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Quantifying truncation errors in effective field theory
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Bayesian procedures designed to quantify truncation errors in perturbative calculations of quantum
chromodynamics observables are adapted to expansions in effective field theory (EFT). In the Bayesian approach,
such truncation errors are derived from degree-of-belief (DOB) intervals for EFT predictions. Computation of
these intervals requires specification of prior probability distributions (“priors”) for the expansion coefficients.
By encoding expectations about the naturalness of these coefficients, this framework provides a statistical
interpretation of the standard EFT procedure where truncation errors are estimated using the order-by-order
convergence of the expansion. It also permits exploration of the ways in which such error bars are, and are not,
sensitive to assumptions about EFT-coefficient naturalness. We first demonstrate the calculation of Bayesian
probability distributions for the EFT truncation error in some representative examples and then focus on the
application of chiral EFT to neutron-proton scattering. Epelbaum, Krebs, and Meißner recently articulated
explicit rules for estimating truncation errors in such EFT calculations of few-nucleon-system properties. We
find that their basic procedure emerges generically from one class of naturalness priors considered and that all
such priors result in consistent quantitative predictions for 68% DOB intervals. We then explore several methods
by which the convergence properties of the EFT for a set of observables may be used to check the statistical
consistency of the EFT expansion parameter.
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I. INTRODUCTION

Effective field theories (EFTs) describe the physics of
systems with a separation of scales.1 A key element in any
EFT is a power counting that organizes calculations into
an expansion in a dimensionless parameter or parameters,
which are typically formed from ratios of the low-energy
and high-energy scales in the system under consideration. We
denote this parameter generically as Q. In the simplest case
Q = p/�b is the ratio of the typical momentum, p, of the
process of interest to the breakdown scale, �b, of the EFT, i.e.,
the scale at which the first dynamics not explicitly included
in the EFT appears. Even in more complex situations with
many low-energy scales, the EFT expansion for X can be
denoted

X = X0

∞∑
n=0

cnQ
n, (1)

where X0 is the natural size of the observable X, and {cn}
are dimensionless coefficients, some of which may be zero.
In most EFTs the expansion (1) is inherited directly from the
EFT Lagrangian or potential, with suitable additions [e.g.,
terms of the form Qn ln(Q)] owing to quantum corrections.
In nuclear physics, however, the dynamics is intrinsically
nonperturbative, and there exists at least some subclass of EFT
graphs that must be summed to all orders. The connection
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between the Lagrangian and observables is then less direct.
Nevertheless, a properly formulated EFT for nuclear physics is
expected to have a Q expansion for observables of the form (1)
and it is the properties of such expansions that are our concern
in this paper.

A key benefit of the perturbative series (1) is that it
permits estimation of the error induced by truncation at a
finite-order k: “truncation errors.” If the coefficients cn for
an observable were to vary significantly and unsystematically
in size, the expansion (1) would be unsuited to this end.
However, experience and the principle of naturalness suggest
that the coefficients are typically of order one, even in the more
complex nuclear context.

In Ref. [4] we laid out a recipe for uncertainty quantification
in EFTs for nuclear physics. While they are not the only
source of theory uncertainty, truncation errors are often the
dominant uncertainty in EFT calculations. We argued that
Bayesian methods [5] provide an error bar, with a well-founded
statistical interpretation, that accounts for all sources of
uncertainty in the EFT. In particular, Bayesian methods are
essential to the assessment of truncation error: assumptions (or
expectations) about the EFT are encoded in “prior probability
distribution functions” (pdfs). The Bayesian approach then
proceeds by integrating out (“marginalizing”) the coefficients
of omitted terms to establish the truncation error.

The use of priors is often controversial because they can
introduce subjective judgments about, e.g., the meaning of
naturalness into the computation. We argue that, on the
contrary, introducing and stating Bayesian priors on higher-
order EFT coefficients renders explicit in the calculation
assumptions that are present but typically not articulated. This
allows such assumptions to be applied consistently, tested, and
modified in light of new information.
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In this work we begin with the general formalism for
computation of truncation errors discussed in the context of
perturbative QCD (pQCD) by Cacciari and Houdeau (CH)
in Ref. [6] and further developed in Refs. [7,8], where it is
called CH (cf. Ref. [9] for a brief summary). We rederive,
adapt, and extend their prescription to EFT expansions. We
explore several different choices of prior for the coefficients
{cn} and examine—within some generic examples—how such
prior choice affects the truncation-error estimate. We then look
specifically at the nuclear context, focusing on the extent to
which such calculations justify the uncertainty quantification
(UQ) procedure typically adopted in EFTs. This procedure
has recently been clearly stated and applied to nucleon-
nucleon (NN) cross sections by Epelbaum, Krebs, and Meißner
(henceforth EKM) in their fourth- and fifth-order applications
of chiral EFT to these observables [10,11]. (Introductions to
chiral EFT can be found in Refs. [12–17].) Note that here
we do not deal with the extent to which truncation errors
affect the low-energy constants (LECs) extracted from fitting
EFT expansions to data. This will be discussed in a separate
publication [18]. Our focus here is solely on estimating
the truncation error at order k for the series (1), given the
assumption of naturalness, and information on the size of the
coefficients c0, . . . ,ck .

In Sec. II, we provide a brief overview of the Bayesian
rules we will need and then adapt the CH prescription so
that it is suitable for application to EFT expansions. We also
enlarge the set of priors considered by CH. In Sec. III, this
approach is applied to some two-body observables considered
by EKM, using their assumed breakdown scale to compare
to their error assessment. In Sec. IV we explore methods to
determine the breakdown scale from the requirement that the
EFT coefficients be consistent with naturalness. In Sec. V we
summarize our results.

II. ADAPTING CH TO EFT

A. Setting up the problem

Consider the perturbative series (1) for the observable X.
If the series is truncated at order k, then the error induced
is X0�k , where the scaled, dimensionless parameter that
determines the truncation error is

�k ≡
∞∑

n=k+1

cnQ
n, (2)

provided that the series actually converges and is not solely
asymptotic. For sufficiently small values of Q, the first omitted
term ck+1Q

k+1 is a good estimate for �k . This leads to
simplified formulas for the evaluation of degree of belief
(DOB) intervals. Below we consider both this first-term
approximation and evaluations at larger Q that use several
terms in �k . In either case, this provides an estimate of the
deviation of the series at order k from the true value of the
observable, even if the series is asymptotic.

In Ref. [6] CH considered the case that the series (1) is a
pQCD expansion. The expansion is then in powers of the strong
coupling, αs(μ), where μ is a renormalization scale chosen
appropriately for the observable X. The optimal choice of μ

is the subject of much debate and many prescriptions in the
literature. Indeed, the variation of the truncated-at-order-k ex-
pression for X under an order-unity change in μ is canonically
used to estimate �k . This is justified because of the truncated
expansion’s residual dependence on the renormalization scale
μ; the full sum should be independent of μ, so the variation
with μ contains information about omitted terms.

CH pointed out that varying the scale μ around an optimal
value μ0, say, between μ0/2 and 2μ0, does not yield an
uncertainty with a straightforward statistical interpretation.
They therefore laid out a Bayesian probability-theory calcu-
lation of �k . Ultimately estimates from scale variation seem
to coincide quite well with the results of this more rigorous
probabilistic analysis. As we now describe, that analysis starts
with priors for {cn} that encode the assumption that these
pQCD coefficients are of order unity (once the typical size of
the observable X is factored out of the expression). It modifies
them in light of information acquired as more orders in the
series for X are computed and ultimately obtains a posterior
pdf for �k . With this posterior in hand, either the DOB
corresponding to a given interval of values of the truncation
error or the range of truncation errors corresponding to a
specified DOB can be computed.

