMUσ

Tr Uσ

] . (2)

The trace TrMX at fixed spin component M can be calculated
by a discrete Fourier transform

TrMX = 1

2Js + 1

Js∑

k=−Js

e−iϕkMTr(eiϕkĴzX), (3)

where ϕk (k = −Js, . . . ,Js) are quadrature points ϕk =
π k

Js+1/2 and Js is the maximal spin in the many-particle shell
model space (for the given numbers of protons and neutrons).

The M-projected canonical partition function ZM (β)
is calculated by integrating the thermodynamic relation
−d ln ZM/dβ = EM (β), taking ZM (β = 0) to be the total
number of levels with the magnetic quantum number M . For
the lowest non-negative value of M , ZM (β = 0) is the total
number of levels without counting their magnetic degeneracy.
The M-projected level density ρM (Ex) is then calculated in
the saddle-point approximation

ρM ≈ 1√
2πT 2CM

eSM , (4)

where SM and CM are, respectively, the M-projected canonical
entropy and heat capacity:

SM = ln ZM + βEM, CM = dEM

dT
= −β2 dEM

dβ
. (5)

In the calculation of CM we implemented the method of
Ref. [16], in which the same set of auxiliary fields is used
to calculate both E(β + δβ) and E(β − δβ) in the numerical
derivative. This enables us to take into account correlated
errors, thus reducing significantly the statistical errors in the
heat capacity compared to a direct numerical derivative of the
thermal energy. Equation (4) is analogous to the formula used
for the state density [6] in which the corresponding quantities
do not include M projection.

The projection on the spin component M usually introduces
a sign problem that leads to large fluctuations of observables at
low temperatures (even for a good sign interaction). However,
for even-even nuclei Tr(eiϕkĴzUσ ) is almost always positive
(for a good sign interaction), and using Eq. (3) with M = 0
and X = Uσ we have TrM=0 Uσ > 0. Thus the level density
of even-even nuclei can be calculated accurately down to low
excitation energies without a sign problem.
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FIG. 1. (Color online) Level densities versus excitation energy
Ex for 56Fe, 60Ni, 62Ni, and 60Co. SMMC level densities ρ̃(Ex) =
ρM=0(Ex) (solid circles) are compared with various experimental data
sets [14]: level counting at low excitation energies (open diamonds),
charged particle spectra [17] at intermediate energies (dashed lines),
and Ericson’s fluctuation analysis [18] at higher energies (open
circles). For 60Co there is also the proton resonance data (open
square) [19,20].

III. MEDIUM-MASS NUCLEI

We demonstrate the SMMC calculation of level densities
for medium-mass nuclei in the iron region using the CI shell
model Hamiltonian of Ref. [6] in the complete pfg9/2 shell.
In Fig. 1 we compare SMMC level density calculations (solid
circles with error bars) for 56Fe, 60Ni, 62Ni, and 60Co with
various experimental data compiled in Ref. [14]: (i) level
counting at low excitation energies (open diamonds), (ii)
charged particle reactions such as (α,α′), (p,p′), (p,α), and
(α,p) at intermediate excitation energies (dashed lines) [17],
and (iii) Ericson’s fluctuation analysis at higher excitation
energies (open circles) [18]. For 60Co there are also high-
resolution proton resonance data at around 8 MeV (open
square) [19,20]. Overall, we find good agreement between
the SMMC calculations and the experimental data.

A. Spin-cutoff parameter

In the spin-cutoff model [21], the spin distribution ρJ (Ex)
is given by

ρJ (Ex) = ρ(Ex)
(2J + 1)

2
√

2πσ 3
c

e
− J (J+1)

2σ2
c , (6)
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where ρ(Ex) is the total state density and σc = σc(Ex) is an
energy-dependent spin-cutoff parameter. The distribution (6)
is normalized such that

∑
J (2J + 1)ρJ (Ex) ≈ ρ(Ex). Equa-

tion (6) can be derived in the random coupling model of
individual spins [21]. In this model, the level density ρ̃(Ex)
can be calculated to be

ρ̃(Ex) =
∑

J

ρJ (Ex) ≈ 1√
2πσc

ρ(Ex), (7)

where the sum over spin is calculated by converting it to
an integral. An effective spin-cutoff parameter can then be
estimated from the ratio of the total state density to the total
level density, i.e., σc(Ex) = (2π )−1/2ρ(Ex)/ρ̃(Ex).

