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Quadrupole and octupole stiffnesses in the ground states of even-even 112−150Ba isotopes have been
systematically investigated by means of potential-energy-surface calculations. The calculations are carried out in
both (β2,γ,β4) and (β2, β3, β4, β5) deformation spaces with the inclusion of triaxial and reflection-asymmetric
shape degrees of freedom, respectively. The present results are compared with previous calculations and available
experiments. The shape instabilities are evaluated by analyzing the potential energy curves with respect to both
the quadrupole and octupole deformations, which is consistent with the previous discussions predicting the γ

softness or triaxiality and octupole instability. In addition, taking the near-drip-line 114Ba nucleus as an example,
we briefly investigate the effects of potential parameters (e.g., the strength of the spin-orbit potential λ, and
the nuclear surface diffuseness a) on the deformation energy curve, showing almost negligible modifications of
nuclear shape and stiffness but considerable changes in the depth of the minimum and the height of the fission
barrier (which may be very important for the study of heavy and superheavy nuclei).
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I. INTRODUCTION

The scalar form of the many-body Hamiltonian does not
necessarily imply that all nuclei are spherically symmetric.
The spontaneous symmetry breaking mechanism implies that
the nuclear mean-field approximation which, formulated in
an intrinsic reference frame, allows one to represent nuclei as
deformed bodies [1]. In the intrinsic system, some observables
such as angular momentum and parity associated with the basic
space-time symmetries certainly may not be conserved any
more, which means the wave function of a nuclear many-body
system is not an eigenstate of such mechanical quantity
operators. The measurements of certain multipole moments
such as magnetic dipole and electric quadrupole ones [2]
are compatible with calculations based on such theoretical
concepts, which validates the idea of the usefulness of such a
theory. Indeed, the question of whether different intrinsic shape
asymmetry may occur in the nuclear ground and/or excited
states has been raised [1,3] as one of the most fundamental
issues since the well-known concept of spontaneous intrinsic
symmetry breaking in atomic nuclei was introduced in the
1950s. During the past several decades considerable effort has
been made to reveal such a mechanism and to obtain conclusive
evidence for the existence and evolution of different nuclear
intrinsic shapes [1,4–7].

The nuclear shape, which plays an important role in
determining nuclear properties, can generally be described
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by the parametrization of the nuclear surface or the nucleon
density distribution. In mean-field calculations the multipole
expansion of a nuclear surface with spherical harmonics
Yλμ(θ,φ) is usually used [8,9]. Because the range of the
individual “bumps” on the nuclear surface decreases with
increasing deformation multipolarity and should obviously
not be smaller than a nucleon diameter, there is a fundamental
limitation in λ, and a crude estimate gives the limiting value of
λ < A1/3 [10]. The shape degrees of freedom with lower-order
multipolarity λ are therefore expected to be important, as the
axial-quadrupole deformation β2 and the nonaxial-quadrupole
(triaxial) deformation γ , the reflection-asymmetric octupole
deformation β3, the hexadecapole deformation β4, etc.

An abundance of observed phenomena connected with such
nuclear deformations are indeed found in nuclei [11,12]. For
instance, it is well known that the majority of nuclear shapes
can be described by axially symmetric (prolate or oblate)
spheroids [13–15], which is confirmed by the observation of
rotational band structures and measurements of their proper-
ties (e.g., quadrupole moments). The triaxial γ deformation
manifests itself by the wobbling motion and chiral doublets,
and it may also play an important role in signature splitting
(or inversion) [16–20]. The octupole β3 correlation is usually
associated with the experimental observations of alternate-
parity bands with enhanced E1 transitions, parity doublet
bands, and collective E3 transitions [21]. Furthermore, there
has been considerable research on the question of the non-
axially symmetric octupole deformations in the past [22–27].
For instance, an ensemble of isomeric states of tetrahedral
symmetry related to Y32 shape components is suggested
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to exist in the region of light radium nuclei [22]. Dudek
et al. systematically discussed tetrahedral (even octahedral)
symmetry and its possible experimental evidence (e.g., the
the corresponding E1 transitions should be absent due to no
static dipole moments) throughout the periodic table [26,27].
Recently, reflection asymmetric shell model calculations [28]
also revealed that the observed low-lying 2− bands in N = 150
isotones [29] may be caused by β32 deformation. The co-
variant density functional theories [30] showed strong Y32

correlations in such isotones. A comprehensive overview of
various quantum mechanisms associated with hypothetical
tetrahedral symmetry, which have been studied within the last
ten years or so, can be found in Ref. [31]. The hexadecapole
deformations including the nonaxial components have been
confirmed by the hexadecapole moment measurements from
α scattering studies, but its situation is not so clear, particularly
in the problem of the so-called hexadecapole anomaly at the
border of the rare-earth region [7]. The higher-order multipole
deformations (e.g., β6) can play a rather important role in
the description of excited states and heavy (or superheavy)
nuclei [32]. So far, there is almost no conclusive experimental
evidence on high-multipolarity deformations with λ > 6. Of
course, theoretical calculations with multipole components up
to λ = 16 (or even more) have already been carried out [33].

The nucleon-nucleon two-body interactions known to be
nonlocal and noncentral combine through the Hartree-Fock
formalism into the mean-field concept (and Hamiltonian), the
latter conveniently allowing one to discuss nuclear stability
in terms of single-particle energies and single-particle gaps as
functions of nuclear deformations, thus geometrical symme-
tries. In transition regions, the situations are particularly more
complicated than those of spherical or well-deformed nuclear
regions. These transitional nuclei are difficult to describe
both in models of the macroscopic-microscopic type and in
self-consistent models based on two-body interactions such as
Hartree-Fock models. The Ba isotopes just locate in such mass
regions.