CH’s analysis of truncation errors in pQCD took the case
where the series is in powers of αs , rather than Q. Later
work [7,8] introduced a scale factor λ, such that the expansion
was in powers of αs/λ (e.g., because the expansion parameter
might really be αs/π or include a color factor) and a possible
combinatoric factor (such as n! from high-order renormalon
contributions). In this, termed the “CH prescription,” the
assumption is modified to say that the coefficients in the
perturbative series of an appropriately chosen expansion
parameter are distributed such that they share a common upper
bound. In EFT the rescaling by a factor λ corresponds to the
choice of a different breakdown scale for the EFT, and we
discuss this possibility in Sec. IV. We do not consider the
combinatoric factor, which has not been identified in EFT
expansions for few-nucleon-system observables.

Because one of the low-momentum scales of which Q
is formed is the momentum at which the observable X is
measured, the EFT expansion parameter is strongly dependent
on kinematics. While the QCD expansion’s convergence can
be improved by matching the scale at which αs is evaluated
to that of the observable of interest, in EFT the dependence
of Q on momentum is intrinsic, not a matter of choice.
Furthermore, the high-momentum scale, �b, that specifies
the radius of convergence of the EFT momentum expansion,
may not be known a priori; it may only be able to be
inferred from the behavior of the EFT series. This is a key
difference between EFT and pQCD, because in pQCD, the
value of αs can always be specified. In EFT a value of Q
corresponding to a particular momentum must be chosen and
then checked for consistency. Complicating the choice of an
appropriate �b—and concomitantly the evaluation of Q—for
many low-energy EFTs is that at least some of the cn’s need
to be extracted from data, either from X itself or from other
observables.

These differences from the pQCD situation are reflected
in the need to check the naturalness of EFT coefficients for
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a given choice of expansion parameter, something that we
discuss in detail in Sec. IV. For the time being we assume
that �b has been determined as part of the steps in the
EFT analysis that yielded the coefficients {cn : n = 0, . . . ,k}.
Empirically EKM found that �b ≈ 600 MeV resulted in
natural coefficients in their EFT series for neutron-proton
scattering cross sections [10,11]. However, the nonperturbative
nature of NN scattering makes it unclear how naturalness for
EFT LECs results in these apparently natural values of {cn :
n = 0, . . . ,k} in the cross section’s expansion. This connection
is very clear for perturbative EFT expansions of interest in
nuclear physics, e.g., the chiral expansion for the nucleon mass
(see Ref. [5]) and the expansion for energy per particle of a
dilute Fermi system with natural-sized scattering length [19].
Regardless, though, in either perturbative or nonperturbative
cases, an incorrect choice of high-momentum scale, �b, will
result in coefficients that are not natural. This emphasizes
the close connection between the assumption of a particular
expansion parameter and the imposition of a naturalness prior.

B. Conditional probabilities: Definitions and rules

We use the notation pr(x|I ) to denote the probability
(density) of x given information I ; thus, pr(�k|c0, . . . ,ck) is
the desired pdf for �k . The specification c0, . . . ,ck suggests
that c0 is nonzero, but it is straightforward to generalize
the results derived here to the case where the first nonzero
coefficient is cl with l > 0 (as often is the case in QCD) or that
where some intermediate coefficients are identically zero (as
for chiral EFT in NN scattering, where n = 1 does not appear).

Because the terminology, techniques, and manipulations of
Bayesian statistics may be unfamiliar to our intended audience,
we include a brief overview here of those aspects needed for
the CH procedures [20,21]. We indicate parenthetically some
analogies to familiar manipulations in quantum mechanics.
We emphasize that the correspondences are not to be taken
literally.

Bayesian probabilistic inference is built on the sum and
product rules. If the set {xi} is exhaustive and exclusive (cf.
complete and orthogonal), then the sum rule says that pr(xi |I )
is normalized,

∑
i

pr(xi |I ) = 1 −→
∫

dx pr(x|I ) = 1, (3)

where the continuum version is integrated over the appropriate
range of x. It further implies marginalization (cf. inserting a
complete set of orthonormal basis states),

pr(x|I ) =
∑

j

pr(x,yj |I ), (4)

or the continuum version

pr(x|I ) =
∫

dy pr(x,y|I ), (5)

where pr(x,y|I ) is the joint probability of x and y given I . We
apply this repeatedly, either to introduce new parameters or to
integrate out “nuisance” parameters.

Expressing pr(x|I ) in terms of the joint probability
pr(x,y|I ) through Eq. (5) leads to progress by applying the
product rule to relate it to other pdfs:

pr(x,y|I ) = pr(x|y,I ) pr(y|I ) = pr(y|x,I ) pr(x|I ). (6)

The first equality translates to “the joint probability of x and
y is equal to the probability of x given y and I times the
probability of y given I .” The second equality follows by
symmetry, but when rearranged becomes Bayes’ theorem,

pr(x|y,I ) = pr(y|x,I ) pr(x|I )

pr(y|I )
, (7)

which here relates the posterior pr(x|y,I ) to the likelihood
pr(y|x,I ) given the prior pr(x|I ) and the evidence pr(y|I ).
These relations will enable us to derive the posterior for �k in
terms of assumed priors.

Another implication of the product rule follows when x and
y are mutually independent, which means that knowing y does
not affect the probability of x, so that pr(x|y,I ) = pr(x|I ).
Then Eq. (6) tells us that

pr(x,y|I ) −→ pr(x|I ) pr(y|I ). (8)

In the following we sometimes omit the explicit I , but the
specification of prior information should always be assumed.

C. CH synopsis and EFT correspondence

We consider multiple priors that reflect the expectation that
all coefficients in the expansion of an observable in powers
of Q are of roughly the same size, or, more precisely, they
have a distribution with a characteristic size. The fundamental
assumption made by CH in Ref. [6] is that all coefficients of
αs in the pQCD series are roughly the same size, which is
implemented by treating them as random variables having a
shared distribution with upper bound c̄. This assumption is
motivated by empirical evidence from the behavior of such
series. But it may not be correct for EFT expansions, where
the form (1) is expected to result in coefficients which are
O(1), not arbitrarily large.

To proceed we need to translate such a fundamental
assumption into concrete expressions for priors. Cacciari and
Houdeau do this through three supplementary assumptions
(which they call “hypotheses”) [6], as follows:

(i) The prior probability densities for coefficients at
different orders are independent in the sense of Eq. (8).
That is, given an upper bound c̄, the joint prior density
for coefficients factorizes

pr(c0, . . . ,cn|c̄) =
n∏

i=0

pr(ci |c̄). (9)

CH then also assume that pr(ci |c̄) is the same pdf for
each i. Thus, the value of c̄ is the most knowledge ob-
tainable from the known coefficients when predicting
possible values of unknown ones. In this way, we have
isolated communication from the data about the sum
of all omitted higher-order terms into one variable c̄.

(ii) Next we need a specific prior probability distribution
for pr(ci |c̄). In the interest of understanding the
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TABLE I. Prior pdfs.

