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Background: The deviation between different model calculations that may occur when one goes toward regions
where the masses are unknown is getting increased attention. This is related to the uncertainties of the different
models which may have not been fully understood.
Purpose: To explore in detail the effect of the isospin dependence of the spin-orbital force in the Woods-Saxon
potential on global binding energy and deformation calculations.
Method: The microscopic energies and nuclear deformations of about 1850 even-even nuclei are calculated
systematically within the macroscopic-microscopic framework using three Woods-Saxon parametrizations,
with different isospin dependencies, which were constructed mainly for nuclear spectroscopy calculations.
Calculations are performed in the deformation space (β2,γ,β4). Both the monopole and doubly stretched
quadrupole interactions are considered for the pairing channel.
Results: The ground-state deformations obtained by the three calculations are quite similar to each other. Large
differences are seen mainly in neutron-rich nuclei and in superheavy nuclei. Systematic calculations on the
shape-coexisting second minima are also presented. As for the microscopic energies of the ground states, the
results are also very close to each other. Only in a few cases the difference is larger than 2 MeV. The total
binding energy is estimated by adding the macroscopic energy provided by the usual liquid drop model with its
parameters fitted through the least square root and minimax criteria. Calculations are also compared with the
results of other macroscopic-microscopic mass models.
Conclusions: All the three calculations give similar values for the deformations, microscopic energies, and
binding energies of most nuclei. One may expect to have a better understanding of the isospin dependence of the
spin-orbital force with more data on proton- and neutron-rich nuclei.
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I. INTRODUCTION

Nuclear physics is an emergent phenomenon where regular
and simple patterns can be created by the complicated interplay
among its constitutes: protons and neutrons [1]. The under-
standing of its emergent behavior progresses by systematic
experimental observations and the construction of models
to interpret them. New physics was continuously revealed
through the understanding of the global smooth behaviors of
nuclear structure as well as its local fluctuations. In particular,
studies on the nuclear mass and other ground-state properties
reveal strikingly systematic behaviors including the nuclear
liquidlike property, shell structure, pairing correlation, and
superfluidity as well as the nuclear deformation. It is not
surprising that the so-called macroscopic-microscopic (mac-
mic) model [2–6], which is in line with the above picture,
was extremely successful in describing the nuclear ground-
state properties and spectroscopy. A reliable and precise
theoretical prediction is also of particular importance for the
estimation of the masses of experimentally unknown nuclei
far from stability, particularly those along the astrophysical
r-process path. The mac-mic model and its derivations are still
extensively applied nowadays [6–24]. With phenomenological
corrections included, microscopic nuclear density functional
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calculations can also give a comparable description of the
binding energy [25]. Beyond mean-field corrections are also
considered in recent global calculations [26,27]. In addition
to these global calculations, local mass formulas and the
nuclear shell model can give an even more precise description
for a limited number of nuclei (see, e.g., Refs. [28–30] and
references therein).

One perspective that is getting increased attention is the
deviation between different effective theories that may occur
when one goes toward regions where the masses are unknown.
This is related to the uncertainties of the different models
which may have not been thoroughly understood [31,32]. For
example, a number of parameters of the Skyrme force still
cannot be fully determined by fitting to available experimental
data and show large uncertainties [33–35]. One encounters
the same problem when determining the isospin dependence
of the spin-orbit (SO) force of the phenomenological Woods-
Saxon (WS) potential, which can have significant effects on the
evolution of the shell structure in light neutron-rich nuclei [36].
Such uncertainties can be related to the description of the
single-particle structure in both self-consistent mean-field and
phenomenological approaches [36,37]. The influence of the
SO coupling of the Skyrme force on global binding energy
calculations was recently studied in Ref. [25].

The motivation of this work is to calculate systematically
the microscopic energies and nuclear deformations within
the mac-mic framework with different WS parametrizations
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which were constructed primarily for nuclear spectroscopy
calculations. In particular, we are interested in exploring in
detail the performance of the WS parametrization of Ref. [36]
in heavy nuclei and to see whether the isospin dependence
of the SO force has any global influence on binding energy
and deformation. Calculations will also be compared with the
results of other mac-mic mass models.

The paper is organized as follows: In Sec. II, we briefly
introduce the mac-mic approach and the empirical WS single-
particle potential. It is followed by the detailed comparisons on
the calculated nuclear deformations and microscopic energies
in Sec. III. The total binding energies are studied in Sec IV
where the parameters of the liquid drop model are fitted to
experimental binding energies. A short summary is given in
Sec. V.