This paper is motivated by the following facts. First and
foremost, progress in the development of radioactive nuclear
beam facilities has provided us with marvelous findings in
nuclear structure, such as neutron halos and neutron skins
[34–36]. Much new information on the shapes and structures
of nuclei far from stability is being revealed. One of the great
interests is to know where and why exotic phenomena of
nuclear structure appear and how these phenomena change
along the isotopic and isotonic chains. For instance, the
quest for lower-order multipole triaxial γ and octupole β3

deformations and the nature and evolution of collective effects
in nuclei is still a long-standing nuclear structural theme.
Besides, the Ba isotopes have 56 protons, an octupole “magic
number” (the favorable particle number for the occurrence of
octupole deformation), and 38 isotopic members from N = 58
to 95 (across the N = 82 closed shell) have so far been
discovered [37]; these include 7 stable, 18 proton-rich, and 13
neutron-rich isotopes. Note that the neutrons and protons have
reinforcing effects that favor γ and octupole deformations for
the nuclides that have the neutron and/or proton Fermi surfaces
just below (above) closed shells [21], i.e., approximately
around N = 76 and N = 88 (below and above the N = 82

shell closure, respectively). Moreover, some basic experimen-
tal quantities, which do not depend on nuclear models, have to
date been measured and studied, such as ground-state binding
energies, half-lives, and low-lying excited states (including
octupole and quasi-γ bands as well as ground-state bands).
These provide a good opportunity to systematically investigate
the evolution of ground-state quadrupole (including nonaxial
quadrupole γ ) and octupole shape degrees of freedom in the
barium isotopic chain. Last but not least, it is found that various
theoretical approaches have been applied in the description
of the ground-state nuclear properties [38–40]. For instance,
Möller et al. [39,40] have calculated the global systematics
of ground-state deformations using the folded Yukawa (FY)
single-particle potential and the finite-range droplet model
(FRDM). Based on microscopic Skyrme-type forces, Aboussir
et al. [41] have given the deformation parameters of nuclei
with the range 36 � A� 300 in the framework of the extended
Thomas-Fermi plus Strutinsky integral (ETFSI) method.

However, in transitional regions the nuclear wave function
may be a superposition of states corresponding to different
shapes and the potential-energy surface is normally very flat
over a large deformation domain. In such a case, the nuclei
will undergo permanently large amplitude oscillations and the
actual effective deformations have less and less in common
with that of the minimum. Moreover, the so-called equilibrium
shape identified as the deepest local pocket in such a flat surface
will be also strongly affected by the parameter uncertainties
of the nucleonic pairing and the deformed mean field. Thus
the actual static shape is practically meaningless—the flatter
the surface the more meaningless the value of the so-called
equilibrium deformations, while the shape stiffness related
to the flatness of the energy landscape, which is relatively
model independent, may to some extent describe nuclear
properties better. We have previously investigated the stiffness
evolution of some nuclei in both ground states and rotational
states [42–44]. Part of the aim of this work is to test the
parameter reliability of the single-particle potential (e.g., the
surface diffuseness) and the predictive power of the model in
nuclei very far from β stability.

In this paper, we perform the potential-energy-surface
(PES) calculations for even-even 112−150Ba in two different de-
formation spaces (including triaxial and reflection-asymmetric
shape degrees of freedom, respectively), especially focusing
on the evolution of quadrupole and octupole stiffnesses. Such
a systematic study of nuclear stiffness is so far scarce yet
somewhat necessary due to the large uncertainty in equilibrium
shape for transitional soft nuclei. It is also useful to establish
the systematic law of the stiffness evolution of the Ba isotopes.
The paper is organized as follows. A brief introduction of the
PES method is presented in Sec. II. The results and discussions
are given in Sec. III. Finally, we summarize our work in
Sec. IV.

II. MODEL

The PES method based on a macroscopic-microscopic
model has been widely used to give the right deformation
and energy of a many-body nucleus state [45] in various
mass regions, including the drip-line and superheavy
ones [32,46,47]. In this method, the total potential energy
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Etotal(Z,N,β̂) of a nucleus with deformation β̂ is the sum of a
macroscopic bulk-energy term Emac(Z,N,β̂), being a smooth
function of Z,N and deformation, and a microscopic term
δEmic(Z,N,β̂) representing the quantum correction based on
some phenomenological single-particle potential [45,48].

The macroscopic energy is obtained from the standard
liquid-drop model (LDM) with the parameters used by Myers
and Swiatecki [49]. Note that such a sharp-surface LDM does
not consider the surface diffuseness and the finite range of
the nuclear interaction which may play some role in the
shape evolution of soft nuclei. The microscopic correction
part, which arises because of the nonuniform distribution of
single-particle levels, is calculated by means of the well-known
Strutinsky method [50–53] whose development has ever been
considered as a major leap forward in the nuclear many-
body problem. It should be also noted that Strutinsky-type
calculations can optimize the liquid-drop energy and give
relatively high accuracy which is usually superior to that of
the microscopic models employing effective nucleon-nucleon
interactions [54]. Though it is seen, in recent years, that
the rapid progress of effective forces and self-consistent
methods, which occurred thanks to advances in computational
technology, allows calculations with similar accuracy, the
phenomenological potential is still used widely due to the
validity and simplicity during the calculations.