Set pr(cn|c̄) pr(c̄)

A 1
2c̄

θ (c̄ − |cn|) 1
ln c̄>/c̄<

1

c̄
θ (c̄ − c̄<)θ (c̄> − c̄)

B 1
2c̄

θ (c̄ − |cn|) 1√
2πc̄σ

e−(ln c̄)2/2σ 2

C 1√
2πc̄

e−c2
n/2c̄2 1

ln c̄>/c̄<

1

c̄
θ (c̄ − c̄<)θ (c̄> − c̄)

prior dependence of our analysis, we test alternative
implementations of naturalness in the priors. The
extent to which the posterior pdf for �k is stable under
different, but reasonable, choices of prior indicates
the extent to which data on {cn : n = 0, . . . ,k} is
sufficiently informative to dominate the analysis.
When we know there is an upper bound to the coef-
ficients, an application of maximum entropy dictates
that the least-informative distribution is uniform for
|ci | < c̄. Such uniformity is additionally appealing
because it can lead to simple, analytic results. This
uniform prior is the initial choice of Ref. [6]. We
employ it in priors we denote as “Set A” and “Set
B” (see Table I), the difference being the prior pdf
assumed for c̄ in the two cases (see below).
The priors of “Set C” in Table I then correspond to
the ensemble naturalness assumption of Ref. [5]. This
Gaussian prior follows from the maximum-entropy
principle assuming knowledge of testable information
on the mean and standard deviation of the cn’s [20,22],〈

k∑
n=0

c2
n

〉
= (k + 1)c̄2, 〈cn〉 = 0. (10)

We see below that analyses with Sets A and B are
insensitive to details of the distribution of {c0, . . . ,ck}:
The only feature of the distribution that matters is
the value of the largest of these k + 1 lower-order
coefficients. However, results under Set C priors
are affected by the specific distribution of these
coefficients, as well as by the largest value.

(iii) Finally, the application of Bayes’ theorem requires a
prior for c̄: pr(c̄). Uniformity of ln c̄ is the only way
to ensure unbiased expectations regarding the scale
of c̄ [23]. This log-uniform prior for c̄ was chosen
in Ref. [6], and so Set A of Table I is their choice
of prior. We also employ the log-uniform prior for
c̄ in Set C, there following Schindler and Phillips in
Ref. [5]. Such a prior cannot be normalized for c̄ in
(−∞,∞) and is therefore termed an “improper prior.”
Limiting the range of c̄ through the use of θ functions
permits an examination of the otherwise ill-defined
limiting behavior. CH chose c̄< = ε and c̄> = 1/ε
and take the limit ε → 0 at the end of the calculations.
Thus, the θ functions and associated ln c̄>/c̄< factor
serve to regulate the distribution so that the pdf is
always normalized. Taking the limit ε → 0 expresses
complete ignorance of the scale of c̄, although we also

consider finite ranges for the marginalization over c̄,
thereby rendering the priors more informative.
In Refs. [7,8], a more informative c̄ prior is considered
based on the fact that the first coefficient c0 can be
scaled out. The authors argue that in this case it is no
longer necessary to allow for an arbitrarily large value
for the other coefficients. In consequence, they assume
c̄’s prior is a log-normal distribution about zero.
We take this as Set B of Table I. Note that scaling the
observable so that the first coefficient is order unity is
also what we do for the EFT expansion; see Eq. (1).

In the case of prior information on the naturalness of
coefficients that is different than that discussed here, maximum
entropy can be used to derive how the different information
should be reflected in alternative priors [22]. Such direct con-
version from information on the interpretation of naturalness
to prior pdfs facilitates rigorous derivation of the consequences
of the concepts in question through the use of formal reasoning
and the language of probability. We now show how this
transpires by deriving the pdf for �k , initially refraining from
specifying anything about the priors on {c0, . . . ,ck}.

D. Posteriors and DOB intervals for �k

Given the three assumptions described above and the prior
sets of Table I, we can systematically derive the posterior
for �k by repeated application of the sum and product rules
and their logical Bayesian consequences. At each step, we
introduce a specific concept being built into the analysis. For
this general derivation we assume that the coefficients start
from k = 0 and are all significant and nonzero (later we modify
the general results to treat the case of NN scattering in chiral
EFT, where the orders are nominally Q0, Q2, Q3, ... with Q1

absent).
(1) Formula for pr(�k|c0, . . . ,ck). We seek

pr(�k|c0, . . . ,ck), which is the probability density for
the dimensionless residual, �k , given the known values of the
first k + 1 coefficients. Because the true value of �k depends
only (explicitly) on the unknown coefficients cn>k , we insert
them into the equation by integrating over all their possible
values using Eqs. (5) and (6),

pr(�k|c0, . . . ,ck)

=
∫

pr(�k|ck+1,ck+2, . . .) pr(ck+1,ck+2, . . . |c0, . . . ,ck)

×dck+1 dck+2 · · ·

=
∫ [

δ

(
�k −

∞∑
n=k+1

cnQ
n

)]
pr(ck+1,ck+2, . . .

|c0, . . . ,ck) dck+1 dck+2 · · · , (11)

where we have used

pr(�k|c0, . . . ,ck,ck+1,ck+2, . . .) = pr(�k|ck+1,ck+2, . . .)

= δ

(
�k −

∞∑
n=k+1

cnQ
n

)
.

(12)
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The latter is a direct consequence of Eq. (2). Equation (11)
states that, to get a specified �k given a set of known
coefficients, we need to sum up all the different combinations
of cn’s with n > k that give us this �k , weighting each
combination by its probability given the known values of
coefficients cn for n � k. Note that all of these integrals over
cn are from −∞ to +∞, in general, but in particular cases
there may be constraints (e.g., a cross section is positive, so
the leading coefficient will be positive).

The probability density (11) is correctly normalized be-
cause the normalization integral over �k can be performed
using the δ function, leaving the normalization integral for
pr(ck+1,ck+2, . . . |c0, . . . ,ck), which is unity.

(2) Independent priors. Our priors are based on the
assumption that c̄ is the only information that gets transmitted
to the distribution of cn for n > k. Thus, at this stage we
introduce c̄ as an intermediary in the pdf in the integrand of
Eq. (11) via another marginalization integral and apply this
assumption:

pr(ck+1,ck+2, . . . |c0, . . . ,ck)

=
∫ ∞

0
pr(ck+1,ck+2, . . . |c̄,c0, . . . ,ck) pr(c̄|c0, . . . ,ck) dc̄

=
∫ ∞

0
pr(ck+1,ck+2, . . . |c̄) pr(c̄|c0, . . . ,ck) dc̄

=
∫ ∞

0

[ ∞∏
n=k+1

pr(cn|c̄)

]
pr(c̄|c0, . . . ,ck) dc̄. (13)

In the final equality we have used the assumption that the ci

distributions are independent, causing the joint densities for
the cn’s with n > k to become the product of independent
densities pr(cn|c̄). We see that the imposition of Set A or Set
C priors for c̄ makes the limits on this integral finite.

(3) Leading-term approximation. We next assume �k ≈
ck+1Q

k+1 ≡ �
(1)
k in Eq. (11) and return later to relax this

assumption. By examining the effect of this assumption on
DOB intervals, we show that this approximation is quite
appropriate for small values of Q. This is the simplest way
to exploit the δ function, which then depends only on ck+1.
After substituting Eq. (13) into (11), the ck+2, . . . integrals are
just normalization integrals (equal to 1), leaving integrations
over ck+1 and c̄:

pr
(
�

(1)
k

∣∣c0, . . . ,ck

)
=
∫ ∞

−∞

∫ ∞

0

[
δ
(
�

(1)
k − ck+1Q

k+1
)]

pr(ck+1|c̄)

×pr(c̄|c0, . . . ,ck) dc̄ dck+1

= 1

Qk+1

∫ ∞

0
pr
(
ck+1 = �

(1)
k

/
Qk+1

∣∣c̄) pr(c̄|c0, . . . ,ck) dc̄.