II. THE THEORETICAL FRAMEWORK: MICROSCOPIC
ENERGY AND THE NUCLEAR DEFORMATION

Within the mac-mic framework [2], the total energy of
a nucleus can be written as the sum of a macroscopic and
a microscopic term. The macroscopic term describes the
bulk properties of the nucleus. It is usually approximated by
the standard liquid drop model or its revised versions. The
microscopic term, which may show large fluctuations with
changing deformation and particle number, has its origins
in the quantum shell effects. It describes the single-particle
properties of the nucleons near the Fermi surface. It usually
consists of the shell and pairing correction terms, which are
evaluated in an average potential well. Thus, for a given
nucleus with Z protons and N neutrons at the full set of
deformation parameters β, the total energy can be written
as [5]

E(N,Z,β) = Emac(N,Z) + Edef(N,Z,β)

+Eshell(N,Z,β) + Epair(N,Z,β). (1)

The deformation correction energy is written as [3,38]

Edef = [Bs(β) − 1]E(0)
s + [Bc(β) − 1]E(0)

c , (2)

where Bs and Bc are functions of the shape of the nucleus
only and are equal to 1 when the nucleus is spherical. E(0)

s

and E(0)
c refer to the spherical surface energy and the spherical

Coulomb energy, respectively.
In this paper, the single-particle level is derived from a

nonaxial deformed WS potential [3,4,39–42] of the form,

V (r,β) = V

1 + exp[(r − R)/a]
+ ∇ Vso

1 + exp[(r − R)/aSO]

×(σ × p) + 1

2
(1 + τ3)VCoul, (3)

which correspond to the central potential, the SO potential, and
the Coulomb potential, respectively. The surface is defined as

R = C(β)R0

⎛⎝1 +
∑
λ,μ

αλ,μYλ,μ

⎞⎠, (4)

where C(β) is the volume conservation factor. The Lund
convention was used to transform the coefficients αλ,μ to

nuclear deformations in terms of β and γ . In the present
work, a nonaxially symmetric shape with coefficients up
to β4κ is considered but only even multiples are included.
That is, the potential energy surface calculation is performed
in the deformation space (β2,γ ,β4) [4]. The ground-state
deformation values are taken as those that correspond to the
minimum in the total energy. The influence of the octupole and
higher-order deformations is considered later in a systematic
calculation within an axially symmetric deformation space.

A variety of parametrizations of the WS potential exists
(see, e.g., Refs. [43–46], Table II in Ref. [47], and Table I in
Ref. [48]). In the “standard” one [43,44], the strengths of the
central and SO potentials are given as

V = −V0

(
1 + 4κ

A
t · Td

)
, (5)

and

VSO = −λV0

(
1 + 4κSO

A
t · Td

)
, (6)

respectively, where we have replaced the original N − Z term
with 4t · Td to get a consistent description of both protons and
neutron orbitals. t and Td denote the isospin quantum numbers
of the last nucleon and of the daughter nucleus, respectively.
The total isospin of the system is T = t + TA−1. It is 4t ·
TA−1 = −3 for the T = 0 ground state of a N = Z nucleus
and

4t · TA−1 = N − Z − 1 for neutron orbits

= −(N − Z + 3) for proton orbits, (7)

in N > Z nuclei with T = (N − Z)/2 [47]. In Ref. [43], the
isospin-dependent terms are parametrized as

κ = κSO = − 33
51 , (8)

where the SO potential depth is assumed to have the same
isospin dependence as that of the central potential. This
assumption is somewhat commonly used [46]. The typical
strength of κ is in the range −0.6 ∼ −0.9. κSO is assumed to be
zero in Ref. [47]. In Ref. [36], an unconventional assumption
is taken as

κSO = −κ, (9)

to explain the shell evolution in light neutron-rich nuclei.
We have shown that the above choice of κSO is essential for
the description of the disappearance of the N = 8, 20 shell
closures and the emergence of the N = 6, 14, 16, 32 as well as
34 new subshells in neutron-rich nuclei. A number of selected
spherical as well as deformed nuclei are evaluated in Ref. [36]
but its global performance was not yet explored. In particular,
our calculations reproduce well the intruder configurations and
ground-state deformations of neutron-rich nuclei around N =
20. A similar island of inversion is expected in neutron-rich
nuclei around N = 40.

The shell correction energy was calculated by the traditional
Strutinsky methods [49]. A correction polynomial of the
order p = 6 and the smoothing parameter γ = 1.2�ω0(�ω0 =
41A−1/3) was used in this paper. The pairing energy is cal-
culated considering both the monopole and doubly stretched
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TABLE I. Parameters of the three Woods-Saxon potentials employed in our calculations. For WS1 and WS3 one has R0 = r0A
1/3 whereas

for WS2 it is R0 = r0(1 + 0.116τ3(N − Z)/A)A1/3 + 0.235 fm and RSO = R0.