Here, single-particle energies and single-particle wave
functions are calculated by solving the Schrödinger equation of
the stationary states for an average nuclear potential of Woods-
Saxon (WS) type including a central field, a spin-orbit interac-
tion, and the Coulomb potential for the protons. The deformed
WS potential is generated numerically at each (β2,γ,β4)
or (β2, β3, β4, β5) deformation lattice. There exist various
parametrizations of the WS potential, e.g., the Blomqvist [55],
Chepurnov [56], Rost [57] and universal [58] parameter
sets. In our Woods-Saxon calculations we use the universal
parameters. The matrix of the one-body Hamiltonian is built
by means of the axially deformed harmonic oscillator basis in
the cylindrical coordinate system, and then diagonalized.

The pairing correlation is treated using the Lipkin-Nogami
(LN) approach [50,52] in which the particle number is
conserved approximately and thus the spurious pairing phase
transition encountered in the usual BCS calculation can be
avoided. The monopole pairing strength G is determined by the
average gap method [59,60]. The LN equations are solved in a
sufficiently large space of Woods-Saxon single-particle states.
In the present work, the pairing windows include Z/2 (or 40, if
Z/2 > 40) and N/2 (or 40, if N/2 > 40) single-particle levels
just above and below the Fermi surface for proton and neutron,
respectively. The LN pairing energy can be given by [39,45]

ELN =
∑

k

2vk
2ek − 	2

G
− G

∑
k

vk
4 + G

N

2

− 4λ2

∑
k

uk
2vk

2, (1)

where vk
2, ek , 	, and λ2 represent the occupation probabilities,

single-particle energies, pairing gap, and number-fluctuation
constant, respectively. The shell correction energy is then
calculated by δEshell = ELN − ẼStrut, where ẼStrut is obtained

by the Strutinsky method [51,53] with a smoothing range γ =
1.20�ω0 (�ω0 = 41/A1/3 MeV), and a correction polynomial
of order p = 6. One may expect the method to be less accurate
near the drip lines than close to β stability because the
truncated single-particle levels deviate more from a realistic
single-particle spectrum near the drip lines than near β-stable
nuclei. However, it is found that there is no obvious increase
in the model error for nuclei that are the farthest from β
stability [39].

Then, the PES is obtained by interpolating between the
lattice points in the multidimensional deformation space. The
ground-state equilibrium deformation of a nucleus is related
to the absolute minimum of the PES. In some circumstances,
the secondary minima of the PES may coexist with the global
one and even they may be yrast at high-spin states. In the
present calculations, the equilibrium shape obtained through
the minimization of the total energy over the shape variables is
different from the spontaneous symmetry breaking mechanism
but they show equivalent results [54].

III. RESULTS AND DISCUSSION

Systematic PES calculations in both (β2,γ,β4) and
(β2, β3, β4, β5) deformation spaces have been performed
for even-even 112−150Ba which have at least been identified
experimentally. For the actual calculations in the former
spaces, the Cartesian quadrupole coordinates X = β2 cos(γ +
30◦) and Y = β2 sin(γ + 30◦) were used, where the parameter
β2 specifies the magnitude of the quadrupole deformation,
while γ specifies the asymmetry of the shape. Also note that
in the later deformation spaces the deformation parameters
β2,β3,β4,β5 are treated as variational parameters, which differs
from earlier calculations where only the quadrupole β2 and
octupole β3 deformations were treated as independent shape
parameters and β4,β5 were obtained by an approximation [61].
As known, all the theoretical results need to be confronted
with experiments or other accepted theories. Experimentally,
the viable estimates of the nuclear shapes come from the
nuclear moments, e.g., the quadrupole deformation parameter
β2 can be deduced from the intrinsic quadrupole moment
related to the reduced electric quadrupole transition probability
B(E2) [62]. Sometimes, the empirical Grodzins rule is used
to crudely estimate the ellipsoid shapes of nuclei from the
first 2+-state levels [63]. Theoretical estimates usually come
from equilibrium deformation predictions given by Strutinsky-
type calculations with the modified oscillator (Nilsson) po-
tential, the Woods-Saxon potential, etc., or by microscopic
self-consistent mean-field calculations, such as the Skyrme
Hartree-Fock and Gogny Hartree-Fock calculations.

Figure 1 shows the isotopic dependence of ground-state
deformation parameters β2, γ, and β3 obtained from the
calculated PES minima for even-even 112−150Ba, together
with the FY+FRDM calculations [39,40] and experimental
estimates [62–64] for comparison. The predicted ground-
state β2 deformations in two different deformation spaces
mentioned above are very similar, basically in agreement
with the experimentally measured results. The comparison
presented in the figure shows that our calculation is close
to the experimental values though there is still a systematic
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FIG. 1. (Color online) Calculated ground-state β2 (a), γ (b), and
β3 (c) deformations for even-even 112−150Ba nuclei, compared with
the FY+FRDM calculations [39], the Grodzins estimate [63,64],
and the partial experimental values [62]. Cal.1 and Cal.2 denote
the calculations are performed in (β2,γ,β4) and (β2, β3, β4, β5)
deformation spaces, respectively.

underestimation for β2. Indeed, taking into account the zero-
point motion would imply that the experiment-comparable
deformations are not the static ones displayed in the figure,
but rather the most likely deformations calculated from the
solutions of the collective motion. The latter are systematically
bigger than the static ones, cf. Ref. [33]. Furthermore, it
can be seen that the β2 value is smallest for 138Ba with
N = 82 corresponding to the neutron shell closure and the
β2 values of these nuclei, as expected, increase as the neutron
number N moves away from the closed shell. Nevertheless,
such deformation shows a maximum at 118Ba62, with four
neutrons less than N = 66 122Ba situated at the neutron
midshell, halfway between the N = 50 and N = 82 major
shell closures. It should be pointed out that the β2 value given
by Möller et al. [39] is negative in 134Ba, indicating an oblate
shape, which is different from the experimental results and the
results of our calculations obtained using the Woods-Saxon
mean-field Hamiltonian with the universal parameterization.
To some extent, the correctness of this result brings a lot of
confidence to our calculations.