(14)

(4) Expanding the composite prior. The first pdf in the
integrand of Eq. (14) may be directly evaluated for a given
choice of prior, but the second cannot. It can, however, be
identified as being constructed from the priors defined in

Table I, via application of Bayes’ theorem:

pr(c̄|c0, . . . ,ck) = pr(c0, . . . ,ck|c̄) pr(c̄)

pr(c0, . . . ,ck)

= pr(c0, . . . ,ck|c̄) pr(c̄)∫∞
0 pr(c0, . . . ,ck|c̄′) pr(c̄′) dc̄′

=
[∏k

n=0 pr(cn|c̄)
]
pr(c̄)∫∞

0

[∏k
n=0 pr(cn|c̄′)

]
pr(c̄′) dc̄′ . (15)

In the second line we have introduced another marginalization
over c̄′ in the denominator, while in the third line we apply
the independence assumption of Eq. (9). Combining Eqs. (15)
and (14) gives

pr
(
�

(1)
k

∣∣c0, . . . ,ck

)
=
∫∞

0 pr
(
ck+1 = �

(1)
k

/
Qk+1

∣∣c̄)[∏k
n=0 pr(cn|c̄)

]
pr(c̄) dc̄

Qk+1
∫∞

0

[∏k
n=0 pr(cn|c̄′)

]
pr(c̄′) dc̄′ .

(16)

Now we can apply one of the sets of assumptions in Table I,
which give us specific forms to evaluate each of the pdfs in
Eq. (16). Note that if some of the ci’s for i < k are identically
zero, there are correspondingly fewer terms in the products of
pr(cn|c̄) in Eq. (16).

(5) Prior Set A(1). Prior Set A has been developed under
the assumption that identifying a maximum value c̄ is a valid
concept. We here start with a finite c̄ range between c̄< and
c̄> for which Eq. (16) can be evaluated analytically. If c̄< = ε
and c̄> = 1/ε and we take the limit as ε → 0, we designate
this as Set Aε . Meanwhile, the superscript (1) is introduced to
denote the use of the first-term approximation.

For this prior choice, A(1), the denominator of Eq. (16)
is directly evaluated as there are only integrals over theta
functions,∫ ∞

0

[
k∏

n=0

pr(cn|c̄′)

]
pr(c̄′) dc̄′

=
∫ ∞

0

[
k∏

n=0

1

2c̄′ θ (c̄′ − |cn|)
]

× 1

ln c̄>/c̄<

1

c̄′ θ (c̄′ − c̄<)θ (c̄> − c̄′) dc̄′

= 1

2k+1

1

ln c̄>/c̄<

∫ c̄>

max(c̄(k),c̄<)

1

c̄′k+2
dc̄′, (17)

where we have followed CH [6] and introduced the variable
c̄(j ) to denote the maximum of the first j + 1 coefficients:

c̄(j ) ≡ max(|c0|, . . . ,|cj |). (18)

The integration over c̄ in the numerator of Eq. (16) is similar,
but contains the extra pdf pr(ck+1 = �

(1)
k /Qk+1|c̄) in the

integrand. Using the θ functions to once again define the
integration bounds, the numerator simplifies to

1

2k+2

1

ln c̄>/c̄<

θ (c̄> − c̄(k+1))
∫ c̄>

max(c̄(k+1),c̄<)

1

c̄k+3
dc̄. (19)
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We can see now how regulating the integrals with c̄> and c̄<

will allow terms such as ln c̄>/c̄< (and most factors of 2) to
cancel between the numerator and denominator, after which
we may choose to take ε to zero in A(1)

ε without consequence.
More generally, we assume that the integration range for c̄ is

wide enough that c̄< < c̄(k) < c̄>. The posterior then evaluates
to

pr
(
�

(1)
k

∣∣c0, . . . ,ck

)
= 1

Qk+1

1

2

(
k + 1

k + 2

)
θ (c̄> − c̄(k+1))

c̄
−(k+1)
(k) − c̄

−(k+1)
>

×
⎧⎨
⎩

c̄
−(k+2)
(k) − c̄−(k+2)

> if
∣∣�(1)

k

∣∣ � c̄(k)Q
k+1,(

Qk+1

|�(1)
k |
)k+2 − c̄−(k+2)

> if
∣∣�(1)

k

∣∣ > c̄(k)Q
k+1.

(20)

If some of the coefficients are zero (e.g., the series starts at
Ql with l > 0, or one or more intermediate coefficients are
zero), we can revise these formulas trivially: The only change
is that there are fewer θ functions in the integrals. Taking nc

to be the number of nonzero constants, we implement this
generalization by replacing k with nc − 1 everywhere except
for powers of Q, which remain k + 1. Thus, the modified
posterior for Set A(1) is

pr
(
�

(1)
k

∣∣c0, . . . ,ck

)
= 1

Qk+1

1

2

(
nc

nc + 1

)
θ (c̄> − c̄(k+1))

c̄
−nc

(k) − c̄
−nc
>

×
⎧⎨
⎩

c̄
−(nc+1)
(k) − c̄−(nc+1)

> if
∣∣�(1)

k

∣∣ � c̄(k)Q
k+1,(

Qk+1

|�(1)
k |
)nc+1 − c̄−(nc+1)

> if
∣∣�(1)

k

∣∣ > c̄(k)Q
k+1,

(21)

which simplifies to the corresponding equation of Ref. [6] in
the limiting case of A(1)

ε ,

pr
(
�

(1)
k

∣∣c0, . . . ,ck

)
=
(

nc

nc + 1

)
1

2c̄(k)Qk+1

×
⎧⎨
⎩

1 if
∣∣�(1)

k

∣∣ � c̄(k)Q
k+1,( c̄(k)Q

k+1

|�(1)
k |
)nc+1

if
∣∣�(1)

k

∣∣ > c̄(k)Q
k+1.

(22)

Note that this simple generalization is possible owing to the
identical treatment of the priors for each coefficient.

(6) Prior Sets B(1) and C(1). Neither Set B nor Set C priors
allow for analytic integrals over c̄, so the discussion here
will necessarily be less extensive than that for Set A. In the
first-term approximation the posterior for �k can be reduced
to a one-dimensional integral, whose evaluation must be left
to numerical integration. Inserting Set C priors into Eq. (16)
results in

pr
(
�

(1)
k

∣∣c0, . . . ,ck

)

=
1

Qk+1
1√
2π

∫ c̄>

c̄<
dc̄ exp

[− (�(1)
k )2

2(Qk+1)2 c̄2

](
1
c̄

)nc+2[∏
n e−c2

n/2c̄2]
∫ c̄>

c̄<
dc̄′ ( 1

c̄′
)nc+1[∏

n e−c2
n/2c̄′2] ,

(23)

where products are assumed to run over all nc coefficients with
defined prior distributions.