V0(MeV) r0(fm) rSO(fm) a,aSO(fm) λ κ κSO

WS1 49.6 1.347(n)/1.275(p) 1.31(n)/1.32(p) 0.7 35(n)/36(p) 0.86 κ

WS2 53.75 1.19 1.19 0.637 29.49 0.791 0.162
WS3 50.92 1.285 1.146 0.691 24.08 0.644 −κ

quadrupole interaction:

v
(λμ)
αβγ δ = −Gλμg

(λμ)
αβ

g
∗(λμ)
γ δ

, (10)

where

g
(λμ)
αβ

=
{

δαβ λ = 0,μ = 0,

〈α|Q̃μ|β〉 λ = 2,μ = 0,1,2.
(11)

Here, α(α) denotes the states of signature r = −i (r =
−i). Using the double-stretched operator (Q′′

μ = r ′′2Y ′′
2μ), the

generators of quadrupole pairing interaction in Eq. (11) have
the form,

Q̃0 = Q′′
20, Q̃μ = 1√

2

(
Q′′

2μ + Q′′
2−μ

)
.

(12)
μ = 1,2.

The monopole paring strength G00 is determined by the
average gap method [50], while the quadrupole pairing
strengths G2μ are obtained by restoring the Galilean invariance
of the system under λ-pole collective shape oscillations [51].
To avoid the spurious pairing phase transition and particle
number fluctuation encountered in the BCS calculation, the
pairing is treated by the Lipkin-Nogami approach [52] in
which the particle number is conserved approximately. For
further details, see Refs. [53–56].

III. GLOBAL CALCULATIONS

We have performed systematic calculations for all even-
even nuclei with Z,N � 8 within the proton and neutron
driplines as defined in Fig. 12 in Ref. [32]. In total 1871 nuclei
are calculated and the ground state is defined by taking the
point with the minimum energy within the deformation space
(β2,γ ,β4). We focus in this paper on the detailed comparison
for known nuclei and thus do not explore the positions of
the driplines as predicted by the present model, which may
depend on the choice of the macroscopic energy model and
the uncertainties induced by the pairing interaction [37,57].
The calculated potential energy surfaces for all the above
nuclei as well as the deformations and microscopic energies
corresponding to the global minimum will be available on our
web page [58].

Three WS parametrizations [36,46,59] are employed in our
calculations, which were constructed for different purposes.
The so-called Universal parameter set was extensively used in
both nuclear structure (e.g., Refs. [60–63]) and radioactive
decay [64–67] studies. The parameter set from Ref. [59]
(see Table I below and Sec. III C in Ref. [15]) was shown
to be very successful in both nuclear spectroscopy [68–71]
and binding energy [15] calculations. In particular, it gives a

good description of the nuclear momentum of inertia and high
spin states. We would also like to emphasize that the above
parameter set assumes a somewhat sophisticated radius of the
form R0 = r0(1 + 0.116τ3(N − Z)/A)A1/3 + 0.235 fm. The
parameter set from Ref. [36] contains much fewer terms and
is primarily fitted to doubly magic nuclei with the restriction
that the radius is smaller than 1.3A1/3. This potential was
not tested much. We are also interested to see whether it has
any major defects in global nuclear structure calculations. We
label the three parameter sets as WS1, WS2, and WS3 for
simplicity. This should not be confused with the WS mass
formula as proposed in Ref. [11]. WS1 has a very strong
isospin dependence in SO force with κ = κSO = 0.86. It is
much weaker in WS2, where κSO is a free parameter with the
value of 0.16. The parameters of the three WS potentials are
listed in Table I.

A. Systematics on nuclear deformation

The calculated quadrupole deformations β2 with the dif-
ferent WS parameter sets are plotted in Figs. 1–3. β2 is
assumed to be positive. A prolate (oblate) shape corresponds
to γ ∼ 0(60) deg. The nucleus would be of maximal triaxial
deformation if one has γ ∼ 30 deg. The γ deformation was not
taken into account in some recent mass-formula calculations.
Its importance is emphasized in Ref. [72].

In most cases, as can be seen from Fig. 4, the deformations
calculated by the three parameters are quite close to each
other. For calculations with parameters WS1 and WS2, there
are only 72 cases where differences between the quadrupole
deformation 
β2 are larger than 0.1, among which one
has 20 with 
β2 � 0.2 and 7 with 
β2 � 0.3. The latter
correspond to nuclei 34Mg, 80Sr, 82Zr, 82Mo, 292Cn, 306118,
306120. For the WS1 and WS3 parameters, there are 118
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FIG. 1. (Color online) Systematic calculations on the quadrupole
deformation β2 of even-even nuclei by using the Woods-Saxon
potential with WS1 from Ref. [46].
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FIG. 2. (Color online) Same as Fig. 1 but for calculations with
WS2 from Ref. [59].

cases where differences between the quadrupole deformation

β2 are larger than 0.1, among which one has 50 (17) with

β2 � 0.2(0.3). As discussed in Ref. [36], many of them are
neutron-rich nuclei with N around 20 and 40 because of the
vanishing of the shell closure. As can be seen in Fig. 3, for
calculations with WS3, the ground states of a few Sn and
Pb isotopes are calculated to be deformed, which are slighter
lower in energy than the spherical minima.