As shown in Fig. 1(a), the experimental errors are so small
that one can define as simply the root-mean-square (rms)
deviation to evaluate the model error, which as usual is given
by

rms =
[

1

n

n∑
k=1

(
β

expt
i − β theor

i

)2

]1/2

, (2)

where β theor
i is the calculated quadrupole β deformation, and

β
expt
i is the corresponding measured quantity. There are n

such measurements for different N and Z. However, for large

experimental errors the above definition is unsatisfactory due
to their contributions to the rms deviation. The calculated
model errors of β2 are 0.048 and 0.047 for these even-even
Ba isotopes in (β2,γ,β4) and (β2, β3, β4, β5) deformation
spaces, respectively. In the FY+FRDM calculations, the
corresponding rms deviation with the value of 0.099 is
somewhat large. However, except for several values with large
errors in the N = 78, 80, and 84 nuclei, as seen in Fig. 1,
the rms deviation can reach 0.047, which agrees well with our
calculations. To present a more consistent comparison between
theory and experiment, Dudek et al. [65] have analyzed the
shape inconsistency and deduced relationships between the
calculated potential parameters and the nucleonic distributions
(labelled by ρ), e.g., for protons in the WS case,

β
ρ
2 � 1.10β2 − 0.03(β2)3. (3)

If the present results are modified by using such a formula,
the rms deviation will decrease to 0.036 and 0.034 for these
Ba isotopes calculated in (β2,γ,β4) and (β2, β3, β4, β5)
deformation spaces, respectively. In addition, the calculated γ
values are qualitatively in agreement with the calculations by
Möller et al. [40] except for that in 130Ba, as seen in Fig. 1(b).
For the β3 deformations [see Fig. 1(c)], our calculations
show a somewhat large difference from the FY+FRDM
calculations [39] in 112,114,142Ba nuclei. So far, the values of γ
and β3 are difficult to directly obtain in experiments. However,
the occurrence of strong γ (octupole) correlations has been
confirmed in nuclei with particle numbers around 64 and 76
(56, 88, and 134) [21], which is indeed in good agreement with
our calculations.

As known, theoretical equilibrium deformations are usually
model dependent since they are strongly affected by the
mean-field and pairing potential parameters, especially for
very soft nuclei. However, the deformation energy curves
along different deformation degrees of freedom may relatively
describe the nuclear-shape properties better. To display the
shape evolutions in β2, γ, and β3 directions, we show such de-
formation energy curves in Figs. 2 and 3. As mentioned above,
the Cartesian quadrupole coordinates X = β2 cos(γ + 30◦)
and Y = β2 sin(γ + 30◦) were used to vary the quadrupole
deformation in the actual calculations with the inclusion of γ
degrees of freedom. Thus the β2 value is always positive and
the triaxiality parameter covers the range −120◦ � γ � 60◦,
as shown in Fig. 2. Certainly, the three sectors [−120◦, − 60◦],
[−60◦,0◦], and [0◦,60◦] represent the same triaxial shapes but
represent rotation about the long, medium, and short axes,
respectively (Cranking calculation is beyond the scope of
this work). Compared with the axial quadrupole deformation
minima, the minima of the axial-asymmetric and reflection-
asymmetric deformation energy curves are relatively shal-
lower (<0.5 MeV) at the ground states (especially, for the
triaxial minima), though they might change with increasing
spins [42,44]. Theoretical and systematic studies indicate that
the N = 76 nuclei are more γ rigid than their neighbors
with other neutron numbers [66,67]. Indeed, it seems that the
132Ba76 nucleus has the deepest triaxial minimum. Similarly,
the expected properties of strongly octupole correlations, as
shown in Fig. 3, are reproduced in nuclei with proton numbers
near 56 and neutron numbers near 56 or 88 [3,68,69]. The

024303-4



EVOLUTION OF GROUND-STATE QUADRUPOLE AND . . . PHYSICAL REVIEW C 92, 024303 (2015)

FIG. 2. (Color online) Deformation energy curves against β2 (the
upper panel) and γ (the lower panel) for even-even 112−150Ba nuclei,
calculated in (β2,γ,β4) deformation space. At each β2 (γ ) point,
the energy has been minimized with respect to the γ (β2) and β4

deformations.

presence of octupole correlation has been experimentally
confirmed in 140−146Ba [70–74] (around Z = 56, N = 88) and
awaits conclusively experimental evidences around 112

56 Ba56.
The direct measurement of some quantities (e.g., the triaxial

parameter γ ) is difficult; even, one cannot determine the
quadrupole deformation β2 from the experimental B(E2)
value when the axial symmetry breaks, though the sum-rule
method provides an approximation to deduce the value of
the triaxial parameter from experimental electromagnetic
transition matrix elements [76,77]. Some phenomenological
or empirical laws are, therefore, important and used to
evaluate the nuclear properties. For instance, the ratio of the
excitation energy of first and second excited states, E4+

1
/E2+

1
,

provides a test of the axial assumption. As pointed out in
Ref. [78], this ratio (and other similar ratios) is characteristic
of different collective motions of the nucleus, e.g., an axially
symmetric rotor should have E4+

1
/E2+

1
= 3.33, an harmonic

vibrator has E4+
1
/E2+

1
= 2.00, while X(5) behavior should have

E4+
1
/E2+

1
= 2.91.