(7) DOB intervals. In the Bayesian framework, the poste-
rior pr(�k|c0, . . . ,ck) contains the complete information we
claim to have about the dimensionless residual �k . In some
applications we need to use the entire posterior because it is
very structured (e.g., multimodal or simply non-Gaussian), but
here we can capture most of the information with the choice
of a small number of DOB intervals.2

In particular, the DOB for a particular interval in �k is found
simply by integrating pr(�k|c0, . . . ,ck) over this interval. We
could also start with a given DOB, e.g., the standard frequentist
(Gaussian) 68% or 95%, and determine the smallest interval
that integrates to that number. Alternatively, we could specify
some other criterion for deciding the interval, such as that it is
symmetric about the mode. In fact, the use of any of the priors
in Table I results in a smallest p%-DOB interval for �k that
is symmetric about the mode; following Ref. [6] we denote
the corresponding dimensionless limits by ±d

(p)
k . Thus, the

implicit definition of this interval is

p% =
∫ d

(p)
k

−d
(p)
k

pr(�k|c0, . . . ,ck) d�k. (24)

In the limiting case of prior Set A(1)
ε , this integral can be

evaluated explicitly [6],

d
(p)
k = c̄(k) Q

k+1 ×
{

nc+1
nc

p% if p � nc

nc+1 ,[
1

(nc+1)(1−p%)

]1/nc if p > nc

nc+1 ,
(25)

where nc is again the number of nonzero known coefficients.
Thus, with these priors, the interval of width c̄(k)Q

k+1 about
the EFT prediction at order k is a nc/(nc + 1) ∗ 100% DOB
interval, cf. Ref. [6]. Such a theory error bar has often been
assigned in previous EFT calculations, and—as we discuss
further in Sec. III—corresponds to the prescription formalized
in Refs. [10,11]. It is important—e.g., in the context of
error propagation—to keep in mind that this prior leads to
a distribution of probability for the truncation error that is not
Gaussian.

For the more general form of prior Set A(1), an analytic
formula for d

(p)
k can still be found. The explicit form of

the integral depends on the p% value of interest, because
of the change in structure for |�(1)

k | > c̄(k)Q
k+1. Thus, we first

calculate this transition value (p%)t by integrating the maximal
probability within the first region in which |ck+1| � c̄(k) to
obtain

(p%)t =

⎡
⎢⎣

1

c̄
nc+1
(k)

− 1

c̄
nc+1
>

1

c̄
nc
(k)

− 1

c̄
nc
>

⎤
⎥⎦
(

nc

nc + 1

)
c̄(k). (26)

Now suppose we are interested in p% intervals for p < pt .
Equation (26) implies that the interval bounded by variation
±c̄(k)Q

k+1 is a (p%)t-DOB interval. Generally, the DOB

2These are also called “credibility” or “credible” intervals.
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interval for Set A(1) is bounded by

d
(p)
k =

⎡
⎢⎣

1

c̄
nc+1
(k)

− 1

c̄
nc+1
>

1

c̄
nc
(k)

− 1

c̄
nc
>

⎤
⎥⎦

−1

nc + 1

nc

p% Qk+1 if p% � (p%)t.

(27)

When one is interested in larger p% values, it may be beneficial
to take advantage of the normalization of the pdf to conduct
an integration in only one region by integrating the second
case of Eq. (21) on the interval [d (p)

k ,∞]. Because c̄(k+1) =
ck+1 in this region, the θ function truncates this integration at
�

(1)
k = c̄>Qk+1. The resulting implicit expression for d

(p)
k if

p% > (p%)t is thus

(1 − p%) = 1

Qk+1

(
nc

nc + 1

)
1

1

c̄
nc
(k)

− 1

c̄
nc
>

{(
d

(p)
k − c̄>Qk+1

)
c̄
nc+1
>

+ (Qk+1)nc+1

nc

[
1(

d
(p)
k

)nc
− 1

(c̄>Qk+1)nc

]}
. (28)

For Set B(1), Set C(1), or, indeed, for any of the sets
if we do not make the first-term approximation, the DOB
interval d

(p)
k can be found numerically from Eq. (24) by

integrating pr(�k|c0, . . . ,ck) [e.g., from Eq. (23)] from zero
until the integral equals p/2. We stress again the resulting DOB
intervals are not standard deviations and make no statement
about the shape of the normalized function that integrates to
0.68 between the bounds ±d

(68)
k .

(8) Relaxation of first-term approximation. To relax the
assumption that the first omitted term dominates, we introduce
the generalized notation

�k ≈ �
(1)
k +

kmax∑
m=k+2

cmQm ≡ �
(kmax−k)
k = �

(h)
k , (29)

where kmax is the highest-order coefficient kept in the sum
of omitted terms. Returning to step 3 above, we continue to
use the δ function to eliminate the integral over ck+1, with the
result that �

(1)
k is replaced with �

(kmax−k)
k in the subsequent

expression and the integrations over cm for m > k + 1 up to
m = kmax remain. The generalization of Eq. (16) is then

pr
(
�

(h)
k

∣∣c0, . . . ,ck

) =
∫∞
−∞· · ·∫∞

−∞
∫∞

0 pr
(
ck+1 = �

(h)
k (Q)

/
Qk+1

∣∣c̄) [∏k
n=0 pr(cn|c̄)

]
pr(c̄) dc̄

∏kmax
m=k+2 pr(cm|c̄) dcm

Qk+1
∫∞

0

[∏k
n=0 pr(cn|c̄′)

]
pr(c̄′) dc̄′ , (30)

where there are kmax − k − 1 integrals from −∞ to ∞ in the
numerator, in addition to the integral over the (positive) c̄. Note
that if the first omitted term really does dominate, then the
integrals over higher cm’s are trivial normalization integrals,
restoring the result of the first-omitted-term approximation.

(9) Summary. We have derived a general result for
pr(�k|c0, . . . ,ck) in Eq. (30), which is valid for any of the sets
in Table I. In most cases this expression must be evaluated
numerically, for example by Monte Carlo integration. By
assuming the first omitted term dominates, we obtain the much
less involved integration in Eq. (16). Evaluating the application
of this approximation to Set A(1) yields the analytic result
in Eq. (21) while for Sets B(1) and C(1) integrals are left to
be evaluated numerically; see, e.g., Eq. (23). Finally, DOB
intervals can be derived from these posteriors analytically for
A(1) [Eqs. (25), (27), and (28)] and numerically for the others
from Eq. (24).

E. Representative examples

Before applying the Bayesian framework developed by
CH, and extended above, to the specific problem of NN
scattering, we make some general observations on the form
of the posteriors for �k and the systematics of the 68% and
95% DOB intervals for various prior sets from Table I.

We start with the set Aε , defined by c̄< = ε, c̄> = 1/ε,
with ε → 0 (in practice, all results here in which ε is invoked
use ε = 0.001). The posterior distribution for �

(1)
k in Eq. (21),

which assumes that the first omitted term dominates the error,
has a flat central plateau with power-suppressed tails. This

is illustrated by the red curves in Fig. 1 for k = 0, k = 2, and
k = 4, for Q = 0.33. The heavy and light shaded regions show
the 68% and 95% DOB intervals, respectively. From Eq. (25),
the width of the posterior is given by c̄(k)Q

k+1 times a number
of order unity, so the dominant effect is that the width decreases
by a factor of Q with each increase of k by one. In fact, only
the maximum value of the cn’s for a given k, c̄(k), matters under
this choice of prior; the distribution of those cn’s is irrelevant.
The overall size of all DOB intervals then scales linearly with
c̄(k), so here c0, . . . ,ck have all been set to 1 for simplicity. For
Set A priors the generalization to other cases is trivial.

To relax the first-term approximation we include the first
four omitted terms in our computation of �k . The result is
then converged numerically in all cases shown, so, in practice,
Set Y (4) (Y = A, B, or C) priors lead to the same results
as when arbitrarily many higher-order terms are included in
the truncation-error calculation. In consequence, we do not
include superscripts below when reporting results with terms
beyond the first omitted one included in the computation of �k .
Such calculations show that the central plateau in the posterior
becomes rounded (blue curve in Fig. 1). The corresponding
effect on the DOB intervals depends on the value of k; for
k � 2 there is no significant effect on the 68% DOB intervals
while the 95% intervals are increased slightly.