B. Pairing correlations

In the thermodynamic limit, pairing correlations lead to
a pairing phase transition at a certain critical temperature
below which the system is superconducting, as described
by the mean-field Bardeen-Cooper-Schrieffer (BCS) theory.
However, in a finite-size system such as the nucleus, there are,
strictly speaking, no phase transitions. An interesting question
is whether signatures of the pairing phase transition remain
in the finite nucleus, where fluctuations beyond mean-field
theory are important. A signature of pairing correlations in a
nucleus might be observed in its response to rotations, i.e., in
its moment of inertia. The moment of inertia is analogous to
the magnetic susceptibility, which is known to be suppressed
in bulk superconductors below the critical temperature. We can
extract a moment of inertia I at finite excitation energy from
the above spin-cutoff parameter using σ 2

c = IT /�
2, where T

is the nuclear temperature.
We have determined the moment of inertia I from the

calculated SMMC state and level densities of 56Fe and
60Co. In Figs. 2 and 3 we show the corresponding state
densities (open squares) and level densities (solid circles)
and the corresponding moment of inertia I (bottom panels)
versus excitation energy Ex . For the odd-odd nucleus 60Co
the moment of inertia depends only weakly on excitation
energy. However, for the even-even nucleus 56Fe we observe a
suppression of the moment of inertia at low excitation energies.
This suppression is a signature of pairing correlations, and is
consistent with the results in Ref. [10], in which the moment
of inertia was extracted from the spin distributions.

IV. HEAVY RARE-EARTH NUCLEUS 162Dy

In Refs. [22,23] we extended the SMMC approach to heavy
nuclei in the rare-earth region using the 50-82 major shell
plus the 1f7/2 orbital for protons, and the 82-126 major shell
plus the 0h11/2 and 1g9/2 orbitals for neutrons. We described
successfully the rotational character of the strongly deformed
nucleus 162Dy [22] as well as the crossover from vibrational to
rotational collectivity in families of samarium and neodymium
isotopes [23].

We applied the method introduced here to calculate the
level density of 162Dy. The top panel of Fig. 4 shows the
SMMC level density ρ̃(Ex) = ρM=0(Ex) (solid circles) and
SMMC state density ρ(Ex) (open squares) of 162Dy. We
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FIG. 2. (Color online) Top panel: the SMMC state density (open
squares) and level density (solid circles) versus excitation energy
Ex for 60Co. The experimental level density data follow the same
convention as in Fig. 1. Bottom panel: thermal moment of inertia for
60Co extracted from the ratio of the state density to the level density
(solid circles). The dashed line is the rigid-body moment of inertia.

compare the SMMC level density with various experimen-
tal data sets: (i) level counting (solid histograms) [24,25],
(ii) renormalized Oslo data (open circles) [26,27], and
(iii) neutron resonance data (triangle) [28]. We find very good
agreement between theory and experiments.

Unlike iron-region nuclei, 162Dy is a strongly deformed
nucleus and it is of interest to determine whether such a nucleus
also exhibits signatures of the pairing phase transition. We
extracted the moment of inertia I of 162Dy as a function of
excitation energy Ex from the state-to-level density ratio. We
found that I depends only weakly on 
β, and took an average
over its values for the 
β = 1/32 and 
β = 1/64 MeV−1 time
slices to reduce the statistical errors. The results are shown in
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FIG. 3. (Color online) As in Fig. 2 but for 56Fe.
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FIG. 4. (Color online) Top panel: SMMC level density (solid
circles) compared with the state density (open squares) in 162Dy.
Also shown are experimental data sets for the level density: level
counting at low excitation energies (histograms) [24,25], Oslo data
at intermediate energies (open circles) [26,27], and the neutron
resonance data (triangle) [28]. Bottom panel: thermal moment of
inertia I of 162Dy (solid circles) as a function of excitation energy Ex .
The dashed line is the rigid-body moment of inertia.

the bottom panel of Fig. 4. We observe suppression of I below
Ex ∼ 4 MeV down to values that are about half its rigid-body

value at Ex ∼ 1 MeV. This suppression is a clear signature of
the phase transition to a superconducting phase.

V. CONCLUSION

In conclusion, we have used a spin-component projection
method to calculate directly and accurately the SMMC nuclear
level density ρ̃(Ex) as the projected density ρM=0(Ex) for
even-mass nuclei. The method is easily extended to odd-mass
nuclei by using ρ̃(Ex) = ρM=1/2(Ex) [29]. This method allows
us to make direct comparison with experimental data. We find
very good agreement between the microscopic SMMC level
density and the experimental data for nuclei in the iron region
and for the rare-earth nucleus 162Dy. We have also extracted
the moment of inertia I at finite excitation energy from the
ratio between the state density and level density. In even-even
nuclei we observe a strong suppression of I below a certain
excitation energy. This suppression is a signature of the phase
transition to a superconducting phase, which is induced by
pairing correlations.
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