FIG. 3. (Color online) Similar to Fig. 2 but against β2 (the upper
panel) and β3 (the lower panel) deformations, calculated in (β2, β3,
β4, β5) deformation space.

In Ba isotopes, for which spectroscopic information now
extends down to 118Ba and up to 148Ba, the neutron-number
dependence of the excited 2+

1 , 2+
2 , 4+

1 , and 3−
1 states known

is shown in Fig. 4(a), together with several phenomenological
ratios Figs. 4(b)–4(d), as discussed below. The energies of
these low-lying levels, which can reveal different collective
properties, decrease with the neutron number far away from
the N = 82 closed shell. From a simple perspective on nuclear
structure, we can consider that nuclei in the middle of the
spherical shell closures have maximum collectivity where
interactions between valence nucleons are maximized, and
thus, the excitation energies of the first 2+ states may have
local minima [see Fig. 4(a)], indicating large deformations.
There is a very general empirical relationship between �

2/2J
and β2 (6�

2/2J ≡ E2+≈ 1225/A7/3β2
2 MeV) that essentially

all even-even nuclei follow [63,64]. Figure 4(b) shows that the
structural signature R4/2 ≡E4+

1
/E2+

1
for Ba isotopes [except

for 138Ba (∼1.32)] is 1.88∼2.98, more than the critical value
1.825 in the Mallmann plot [78] showing undoubtedly the
onset of collective characteristics. Moreover, these R4/2 values
lie between 1.82, the Mallmann critical point [78] and 3.0,
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FIG. 4. (Color online) Energies of the first excited 2+
1 , 4+

1 , 3−
1

and the second 2+
2 states (a), the ratio R4/2 (b), the quantity ES/E2+

(c) and the energy difference δE(3) (d) in even-even Ba isotopes as a
function of the neutron (mass) number. See text for more details. The
available experimental data are taken from Ref. [75].

the shape or phase transition point to quadrupole deformed
nuclei [79,80], in good agreement with the facts of soft nuclei.

Deviations of the nuclear shape from axial symmetry can
sensitively affect the second lowest 2+

2 states (generally, the
quasi-γ bandheads) of even-even nuclei. As shown in Fig. 4(a),
the systematics of the relative location of such 2+

2 states with
respect to the ground-state band can be seen. Empirically,
the quantity ES/E(2+

1 ), ES = E(2+
2 ) − E(4+

1 ), can be as a
global signature of the structural evolution involving axial
asymmetry [81]. In the extreme γ -unstable limit [82], the
value of ES/E(2+

1 ) is zero due to the completely degenerate
2+

2 and 4+
1 states. In the case of a rigid-triaxial rotor with

25◦≤ γ ≤ 30◦ [83], the 2+
2 state goes under the 4+

1 level and
reaches the bottom at the extreme of triaxiality with γ = 30◦
[ES/E(2+

1 ) = −0.67]. Therefore, nuclei with negative values
of ES/E(2+

1 ) between these two extremes 0 and −0.67 are
most likely characterized by γ -soft potentials with shallow
minima at the average γ value close to 30◦. Meanwhile, the
positive value of Es/E(2+

1 ) indicates that the nucleus possesses
an axially symmetric shape, because the 2+

2 state lies at high
excitation energy relative to the 2+

1 and 4+
1 states. The empirical

Es/E(2+
1 ) values for even-even 122−148Ba are presented in

Fig. 4(c). One can see that three even-even nuclei 132−136Ba
have negative Es/E(2+

1 ) values (about −0.20, − 0.38, and
−0.38, respectively), less than the γ -rigid limit (−0.67).
The smallest value (∼ −0.38) in 134,136Ba is still somewhat

smaller than the empirical value of ES/E(2+
1 ) ≈ 0.5, which is

characteristic of the critical-point nuclei in terms of maximum
γ softness between prolate and oblate shapes. This is in
good agreement with our calculated result of γ ∼ 19◦ in
134Ba, as shown in Fig. 1(b), showing that the quantum
phase transition from triaxial-prolate to triaxial-oblate shape
in this nucleus occurs at low-lying rather than ground state.
Nevertheless, the FY+FRDM calculation [40] indicates that
such phase transition has already taken place at ground state
in 134Ba (β2 < 0). It should be noted that a critical point of a
prolate-oblate phase transition in γ -soft nuclei is discussed in
the context of the O(6) limit of the interacting boson model,
along with an interpretation in terms of Landau theory.

Stable octupole deformation or octupole softness in the
body-fixed frame can be attributed to a parity-breaking odd-
multipolarity interaction which couples intrinsic states of
opposite parity. For normally deformed systems the condition
for strong octupole coupling occurs for particle numbers
near 34 (g9/2 ⊗ p3/2 coupling), 56 (h11/2 ⊗ d5/2 coupling),
88 (i13/2 ⊗ f7/2 coupling), and 134 (j15/2 ⊗ g9/2 coupling).
In such nuclei, the level patterns are similar to rotational
bands observed in reflection-asymmetric molecules including
two bands of parity doublets characterized with simplex
quantum numbers [61] s = ±1 or s = ±i. The positive- and
negative-parity rotational bands are intertwined by strong E1
transitions [69]. For even-even nuclei, the spins and parities
of the levels in an octupole deformation band are Iπ = 0+,
1−, 2+, 3−, . . . for the s = +1 band, and Iπ = 0−, 1+, 2−,
3+, . . . for the s = −1 band. For odd-A nuclei, Iπ = 1/2+,
3/2−, 5/2+, 7/2−, . . . for the s = +i band, and Iπ = 1/2−,
3/2+, 5/2−, 7/2+, . . . for the s = −i band. In the Ba isotopic
chain, the s = +1 bands have been observed in even-even
142,144,146Ba [71,74] and the s = ±i bands of parity doublets
have been observed in odd-A 143,145Ba [72,73]. Some other Ba
isotopes have no negative-parity band structures, even only one
low-lying negative-parity state, decaying by relatively strong
E1 transitions, is to date observed. This negative-parity state
cannot easily be explained as a two-quasiparticle structure at
the lowest spin and is usually proposed as possible evidence for
octupole correlation. Figure 4(a) also shows the first low-lying
3−