If we use the more informative log-normal prior for c̄ from
set B, the tails are more quickly suppressed than for set Aε , to
a degree that depends in detail on the values of σ and Q [7,8].
Representative examples for �2 are shown in Figs. 2 and 3 for
Q = 0.2 and Q = 0.5, respectively, with σ = 0.25, 0.5, and
1.0 respectively. We see that the 68% DOB and 95% DOB
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FIG. 1. (Color online) Posteriors for �
(1)
k under Set A(1)

ε priors of Table I for (a) k = 0, (b) k = 2, and (c) k = 4, with Q = 0.33. In all
cases, cn = 1 was assumed. The solid red curve is the analytic result from Eq. (21), with the shaded regions marking the 68% and 95% DOB
intervals. The solid blue curve is the posterior �k for Aε once higher-order terms are included, with dot-dashed and dashed lines marking the
corresponding 68% and 95% DOB intervals.

intervals are smaller than those for Aε , with the difference
increasing with smaller σ . The further extension of the tail for
Aε is not surprising as we have allowed for the possibility of c̄
having a large range. As σ gets larger, the posteriors for each
Q value approach the Aε result; once σ � 1.0 there is very
little difference between Aε and Set B for k � 2. k = 0 and
k = 1 are more sensitive to σ .

We might expect that the Set B results with σ > 1.0 will
be even closer to those from Set A if we impose a range of c̄
values in Set A that reflects naturalness expectations. Results
of varying the range over which c̄ is marginalized are shown in
Table II, where we compare DOB intervals for �k with k from
0 to 4. For k � 3, the change in the range of c̄ has no noticeable
effect on either the 68% or the 95% DOB. For k = 2, effects
are 5%–10% on the 68% interval if a narrow range (c̄ from 0.5
to 2.0) is employed. Effects on the 95% interval can be up to
20% if this narrow range is employed at k = 2.

The Set C priors are qualitatively different from those of
Set A because they correspond to an ensemble naturalness
assumption for pr(ci |c̄), which means that the distribution
of cn’s for a given k—and not just their maximum—affects
the result. This is illustrated by the results in Table III, in
which DOB intervals for �2 with prior choices Aε and Cε are
compared. Because k = 2, the coefficients c0, c1, and c2 are all
influential; we consider three representative choices for their

values. The systematics going from cn sets a to b to c show that
having more cn’s near 1 leads to larger DOB intervals. Taking
cn(b) to give generic results for a roughly even distribution of
coefficients, we find that the Set C vs Set A comparison is close:
only a 10%–15% increase for the 68% DOB and a roughly 20%
increase for the 95% DOB. (The Set A intervals are wider for
all but the case in which all three known coefficients are 1.0.)
This reflects the stronger central peaking of the Set C pdf
under a reasonable distribution of the first three coefficients,
as depicted (in the first-omitted-term approximation) in Fig. 4.
Such differences in DOB intervals under different prior choices
will be amplified if k = 0 or k = 1.

Table III also assesses the approximation of keeping only
the leading omitted term in �2. Once Q = 0.5 we see
appreciable differences between Set C(1) and Set C results
that include multiple higher-order terms, but even then it is
only about a 15% effect on the error bar.

III. COMPARISON TO RECENT CHIRAL EFT RESULTS
FOR np SCATTERING

A. EKM’s truncation-error estimates

Chiral perturbation theory (χPT) encodes the consequences
of QCD at momenta of order of the pion mass [12–15]. It can

FIG. 2. (Color online) Comparison of �2 for prior set Aε (red solid line) and B (blue solid line) for (a) σ = 0.25, (b) σ = 0.5, and
(c) σ = 1.0. In each case c0,c1,c2 are all set to unity with an expansion parameter Q = 0.2. The DOB intervals are indicated as in Fig. 1.
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FIG. 3. (Color online) Comparison of �2 for prior set Aε (red solid line) and B (blue solid line) for (a) σ = 0.25, (b) σ = 0.5, and
(c) σ = 1.0, and c0,c1,c2 all set to unity with an expansion parameter Q = 0.5. The DOB intervals are indicated as in Fig. 1.

be used to compute the interaction of single nucleons and
pions for momenta well below the chiral-symmetry-breaking
scale, �χSB. χPT yields a purely perturbative expansion in
powers of (p,mπ )/�χSB for low-energy pion-pion and pion-
nucleon scattering. But, nuclei are bound states and will not
be generated from such an expansion.

In the early 1990s Weinberg pointed out that the infrared
enhancement associated with multinucleon intermediate states
meant that the χPT expansion cannot be applied directly
to the scattering amplitude in systems with more than one
nucleon [24]. He argued that the χPT Lagrangian and
counting rules should instead be used to compute an NN
(or NNN or ...) potential up to some fixed order, n, in χPT.
Such an expansion can then be examined for convergence
with n. The χPT potential V was computed to O(Q3) in
Refs. [25–27] and to O(Q4) in Refs. [28,29]. Consistent three-
nucleon forces have been derived and implemented in such an
approach [30,31].

However, while there is a χPT expansion for V , the
resulting nuclear binding energies (and other observables)
contain effects to all orders in the chiral expansion: There
is no obvious perturbative expansion for them. In practice,
chiral EFT for few-nucleon systems is often implemented as
described in the previous paragraph, but with the Hamiltonian
acting only on a limited space: In momentum space a cutoff
� in the range 450 < � < 800 MeV must be imposed [32].
From now on when we use the term chiral EFT in the context
of few-nucleon systems we mean calculations that are carried
out in this way. A formal justification of the Q expansion
(e.g., via the distorted-wave Born approximation evaluation
of higher-order contributions [33–35] or use of a relativistic
propagator [36,37]) requires a more sophisticated power
counting [38–40]. Nevertheless, in practice, the convergence
of chiral EFT calculations for observables can be examined
a posteriori to see if they inherit the Q expansion that has
been used for the potential.

TABLE II. Resulting 68% and 95% DOB intervals for �k using Set A(1) with different choices for the minimum and maximum of the c̄

prior. In all cases c̄(k) = 1.

min/max Q k = 0 k = 1 k = 2 k = 3 k = 4

0.001/1000 0.31 0.041 0.0073 0.00136 0.00026
0.25/4.0 0.20 0.22 0.039 0.0072 0.00136 0.00026
0.50/2.0 0.18 0.035 0.0068 0.00132 0.00026

0.001/1000 0.51 0.111 0.033 0.0101 0.0032
68% 0.25/4.0 0.33 0.36 0.106 0.032 0.0101 0.0032

0.50/2.0 0.30 0.095 0.030 0.0098 0.0031

0.001/1000 0.78 0.26 0.113 0.053 0.026
0.25/4.0 0.50 0.55 0.243 0.112 0.053 0.025
0.50/2.0 0.45 0.22 0.106 0.051 0.025
0.001/1000 1.96 0.103 0.0137 0.0023 0.00041
0.25/4.0 0.20 0.47 0.077 0.0129 0.0022 0.00041
0.50/2.0 0.29 0.056 0.011 0.0020 0.00039

0.001/1000 3.2 0.28 0.0614 0.0168 0.0050
95% 0.25/4.0 0.33 0.77 0.21 0.058 0.0166 0.0050

0.50/2.0 0.48 0.152 0.048 0.0150 0.0047

0.001/1000 4.91 0.645 0.21 0.0884 0.040
0.25/4.0 0.50 1.16 0.48 0.201 0.087 0.040
0.50/2.0 0.73 0.35 0.166 0.079 0.038
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TABLE III. DOB intervals for Sets Aε and Cε , with and without the leading-omitted-term approximation, for k = 2, with three sets of cn

values. These sets are {cn}(a) ≡ {1.0,1.0,1.0}, {cn}(b) ≡ {1.0,0.5,0.1}, and {cn}(c) ≡ {1.0,0.1,0.1}.