We also compared our calculated deformations with those
given by the mass calculations of Refs. [6,11]. For the
deformations given by the WS3 parameter and those from
Ref. [6], there are as many as 66 (34) cases with 
β2 �
0.2(0.3). However, in the latter cases with 
β2 � 0.3, 27 are
in the superheavy region around N = 192. In comparison to
those given in Ref. [11], there are 30 cases where one has

β2 � 0.2. In addition to the few differences around N = 192,
the other cases are mainly around N,Z = 14,28 and 40. In
particular, 78Zr is predicted to be largely prolate deformed in
our calculation with WS3 but oblate deformed in Ref. [11].
64Ge is predicted to be of triaxial shape with γ = 41 deg in
our calculation with WS3.

The gamma deformations as calculated with the different
WS parameter sets are plotted in Figs. 5–7. Again, the three
calculations give practically the same results for most nuclei.
As can be seen from the figures, most nuclei are of prolate
shape with γ < 10 deg. The nuclei with triaxial and oblate
deformations occur mostly in regions where transition from
spherical to prolate shape is expected. In this context, it may be
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FIG. 3. (Color online) Same as Fig. 1 but for calculations with
WS3 from Ref. [36].
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FIG. 4. (Color online) Comparison between the deformations
calculated from the three different WS parameters. We plot the results
from parameters WS2 and WS3 as a function of those from WS1.

interesting to mention that there is a long history studying the
origin of dominance of nuclei with prolate shape, which may
be sensitive to the details of the WS parametrization [73,74].
However, the predicted deformations seem pretty stable within
the range of the variety of WS parametrizations employed in
this work.

B. Deformations of selected isotopes

As can be inferred from Figs. 1–4, the deformations
predicted by the three calculations are quite similar in most
cases. We are particularly interested in the differences between
predictions by the three calculations. In Fig. 8 we plotted the
predicted deformations of Si, Cr, Ge, Zr, Ru, and Pb isotopes.

For Si isotopes, the large difference occurs around N =
Z = 14. The ground state of 28Si is calculated to be of triaxial
shape with β2 = 0.17 and γ = 22◦ by the WS1 parameter set.
It also gives another two energy minima: The second minimum
is calculated to be of nearly spherical shape with β2 = 0.07
and the third one is of oblate shape with β2 = 0.27. The energy
difference between these three minima is only about 100 keV.
It can be inferred that the shape of 28Si predicted by the WS1
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FIG. 5. (Color online) Systematic calculations on the gamma
deformation γ of even-even nuclei by using the Woods-Saxon
potential with WS1. Only results corresponding to nuclei with
|β2| > 0.1 are shown.
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FIG. 6. (Color online) Same as Fig. 5 but for calculations with
WS2.

calculation is quite soft. The ground state of this nucleus is
calculated to be of oblate shape with β2 = 0.32 and 0.38 in
calculations with WS2 and WS3, respectively. A coexisting
second minimum with triaxial deformation is also predicted
in these two calculations. For calculation with parameters
WS2(WS3), the energy difference between the two minima
is about 300 keV (820 keV).

For Cr isotopes, the largest difference occurs in neutron-rich
nuclei around N = 40. The nucleus 64Cr is predicted to be
spherical in the calculation with the WS1 parameter, while it is
predicted to be of well-deformed prolate shape with β2 = 0.27
by the WS3 calculation. For the calculation with the parameter
set WS2, the coexistence of spherical and prolate shapes was
seen.

For Ge isotopes, large differences occur in nuclei with
N � 56. But for those nuclei, the ground-state shapes calculated
with the three WS parameter sets are somewhat soft in the γ
direction from −30◦ to 60◦. The β2 values are quite close to
each other.

For Zr isotopes, the trends of the evolution of the nuclear
shape with the neutron number calculated with the three WS
parameter sets are quite similar to each other. However, the
locations of the transitions are slightly different. It can be
seen that the transition from well-deformed shape to spherical
shape around N = 40 occurs earlier in the calculation with
the WS3 parameter than in calculations by WS1 and WS2
parameters, while the evolution from spherical shape to oblate
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FIG. 7. (Color online) Same as Fig. 5 but for calculations with
WS3.
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FIG. 8. (Color online) Deformations of Si, Cr,Ge, Zr, Ru, and Pb
isotopes as predicted by different WS calculations.

shape around N = 56 occurs later in the WS3 calculations as
compared to those by WS1 and WS2.

For Ru isotopes, the coexistence of spherical shape and
oblate deformation appears in nuclei around N = 42. The
isotopes with N = 60–66 are predicted to be triaxially
deformed with β2 ∼ 0.25 and γ ∼ 24◦. Then transition from
triaxial to oblate deformation occurs at N = 68 in calculations
by WS1 and WS2 parameters while triaxial shape remains until
N = 74 in calculations with the WS3 parameter.