1 states observed in the Ba isotopes. Obviously, such 3−
1

states have lower excited energies near neutron number 88. In
addition, the energy differences δE between the π = + and
π = − bands are used to evaluate the octupole deformation
stability with spin variation, which can be deduced from the
experimental level energies by using the relation [84]

δE(I ) = E(I−) − (I + 1)E(I − 1)+ + (I )E(I + 1)+

2I + 1
. (4)

Here the superscripts indicate the parities of the levels. In the
limit of stable octupole deformation, δE(I ) should be close to
zero. To discuss the octupole deformation instability at ground
states, as seen in Fig. 4(d), we show the low-spin δE(3) values
obtained from the available data [75]. It is seen that the δE(3)
values are approximately large constant values from 124Ba
to 138Ba, then decrease and approach the minimum at about
N = 88, indicating that the octupole correlation in 144Ba is
stronger than that in other Ba nuclei.
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Compared with Fig. 1, the evolutions of stiffness along
different deformation directions can be qualitatively displayed
by using the deformation energy curves (see Figs. 2–3) in
theory and some phenomenological laws or ratios (see Fig. 4)
in experiment. Based on a simple harmonic approximation,
we have quantitatively investigated the stiffness evolution of
20 even-even Ba isotopes ranging from 112Ba to 150Ba in
which both the collective (quadrupole and/or octupole) excited
states and the quasiparticle excited states are observed or to be
observed in experiments. The stiffness constants C2, Cγ , and
C3 are determined numerically from the deformation energy
curves with respect to β2, γ , and β3. For instance, the stiffness
parameter C2 is defined from the equation [3]

E = Emin + 1
2C2

(
β2 − βmin

2

)2
, (5)

where the constant C2 is extracted from the minimum energy
Emin at β2 = βmin

2 and β2 = βmin
2 ± 	β2. We use a step size

	β2
∼= 0.05 in this mass region. Such a step size yields results

in the harmonic approximation that are close to those calcu-
lated with the WKB approximation, in which anharmonicities
in the potential energy are taken into account [48]. Similarly,
we evaluate the stiffness constants Cγ and C3 from

E = E0 + 1
2Cκκ

2, (6)

with κ = γ or β3 denoting the deformation degrees of freedom
in the γ and β3 directions, respectively. The corresponding
step sizes 	γ ∼= 10◦ and 	β3

∼= 0.05 are adopted in the
calculations. (Note that slightly different step sizes give similar
results.) The calculated stiffness coefficients in the β2, γ ,
and β3 directions are shown in Fig. 5. One sees that the
general trend of the C2 coefficients calculated in the different
deformation spaces is consistent, though they are somewhat
different. The smallest β2 stiffness (largest softness) occurs
in the N = 82 (shell closure) nucleus 138Ba. Similar to
the discussions in Ref. [21], the stiffness constant Cγ > 0
(C3 > 0) corresponds to the γ (octupole) vibrational limit;
the system becomes unstable to γ (octupole) vibrations at
Cγ = 0 (C3 = 0) and is permanently deformed for Cγ < 0
(C3 < 0). As shown in Fig. 5, the stiffness constant Cγ exhibits
an irregular oscillating behavior. The strong γ correlations
expectedly occur at around N = 64 and 76. Simultaneously,
one can see from Fig. 5 that the octupole stiffness coefficients
C3 keep constant from 116Ba to 136Ba and decrease as N
approaches 56 or 88, in good agreement with the analysis of
the available δE(3) data (see Fig. 4). Figure 5 also shows
that there is hardly overlap between strong γ (Cγ � 0) and
octupole (C3 � 0) correlation regions. However, it is noticed
that both Cγ and C3 decrease as N approaches 56, indicating
simultaneously increasing γ and octupole correlations. This
is consistent with previous study by Skalski [85], where the
coupling between γ and β3 deformations is discussed and a
possible transition to the triaxial-octupole shape in 112Ba is
suggested.

To crudely test the validity of the WS potential (mean-field)
parameters and the LN pairing method, we have investigated
the Fermi energy levels, with the energy of the last occupied
single-particle level, and the LN pairing gap, respectively.
Comparisons have been made with the related quantities

FIG. 5. (Color online) Calculated stiffness coefficients C2 (a),
Cγ (b), and C3 (c) towards β2, γ, and β3 deformations for even-
even 112−150Ba nuclei. The square and circle symbols indicate that
the calculations are performed in (β2,γ,β4) and (β2, β3, β4, β5)
deformation spaces, respectively.