Q A(1)
ε /Aε C(1)

ε /Cε {cn}(a) C(1)
ε /Cε {cn}(b) C(1)

ε /Cε {cn}(c)

0.20 0.0073/0.0073 0.0095/0.0097 0.0062/0.0063 0.0056/0.0057
68% 0.33 0.033/0.033 0.043/0.045 0.028/0.029 0.025/0.026

0.50 0.113/0.123 0.149/0.171 0.096/0.111 0.087/0.100

0.20 0.0137/0.0137 0.025/0.026 0.017/0.017 0.015/0.015
95% 0.33 0.061/0.066 0.114/0.121 0.074/0.079 0.067/0.071

0.50 0.21/0.25 0.40/0.46 0.26/0.30 0.23/0.27

In two recent papers, EKM estimated the errors that
arise from truncation of the chiral EFT expansion at a
finite order [10,11] (see also Ref. [41]). Similar prescriptions
have previously been used in other EFT contexts (see, e.g.,
Refs. [42,43]). Such estimates apply to individual observables
(such as the total cross section for neutron-proton scattering
at a given laboratory energy or nucleon electric and magnetic
polarizabilities). They are independent of procedures used to
fit LECs to two-body scattering data at each order. While
Bayesian analysis could also be applied to those procedures,
that is not our concern here; it will be the focus of a future
publication [18].

Instead, EKM assume that the EFT expansion holds for
individual observables X(p), i.e.,

X(p) = X0

k∑
n=0

cn(p)Qn, (31)

with Q the EFT expansion parameter, and c1 = 0 in the Wein-
berg expansion for NN scattering in chiral EFT. Cumulative
sums at LO, NLO, N2LO, N3LO, and N4LO are then given by

XLO(p) = c0(p), (32)

XNLO(p) =
2∑

n=0

cn(p)Qn, (33)

XNj LO(p) =
j+1∑
n=0

cn(p)Qn, j = 2,3,4. (34)

EKM also assume that the dominant error at order k comes
from the first omitted—(k + 1)th—term. Two ingredients go
into their estimate of this term. The first is to identify the EFT
expansion parameter Q, defined as

Q ≡ max

(
p

�b

,
mπ

�b

)
. (35)

Note that, in contrast to pQCD, this is a momentum-dependent
expansion parameter, and so the expansion will perform
differently at different kinematic points. Furthermore, to know
Q we must identify �b, the breakdown scale of the EFT. In
Refs. [10,11], EKM estimate �b from error plots of the fit
phase shifts. The second ingredient is to determine the shift
beyond Nj LO as

�XNj LO = Qj+2max(|c0|,|c1|, . . . ,|cj+1|), (36)

where the cn’s are defined as above.
In Refs. [10,11] the expressions for the theory error are

defined via differences of the partial sums (34), but the result
may be summarized compactly according to Eq. (36). The
similarity of this prescription to the simplest analytic form
obtained above with A(1)

ε priors, the CH procedure written in
Eq. (25), is evident. For a given observable, the value of Q that
is identified defines the perturbative expansion parameter, and
the EKM uncertainty is the maximum coefficient times the first
omitted power of Q. Up to factors of order unity, this is what
Eq. (25) predicts for the 68% (“1σ”) DOB interval. There is
then clearly a semiquantitative correspondence. We now make
a quantitative comparison using the various priors from Table I.

FIG. 4. (Color online) Comparison of �2 for prior set A(1)
ε (red solid line) and C(1)

ε (blue solid line)—note that both are in the leading-omitted-
term approximation—for three sets of cn values with an expansion parameter Q = 0.33. These sets are (left to right) {cn}(a) ≡ {1.0,1.0,1.0},
{cn}(b) ≡ {1.0,0.5,0.1}, and {cn}(c) ≡ {1.0,0.1,0.1}. The DOB intervals are indicated as in Fig. 1.
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TABLE IV. Order-by-order calculations for σnp in mb for R =
0.9 fm from EKM [10,11,44]. Lab energy Tlab and relative momentum
prel are in units of MeV.

Tlab prel σLO σNLO σN2LO σN3LO σN4LO

50 153 183.6 166.5 167.0 166.8 167.5
96 212 84.8 75.1 78.3 77.5 78.0
143 259 52.5 49.1 54.2 53.7 53.9
200 307 34.9 35.9 42.6 43.2 42.7

We note that in chiral EFT, having posited a Q expansion,
we do not find the coefficients directly but extract them from
the calculations at different orders. In contrast, for the QCD
expansions, the coefficients are calculated independently of
each other. Thus, the EFT application will require additional
empirical verification; see Sec. IV.

B. The pattern of EFT coefficients in EKM’s result

In Refs. [10,44], results for the neutron-proton total cross
section at various energies are given for several values of
a coordinate-space regulator parameter R. These provide
empirical tests of the priors from Table I. The order-by-order
cross sections are given in Tables IV and V for R = 0.9 fm
and R = 1.2 fm, respectively. In line with Eq. (1), we write
the cross section at order k in the chiral EFT expansion as

σnp(Elab) ≈ σref

k∑
n=0

cn

(
p

�b

)n

, (37)

where σref is a reference cross section that might be
taken as σLO, as we do here, or the N4LO result, or the
experimental value. The analysis is not sensitive to this
choice. The breakdown scale �b was identified in Ref. [10]
as �b = 600 MeV for cutoffs R = 0.8, 0.9, and 1.0 fm,
�b = 500 MeV for R = 1.1 fm, and �b = 400 MeV for
R = 1.2 fm. Note that this decrease in �b with increasing
R corresponds to the change in the regulator cutoff scale
rather than a change in the intrinsic underlying breakdown
scale. In Ref. [4] it was emphasized that residuals for a
kth-order EFT calculation had two types of errors: regulator
artifacts dictated by the imposed cutoff � (∼1/R in this
context) and truncation errors in the Hamiltonian dictated by
the underlying breakdown scale �b. EKM do not make this
distinction in their notation; i.e., they use �b for both.

Under the EKM choices for �b, the dimensionless cn

coefficients are given in Tables VI and VII and Figs. 5 and 6 for

TABLE V. Order-by-order calculations for σnp in mb for R =
1.2 fm from EKM [10,11,44]. Lab energy Tlab and relative momentum
prel are in units of MeV.

Tlab prel σLO σNLO σN2LO σN3LO σN4LO

50 153 159.4 164.8 165.6 167.2 167.9
96 212 60.2 68.9 71.3 78.1 78.5
143 259 30.8 38.6 41.4 52.6 52.7
200 307 17.2 22.5 25.0 38.6 38.3

TABLE VI. Dimensionless coefficients from the expansion of
σnp = σLO

∑5
n=0 cnQ

n for R = 0.9 fm from Table IV, with Q =
prel/600 MeV.