For Pb isotopes, large differences occur in light lead nuclei
around N = 102 and in heavy nuclei around N = 170. It
is well known that the coexistence of spherical, prolate,
and oblate shapes occurs in light lead nuclei. The ground-
state deformations of those nuclei are spherical according to
calculations with the WS1 and WS2 parameter sets whereas
the prolate minima are lower in energy than the spherical
minima in calculations with the WS3 parameter. This may
be from the simplified treatment of the radius parameters in
WS3. For neutron-rich nuclei with N ∼ 170, the ground-state
deformation is calculated to be spherical by the WS2 parameter
while oblate deformation is obtained by the WS1 and WS3
calculations.

The isospin dependence of the SO force can indeed lead
to large fluctuations in ground-state deformations for certain
nuclei. Its effect on light neutron-rich nuclei is discussed in
Ref. [36]. To explore this point further, we have done schematic
calculations with WS1 and WS2 by changing the sign of the
isospin dependence of the SO force κSO. In Figs. 9 and 10,
we plotted a few selected isotopic chains where the flip is
expected to have large effects on the shape prediction. It is
not surprising to see that the effect is larger in calculations
with the WS1 parameter which has a strong isospin-dependent
SO force than that in WS2. However, in the latter case, large
deviations can also be seen in neutron-rich nuclei including
those around N = 40 and 60.
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FIG. 9. (Color online) Comparison of ground-state deformations
for selected isotopes with and without the flip in κSO for calculations
with WS1.
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FIG. 10. (Color online) Same as Fig. 9 but for calculations with
WS2.
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FIG. 11. (Color online) Systematic calculations on the total mi-
croscopic energies, Edef(N,Z,β) + Eshell(N,Z,β) + Epair(N,Z,β),
of even-even nuclei by using the Woods-Saxon potential with WS1.

C. The calculated microscopic energies

The microscopic energy depends on the deformation as well
as the single-particle structure of the nucleus to be studied.
Even though it is not a direct observable, the microscopic
energy can provide an interesting test to our single-particle
potentials. In Figs. 11–13 we plotted the total microscopic
energy, Edef(N,Z,β) + Eshell(N,Z,β) + Epair(N,Z,β), for all
three calculations as a function of N and Z.

For most cases, the three calculations give a similar
description on the microscopic energy, as can be seen in
Fig. 14. For the two calculations with parameters WS1 and
WS3, there are in total 124 cases that the differences are larger
than 2 MeV. For calculations with parameters WS3 and WS2,
there are 23 cases with differences larger than 2 MeV. For
calculations with parameters WS1 and WS2, there are 28 cases
with differences larger than 2 MeV.

In some studies, only the shell correction and pairing
correction energies are considered. The sum of these two
corrections are plotted in Figs. 15–17. Comparing the two
calculations with parameters WS3 and WS1, there are in total
163 cases that the differences are larger than 2 MeV, among
which there are seven cases with differences larger than 4 MeV.
For calculations with parameters WS3 and WS2, there are 48
(2) cases with differences larger than 2 (4) MeV. Differences
are mainly seen around magic numbers 20, 28, 40 as well as in
superheavy nuclei. For calculations with parameters WS1 and
WS2, there are 66 cases with differences larger than 2 MeV.
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FIG. 12. (Color online) Same as Fig. 11 but for calculations with
WS2.
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FIG. 13. (Color online) Same as Fig. 11 but for calculations with
WS3.

It should be mentioned that in both cases studied above, the
energies and deformations correspond to the minimum in the
total energy surface.

D. The second minimum

There is a long history in nuclear physics studying the
so-called shape coexistence and many prominent examples
have been found [68,75,76]. It is also important for our study of
radioactive alpha [77] and proton decays [65]. It is beyond the
scope of this paper to analyze in detail all cases with possible
shape coexistence. In particular, we are interested in comparing
the regions where shape coexistence is calculated to occur by
the three different WS parameter sets. As mentioned above,
in a few cases the ground-state deformations predicted by the
different calculations are quite different, which are related to
the fact that the coexistence of low-lying states with different
shapes is expected in those nuclei whereas their orders giving
by different calculations are different.

In Figs. 18–20 we plotted the energy difference between
the second and first minima in the calculated potential energy
surface for even-even nuclei over the whole nuclei chart. Only
cases with energy difference smaller than 1 MeV are selected
for simplicity. It can be seen from the figures that the three
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FIG. 14. (Color online) Comparison between calculated total mi-
croscopic energies from the three calculations. We plot the results
from parameters WS2 and WS3 as a function of those from WS1.
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FIG. 15. (Color online) Systematic calculations on the shell plus
pairing correction energy of even-even nuclei by using the Woods-
Saxon potential with WS1.

calculations give quite a similar pattern. Shape coexistence is
expected in the superheavy nuclei and nuclei around N = 120
and 170. It may also happen in light neutron-rich nuclei as
well as nuclei around N,Z = 40.