in experiments and/or other theories, as seen in Figs. 6
and 7. Figure 6 shows the trend of the calculated proton
and neutron Fermi energy levels determined by the universal
potential parameters is expectedly consistent with that of the
two-proton and two-neutron separation energies and that of
the lifetime data. It is worth noting that the proton Fermi
energy levels has positive energies for N � 58, indicating
such protons are quasibound or unbound (the Coulomb barrier
may inhibit proton emission). The standard way of extracting
the shell correction may break down for such weakly bound
nuclei where the contribution from the particle continuum
becomes important [86]. In this investigation, the positive-
energy spectrum was approximated by quasibound states. That
is, even the pairing window includes positive energy states,
particles do not scatter into the continuum by the pairing
force. The single-particle picture, which only serves as the
set of basis functions for the shell and pairing calculations,
does not give the true nuclear ground or excited states.
Such procedure should not be considered as satisfactory. A
proper treatment of continuum states is usually achieved with
either the Wigner-Kirkwood expansion or Green’s function
methods [86,87]. It should be pointed out that an additional p-n
channel for the nuclear force, namely, the T = 0 component,
appears in Z ∼ N nuclei since the Pauli principle is not
active between protons and neutrons, indicating a possibly
increasing binding force of nucleons. It is estimated that five
additional nuclei beyond the proton drip line could live long
enough to be observed in this Ba isotopic chain [88]. Near
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FIG. 6. (Color online) (a) Calculated neutron and proton Fermi
energy levels for even-even 112−150Ba nuclei with the calculated
equilibrium shapes as input quantities [90]. Note that the filled and
open symbols indicate that the calculations are performed in (β2,γ,β4)
and (β2, β3, β4, β5) deformation spaces, respectively. (b) Available
two-proton and two-neutron separation energies for the Ba isotopic
chain. (c) Available half-lives of known Ba isotopes [75], indicating
the nuclear instabilities. Note that the half-life for 132Ba is greater
than 1028 s.

112Ba, previous studies [21,89] have pointed out that there
are the coherent contributions of π (ν)d5/2-ν(π )h11/2 coupling
terms to octupole correlations from both valence neutrons and
protons which almost occupy identical orbitals of the 2d5/2

and 1h11/2 subshells, as well as the increasing n-p pairing gap
and n-p quadrupole-quadrupole coupling strength due to the
increasing n-p symmetry.

Figure 7 shows the pairing gaps of proton and neutron
calculated by using the LN pairing model for even-even
112−150Ba nuclei, compared with the FY+FRDM calcula-
tions [90] and the experimental values extracted from exper-
imental masses [91] by use of fourth-order finite-difference
expressions [92]. In the present method, a pairing gap 	
and number-fluctuation constant λ2 are obtained as solutions
of the pairing equations. The 	LN values representing the
sum 	 + λ2 can be crudely compared with the experimental
odd-even mass differences. Generally speaking, the calculated
	LN trend is consistent with the FY+FRDM calculations,
somewhat smaller than the experimental values, as shown
in Fig. 7. There is no collapse at magic neutron numbers,
in contrast to results based on the BCS approximation. One
can see from the insets of Fig. 7 that the proton pairing gap
	 on the whole increases as the neutron magic number N
= 82 is approached. This increase is partly canceled out
by a decrease in λ2, which results in a relatively smooth

FIG. 7. (Color online) Calculated LN pairing gaps of proton
and neutron for even-even 112−150Ba nuclei, compared with the
FY+FRDM calculations [90] and experiments. The insets indicate
the contributions of the pairing gap 	 and the number-fluctuation
constant λ2 to the LN pairing gap 	LN. See text for more details.

appearance of 	LN at the magic neutron number. In contrast,
the individual neutron contribution 	 decreases considerably
near the neutron magic number N = 82 and such a decrease is
compensated for by a strong increase in neutron λ2, so that their
sum behaves relatively smoothly and especially reproduces
the experimental property of a sudden increase at N = 82,
as seen in Fig. 7(b). To more appropriately compare with
the experimental value, as discussed in Ref. [90], the pairing
gap is suggested to determine directly from odd-even mass
differences based on theoretical masses, where the nonsmooth
contributions given by spherical (even deformed) gaps and
shape transitions may cancel out to some extent. However,
it turns out that, even so, the corresponding theoretical mass
differences are still systematically smaller than the experi-
mental ones [92] (in principle, they should be identical). Some
effects such as mean-field and odd-nucleon effects are pointed
out to be responsible for this discrepancy [93,94]. Actually,
when such effects are taken into account, pairing strengths are
increased by about 5–10% (at least in the rare-earth region),
resulting in larger pairing gaps [92]. In the present work
focusing on stiffness evolutions, we have not performed the
pairing strength adjustment since such an operation affects the
ground-state deformation very slightly [45].

In addition, as is known, the realistic phenomenological
WS potential provides a good description of not only the
ground-state properties but also the excited-state properties
of nuclei. For instance, such a phenomenological potential has
been successfully applied to explain and predict the nuclear
equilibrium deformations, the high-K isomer, the nucleon
binding energies, the fission barriers, and a number of the
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FIG. 8. (Color online) Calculated proton (a) and neutron
(b) single-particle levels near their Fermi surfaces for neutron-
deficient 114Ba based on different set of WS parameters [58]. The
red levels connected by dotted lines denote the Fermi levels.

single-particle effects for superdeformed and fast rotating nu-
clei, etc. (see [32,46,47,58,92] and references therein). Various
parametrizations of the WS potential have been fitted to the
contemporarily existing experimental data with a different
emphasis on nuclear structure properties. Most of the existing
WS parameter sets are only suitable for a certain nuclear mass
region. Even, for the so-called universal parameters, which
are N and Z independent, special attention should be paid
when extrapolating to the drip-line region. Just to see the
parameter dependence in the very neutron-deficient 114Ba,
five frequently used WS parametrizations—Blomqvist and
Wahlborn [55], Chepurnov [56], and Rost [57], optimal [58],
and universal [58]—have been implemented to calculate the
single-particle level near the Fermi surface, as shown in Fig. 8.
One can see that the single-particle states located around the
Fermi level are considerably affected by the WS parameter
sets, implying a possibly large effect on the shell and pairing
corrections.