E. Effect of octupole and higher-order deformations

Our calculations done above are restricted to the defor-
mation space (β2,γ,β4) for simplicity. Recent mass model
calculations were done in the space (β2,β4,β6) in Ref. [11],
(β2,γ,β4) in Ref. [72], and (β2,β3,β4,β6) in Ref. [7]. It should
be mentioned that there was a long quest studying the possible
existence of static octupole and higher order correlations at
nuclear ground states (see, e.g., a recent experiment [78] and
references therein and Ref. [79] for reviews on earlier works).
Both the β3 and β6 deformations were taken into account
in the very successful mac-mic mass model calculations [6].
Multidimensional deformation space calculations have also
been done for superheavy elements [80] and in recent fission
studies [81,82]. The influence of the β6 deformation in
superheavy nuclei around 254No was also studied in Ref. [83].
Those correlations may affect the results shown above.

To understand the influence of those omitted deformation
freedoms in our calculations shown above, we have done
calculations within the axially symmetric deformation space
(β2,β3,β4,β5,β6) with the WS1 parameter set. The nonaxially
symmetric γ deformation is neglected because of computation
limitations. In Fig. 21 we first compared calculations with and
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FIG. 16. (Color online) Same as Fig. 15 but for calculations with
WS2.
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FIG. 17. (Color online) Same as Fig. 15 but for calculations with
WS3.

without the β3 and β5 deformations. It is thus seen that in
most cases the influence of those two deformations on the
total energy is less than 200 keV. Profound β3 deformation is
seen in nuclei around N = 134 and Z = 88 and in superheavy
nuclei around N = 180. This is in agreement with earlier
calculations [6].

In Fig. 22 we compared calculations with and without the
β6 deformation. The largest influence on total energy appears
in nuclei around N = 152, in agreement with Ref. [80], and
in superheavy elements with N ∼ 220. The large difference is
around 850 keV.

IV. THE TOTAL BINDING ENERGY

To explore the description power of the single-particle
potentials studied above on the (negative) binding energy, we
added the liquid drop energy for Emac [3,38]. It is chosen to
be [15]

ELDM = avA + asA
2/3 + asymT (T + 1)/A

+ asymsT (T + 1)/A4/3 + C
Z2

A1/3
+ C4

Z2

A
, (13)

where the terms represent the volume energy, surface energy,
symmetry energy, surface symmetry energy, Coulomb energy,
and correction to Coulomb energy from surface diffuseness
of charge distribution, respectively. The coefficients av , as ,
asym, asyms, C, and C4 are free parameters to be determined.
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FIG. 18. (Color online) Systematic calculations on the energy
difference between the second and first deformation minima in
even-even nuclei by using the Woods-Saxon potential with WS1.
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FIG. 19. (Color online) Same as Fig. 18 but for calculations with
WS2.
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FIG. 20. (Color online) Same as Fig. 18 but for calculations with
WS3.

0 20 40 60 80 100 120 140 160 180 200 220 240 260

20

40

60

80

100

120

N

Z

 

 

ΔE

0

0.2

0.4

0.6

0.8

1

FIG. 21. (Color online) Energy differences between calculations
with and without the β3 and β5 deformations. Those with differences
smaller than 50 keV are left blank for a clearer view.
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FIG. 22. (Color online) Energy differences between calculations
with and without the β6 deformation. Those with differences smaller
than 50 keV are left blank.
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TABLE II. The parameters for the liquid drop model, mean deviation, and maximum deviation for the different WS calculations as
determined by using the least square deviation criterion.

WS1 WS2 WS3

av −15.707 ± 0.017 −15.678 ± 0.017 −15.704 ± 0.017
as 18.302 ± 0.075 18.197 ± 0.075 18.450 ± 0.075
asym 117.481 ± 0.524 117.431 ± 0.524 118.968 ± 0.524
asyms −161.323 ± 2.990 −161.237 ± 2.990 −172.024 ± 2.990
C 0.717 ± 0.001 0.716 ± 0.001 0.719 ± 0.001
C4 −0.882 ± 0.072 −0.896 ± 0.072 −1.081 ± 0.072
σ 0.612 0.731 1.162
Max. dev. 2.320 2.756 4.490

T = |N − Z|/2 is the isospin. As in Refs. [30,32,36], the free
parameters are first determined by minimizing the σ 2 value in
comparison with the experimental binding energies as

σ 2 = 1

n

∑
N,Z

[Ecalc(N,Z) − Eexpt(N,Z)]2, (14)

where only nuclei that are heavier than 16O and have an
experimental error smaller than 100 keV are considered and
n is the total number of data. The experimental data are
taken from Ref. [84]. We did not consider the influence of
the uncertainty induced by the errors in experimental binding
energies, which is supposed to be small as compared with the
unknown theoretical uncertainties [31].

The parameters thus fitted for the three WS calculations
are given in Table II. For calculations with parameters WS1,
one has only two cases with deviation between theory and
experimental data larger than 2 MeV. Whereas the numbers
are 14 and 44 for calculations with parameters WS2 and
WS3. In all three calculations the largest deviations appear
at N = 126 isotopes 218U and 216Th. The deviations of the
calculated binding energies from experimental data are plotted
in Fig. 23 as a function of mass number. All three calculations,
in particular those with parameters WS3, still show some
kind of systematic deviations around the shell closures, which
indicate that the shell correction may have not been fully taken
into account.
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FIG. 23. (Color online) Deviations of calculations on binding
energies from experimental data as a function of mass number A. A
positive value means the binding energy is overestimated by theory.

For binding energies calculated from WS3, in 16 cases
the deviations from experimental data are larger than 3 MeV,
among which one has five cases with N,Z = 20 and 10 cases
with N around 126. For those few nuclei around N or Z = 20,
the proton and neutron shell gaps predicted by the WS2 and
WS3 parameter sets are much larger than those from WS1
(by about 2 MeV for neutron and 1–1.5 MeV for proton). For
the nuclei with N ∼ 126 and Z between 84 and 92 with large
deviations, our calculations show that the proton and neutron
shell gaps predicted by the three calculations are similar to
each other. However, the neutron shell correction energies
predicted by the WS3 calculation are about 2 MeV more
attractive than those from WS1. The results from WS2 are
below those values from WS1 and WS3. Actually, as can be
seen from Fig. 24, the deviations from experimental data show
a systematic increasing trend as a function of neutron number
for the different isotopic chains with neutron number below
N = 126. The increasing trend is strongest in calculations
with WS3 and weakest in WS1. For all three calculations,
the increasing trend is stronger in the isotopic chains above
N = 82 than that in Pb isotopes because of the different
descriptions of the proton shell corrections. We notice that the
single-particle energies for levels near the Fermi surface given
by the WS3 and WS1 calculations are very close to each other.
The difference in the shell correction energy may be because
of the fact that the single-particle energies of the lowest levels
are slightly deeper in WS3 than those in WS1. The binding
energy of 28Si is underestimated by 3.09 MeV in calculations
with WS3. This is related to the fact that the ground-state
deformations predicted by the WS2 and WS3 calculations are
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FIG. 24. (Color online) Same as Fig. 23 but for Pb (dotted line)
and Po (solid line) isotopes below N = 126 as a function of neutron
number N .
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FIG. 25. (Color online) Differences between calculated binding
energies with parameter set WS1 and calculations with parameters
WS2 and WS3 as a function of mass number A.

much larger than that from WS1, which leads to large repulsive
deformation correction energies Edef in those two calculations.
On the other hand, the shell correction energies given by the
three calculations are quite similar to each other.

We are particularly interested in the differences between
different calculations, which may shed light on our under-
standing of the theoretical uncertainty. In Fig. 25 we plotted
the differences between the three WS calculations as a function
of A for all even-even nuclei considered in this work. The
largest differences between calculations with parameters WS3
and WS1 appear in the neutron-rich 70Ca and in superheavy
nuclei around Z = 120 and N = 254.

In Figs. 26 and 27 we compared our calculations on
the binding energies with mass formula calculations from
Refs. [6,11]. In the former case, systematic large deviations
are seen in the superheavy region, whereas the deviation of
our calculations from those of Ref. [6] seems to be much
smaller.

It may also be of interest to determine the parameters of
the liquid drop model by using the so-called minimax fitting
procedure. The object of the minimax fit is to find the minimum
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FIG. 26. (Color online) Differences between our mac-mic calcu-
lations on binding energies and those of Ref. [11] as a function of
mass number A.
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FIG. 27. (Color online) Differences between our mac-mic calcu-
lations on binding energies and those of Ref. [6] as a function of mass
number A.

of the maximum deviation (the least worst result) as

ε = arg min
x

max
A

|EExpt.(A) − ECalc.(A,x)|, (15)

where x denote the set of parameters to be determined.
arg min (arg max) stand for the argument of the minimum
(maximum) for which the value of the given expression
attains its minimum (maximum) value within a given set of
x. The parameters thus determined are listed in Table III.
The results given by calculations with these parameters are
pretty similar to those predicted with parameters from Table II.
This is particularly the case for the WS1 parametrization. For
calculations with the WS2 and WS3 parameters, the maximum
deviations can be largely reduced by applying the minimax
fitting criterion. However, the corresponding mean deviations
increase noticeably, particularly for WS3.

As can be seen from the two tables, most coefficients of the
liquid drop model can be well constrained by fitting to available
data except those of the surface symmetry energy and surface
correction to Coulomb energy. These two terms are quite
sensitive to the choice of the different WS parametrization
as well as the different fitting criteria. This is expected as
they may be more correlated with the surface properties of the
nuclei induced by the nuclear shell structure.