Recently, the isospin dependences of the spin-orbit poten-
tial and the nuclear surface diffuseness have been revealed
to be important factors in the accurate description of the
ground-state properties of nuclei, in particular near the drip
lines [95,96]. Moreover, the angular dependence of surface
diffuseness is further discussed by Adamian et al. [97]. It is of
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FIG. 9. (Color online) Calculated proton single-particle levels
for 114Ba as functions of quadrupole deformation β2. Part (a) shows
results for three selected surface diffuseness a values (0.67, 0.70, and
0.73 fm) and all other potential parameters are identical with those
of universal values [58]. Part (b) is similar to (a) but for different
spin-orbit strengths λ (34.0, 36.0, and 38.0).

interest to examine whether and to what extent the present
results will be changed if the model parameters (e.g., the
strength of the spin-orbit potential λ, and the nuclear surface
diffuseness a) are adjusted. As an example, the near-drip-line
114Ba nucleus is investigated here. As shown in Fig. 9,
the single-proton levels are given to display the effects of the
spin-orbit coupling strength and the nuclear surface diffuse-
ness. According to Ref. [95], the parameters (a, λ) are slightly
modified on the basis of the initial values (0.70, 36), namely,
the universal values. Certainly, it is hoped that a = 0.73 and
λ = 38 should be more suitable for the present case based on
the function relationship of the isospin dependence of such two
parameters in Ref. [95]. It can be noticed from Fig. 9(a) that the
increase of the diffuseness parameter a mainly pushes up the
single-particle spectrum while the relative distances between
them vary rather slightly. Figure 9(b) shows that some levels
are pulled down and, simultaneously, other ones are pushed up
with the increasing spin-orbit coupling strength λ. This means,
as expected, that λ can control the relative positions of levels.

Figure 10 shows the deformation energy curves for the
selected 114Ba nucleus calculated by using the modified
(λ, a) parameters. It is found that the ground-state equilibrium
deformation is stable against various (λ, a) combinations. The
stiffness related to the curvature at the minimum of the energy
curve is affected slightly. However, the depth of the minimum
is changed to some extent, which results in the variation
of the binding energy (mass), agreeing with the discussion
in Ref. [95]. In addition, as shown in Fig. 10, such slight
parameter modifications may have important influence on the
barrier (the energy difference between the minimum and the
saddle point at PES). Nowadays, it is known that the axial
(reflection) asymmetry in the nuclear shape affects the inner
(outer) fission barrier for the heavier actinides and superheavy
nuclei [98–101]. According to present investigation, we have
no reason to doubt that the adjustment of λ and/or a can affect
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FIG. 10. (Color online) Similar to Fig. 2 but for different param-
eter combinations of the surface diffuseness a and spin-orbit strength
λ for the selected 114Ba nucleus. All other potential parameters are
identical with those of universal values [58].

the fission barrier for such nuclei, though it is beyond the scope
of this work.

IV. SUMMARY

In summary, we have calculated the ground-state equilib-
rium deformations for even-even 112−150Ba isotopes based on
the pairing-deformation self-consistent PES methods in the
multidimensional (β2,γ,β4) and (β2, β3, β4, β5) deformation
spaces, where the phenomenological nuclear mean-field model
with the WS Hamiltonian using the universal parameters is
employed. The calculated values are to a great extent in
good agreement with previous theoretical results and available
experimental data. The β2, γ, and β3 deformation energy
curves are analyzed in detail, which is helpful to understand
the structural evolution of these nuclei. In particular, the
variation of β2, γ, and β3 stiffness with neutron number are
discussed. The present results reveal that the γ -soft or triaxial
(octupole-soft or octupole-deformed) nuclei have relatively
large stiffness in the direction of octupole (γ ) degrees of

freedom, at least, for the ground states. It seems, obviously, that
in such phenomenological nuclear mean-field calculations, to
ensure the right nuclear shape without unnecessary losses of
CPU time the selection of the deformation space (namely,
what deformation degrees of freedom need to be considered)
should be of importance. Of course, as known, there is
no doubt that the Coriolis effect can induce an onset of
reflection and axial asymmetries of a nuclear system to a large
extent. Very recently, for instance, Mazurek et al. discussed
the competition between the so-called nuclear Jacobi (from
axially symmetric to the triaxially symmetric configurations)
and Poincaré (from reflection-symmetric to the reflection-
asymmetric configurations) shape transitions at high spins and
temperatures [33]. Moreover, such shape transitions have been
predicted and discussed in a few barium nuclei [102,103].
Therefore, the more reasonable PES calculation concerning
rotation should simultaneously consider nonaxiality, reflection
asymmetry, and the isospin dependence of the spin-orbit
potential and the nuclear surface diffuseness, and even the
angular dependence of surface diffuseness.

The observation of low-lying negative-parity states in
114−116Ba (only the ground states of these nuclei have been
hitherto identified [75]) would also be of great interest, which
would present a valuable insight into octupole collectivity in
this region. Though in-beam spectroscopy of barium isotopes
with A < 118 with stable beams and targets will prove to
be very difficult since the proximity to the drip lines strongly
depends on new experimental devices, in particular radioactive
ion beam accelerators and γ -ray tracking arrays, these nuclei
are still excellent candidates to be studied once suitable
radioactive-ion beams have been developed.
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