TABLE III. The parameters for the liquid drop model, mean
deviation, and maximum deviation for the different WS calculations
as determined by using the minimax fitting criterion.

WS1 WS2 WS3

av −15.649 −15.672 −15.673
as 17.994 18.248 18.266
asym 115.117 118.397 116.602
asyms −148.802 −172.152 −160.014
C 0.714 0.7161 0.715
C4 −0.769 −0.919 −0.884
σ 0.669 0.957 1.650
Max. dev. 1.980 2.145 3.365
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V. SUMMARY

We have calculated systematically the microscopic energies
and nuclear deformations of even-even nuclei within the
mac-mic framework with three different WS parametrizations
(denoted as WS1 [46], WS2 [59], and WS3 [36]) which were
constructed primarily for nuclear spectroscopy calculations.
The first two WS parametrizations have been previously shown
to be very successful in reproducing many aspects of nuclear
structure and decay properties. The simplified WS3 parameter
contains an unusual SO term and was constructed mainly to
explain the shell evolution in light neutron-rich nuclei [36].
We are particularly interested to see whether the isospin
dependence of the SO force has any global influence on the
binding energy and on the deformation.

It is found that the ground-state deformations predicted
by the three calculations are quite similar to each other. Large
differences are seen mainly in neutron-rich nuclei and in super-
heavy nuclei. Systematic calculations on the shape-coexisting
second minima are also presented. The total binding energy
is estimated by adding the macroscopic energy given by the
usual liquid drop model with its parameter fitted by using the
least square root and minimax fitting criteria. Our calculations
on the deformation and binding energy are also compared with
those predicted by two available mac-mic mass formulas.

It is gratifying to notice that the WS parameters, which
were fitted only to single-particle states in spherical nuclei,
indeed do so well in nuclear mass calculations. One may
speculate that, on a global scale, there are smooth effects in the
microscopic energy that only depend on the bulk properties of
the WS potential. On the other hand, it is expected that there
are specific nuclear structure effects that may be sensitive to

the details of the potential, e.g., the isospin dependence of
the spin-orbit force and the isospin dependence of the radius.
While we describe well global properties, it is important to find
the essentials that can differentiate a successful microscopic
potential from unsuccessful ones. In other words, one can
identify local properties, e.g., the emergence of new subshells
and other spectroscopic properties, that can help pin down
the sign and strength of above higher order terms of the WS
potential without deteriorating its global behavior.

It is noticed that, in a few cases in heavy nuclei, calculations
with the WS3 parameter set can deviate from experimental
data by as large as 4 MeV (Fig. 23). We hope that this can be
improved by fine-tuning the parametrization of the potential
(WS3 contains fewer terms than the other two parameter sets
employed). We also hope that a better understanding of the
theoretical uncertainties of the mac-mic model as well as the
WS parametrization can be obtained. In the future, we are also
interested in seeing if one can pin down the isospin dependence
of the SO force by fitting to binding energies as well as other
properties of both stable and unstable neutron-rich nuclei.
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mass formula, Phys. Rev. C 90, 054320 (2014).

[30] C. Qi and Z. X. Xu, Monopole-optimized effective interaction
for tin isotopes, Phys. Rev. C 86, 044323 (2012).

[31] J. Dobaczewski, W. Nazarewicz, and P.-G. Reinhard, Error
estimates of theoretical models: a guide, J. Phys. G 41, 074001
(2014).

[32] C. Qi, Theoretical uncertainties of the Duflo-Zuker shell-model
mass formulas, J. Phys. G 42, 045104 (2015).

[33] M. Kortelainen, J. McDonnell, W. Nazarewicz, E. Olsen, P.-G.
Reinhard, J. Sarich, N. Schunck, S. M. Wild, D. Davesne, J.
Erler, and A. Pastore, Nuclear energy density optimization: Shell
structure, Phys. Rev. C 89, 054314 (2014).

[34] G. F. Bertsch, B. Sabbey, and M. Uusnäkki, Fitting theories of
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[41] J. Dudek, Z. Szymański, and T. Werner, Woods-Saxon potential
parameters optimized to the high spin spectra in the lead region,
Phys. Rev. C 23, 920 (1981).

[42] R. Wyss, W. Satuła, W. Nazarewicz, and A. Johnson, Competi-
tion between triaxial bands and highly deformed intruder bands
around 180Os, Nucl. Phys. A 511, 324 (1990).

[43] A. Bohr and B. Mottelson, Nuclear Structure, Vol. I (Benjamin,
New York, 1969).

[44] J. Blomqvist and S. Wahlborn, Shell model calculations in the
lead region with a diffuse nuclear potential, Ark. Fys. 16, 545
(1960).

[45] V. I. Isakov, K. I. Erokhina, H. Mach, M. Sanchez-Vega, and
B. Fogelberg, On the difference between proton and neutron
spin-orbit splittings in nuclei, Eur. Phys. J. A 14, 29 (2002).
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