Tlab c0 c1 c2 c3 c4 c5

50 1.0 0.0 −1.43 0.16 −0.26 3.5
96 1.0 0.0 −0.92 0.86 −0.61 1.07
143 1.0 0.0 −0.35 1.21 −0.27 0.25
200 1.0 0.0 0.11 1.44 0.25 −0.41

the R = 0.9 fm and R = 1.2 fm cases, respectively. Although
the coefficients in both cases are natural, rather different
patterns are seen. As discussed and illustrated by EKM (e.g.,
see Fig. 2 of Ref. [11]), the softer cutoff shifts contributions
between different chiral orders so that the systematic pattern
of corrections is disrupted. In particular, corrections at orders
N2LO and N4LO, which are purely from nonanalytic terms
in the chiral expansion, become heavily regulated by the
soft cutoff. This has the consequence that the corresponding
coefficients are anomalously small—which may, in turn result
in N3LO coefficients being somewhat large. This pattern is
seen in Fig. 6, but what is shown there is insufficient to
definitively establish that there is an interorder correlation
owing to regulator artifacts. Here we focus on the R = 0.9 fm
example to ensure that the pattern is primarily driven by
the inheritance of naturalness from the fit LECs and not by
regulator artifacts that spring from a choice of R that makes
the � ∼ 1/R effects predominate over the physics at �b that
was integrated out of the theory.

C. DOB intervals from a Bayesian analysis

There is a minimum of necessary information that must
exist between the prior and data for the resulting posterior
to accurately describe the above distributions. Two extremes
exist: a large supply of precise and accurate data paired with
an uninformative prior (or, even worse, an informative yet
incorrect prior) and a small amount of data paired with a
precisely and accurately defined prior. Each of these situations
may result in realistic posteriors as lack of information in one
realm is compensated by abundance in the other. In practice,
though, we conduct analyses between these extremes. We are
often able to define a reasonable, and appropriately loose, prior
that is subsequently fine tuned by a modest amount of data.
We now show that each of the priors defined in Table I may
be considered reasonable representations of naturalness in the
EFT-coefficient distribution obtained in the previous section.
The DOB intervals that result from Bayesian analyses using

TABLE VII. Dimensionless coefficients from the expansion of
σnp = σLO

∑5
n=0 cnQ

n for R = 1.2 fm from Table V, with Q =
prel/400 MeV.

Tlab c0 c1 c2 c3 c4 c5

50 1.0 0.0 0.23 0.09 0.47 0.54
96 1.0 0.0 0.51 0.27 1.43 0.16
143 1.0 0.0 0.60 0.33 2.07 0.03
200 1.0 0.0 0.52 0.32 2.28 −0.07
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FIG. 5. (Color online) Chiral EFT expansion coefficients from
Table VI for σnp at four different energies using potentials with
regulator parameters R = 0.9 fm and �b = 600 MeV. Note that the
coefficient c5 = 3.5 at Tlab = 50 MeV is off scale.

these priors show agreement and increased similarity at low Q
and high k, where the strength of available data is greatest.

In Fig. 7, cross sections from Table IV for R = 0.9 fm at
four different energies are plotted order-by-order in the chiral
expansion, with error bars indicating the 68% and 95% DOB
intervals if we adopt prior set Aε . The LO′ error bars are from
the calculation for the posterior of �0 while the LO error
bars are from the posterior of �1. When calculating �1, we
have k = 1 and nc = 1, so the resulting error bar is simply Q
times the LO′ one. This is the correct error estimate for a LO
chiral EFT calculation of NN scattering, as long as we know a
priori that the coefficient c1 in the expansion (37) is identically
zero.

Cross sections at subsequent orders generally fall within the
DOB intervals of lower-order error analyses, in accord with the
DOB intervals’ statistical interpretation. The order-by-order
decrease in the error bars primarily reflects the additional
factors of Q with each successive order. The very conservative
assumption for pr(c̄) used here, which encodes ignorance of its
scale even though we anticipate naturalness, leads to long tails
in the posterior for the lowest orders and correspondingly large
95% DOB intervals, further reflecting the non-Gaussian nature
of this distribution. When we use a form for pr(c̄) that reflects
the expectation of naturalness, the long tails are suppressed
and the 95% DOB intervals are closer to “2σ” errors, although
the pdfs do remain non-Gaussian, in general.

Table VIII is an analytical compilation of DOB intervals in
the limiting case of Aε with the leading-term approximation;
see Eq. (25). The top number in each cell has been calculated
using coefficients of Table VI, which are scaled with the

FIG. 6. (Color online) Chiral EFT expansion coefficients from
Table VI for σnp at four different energies using potentials with
regulator parameters R = 1.2 fm and �b = 400 MeV.

FIG. 7. (Color online) Cross sections at different energies and
orders from EKM, with DOB intervals at each order using Set Aε

priors. The thick error bars indicate 68% DOB intervals, while the
thin error bars indicate 95% DOB intervals.

σref corresponding to each energy. The lower number is the
resulting DOB interval in units of mb with the factor of
σref = σLO included. The 95% DOB interval being more than
6 times broader than the corresponding 68% DOB interval
at LO′ and LO emphasizes the strength of tails within these
posteriors.

Representative numerical results for the various prior sets
are given in Table IX. Though we omit mention of σref , values
here should also be multiplied by the energy-appropriate σref

(i.e., σLO) to obtain DOB values in units of mb. Systematically,
we observe that the ratios of DOB intervals between prior sets
are the same across all four energies for LO′ and LO as all
c1’s are 0 and we have scaled all c0’s to the value 1.0. Thus,
given the same set of coefficients, all posteriors scale similarly
with energy. Table IX also shows that the ensemble prior in
Set Cε generally predicts 68% DOB intervals, quite similar to
those from Set Aε , with much greater variation for 95% DOB
intervals for the lower orders. From this, we see that prior
choice affects the structure of the tails more significantly than
the structure of the peak. This is indicative of the strength of
information coming from the data and the prior at different
points in the distribution. Though Set B results in significantly
narrower DOB intervals at low k, the EFT coefficients provide
enough information for k � 2 to modify these posteriors into
agreement with those of Sets Cε and Aε .

A comparison of Set A results in Table IX with those in
Table VIII shows that the approximation of keeping only
the leading omitted term is excellent for the 68% DOB
for k > 2 and still quite good for k = 1 (which is the true
leading order). This approximation always underestimates the
interval from including higher-order terms and worsens as the
expansion parameter Q increases. Figures 8 and 9 show that
this result is general and that the approximation is better for
the 95% interval with a less conservative prior for c̄. One
outlier is the k = 5 prediction at Tlab = 50 MeV, where we see
consequences of a c5 coefficient known to have an anomalously
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TABLE VIII. DOB intervals for EKM σnp with R = 0.9 fm using prior Set A(1)
ε .

DOB Elab Q LO′ LO NLO N2LO N3LO N4LO

68% 50 0.255 0.40 0.102 0.024 0.0055 0.0013 0.00079
×183.6 mb 73 19 4.4 1.0 0.24 0.15

68% 96 0.354 0.55 0.20 0.045 0.0142 0.0047 0.0017
×84.8 mb 47 17 3.8 1.2 0.40 0.15

68% 143 0.432 0.68 0.29 0.082 0.038 0.015 0.0064
×52.5 mb 35 15 4.3 2.0 0.81 0.34

68% 200 0.511 0.80 0.41 0.136 0.089 0.043 0.021
×34.9 mb 28 14 4.7 3.1 1.5 0.73

95% 50 0.255 2.6 0.650 0.061 0.0103 0.0022 0.0012
×183.6 mb 470 120 11 1.9 0.40 0.23

95% 96 0.354 3.5 1.25 0.115 0.027 0.0079 0.0027
×84.8 mb 300 110 9.8 2.3 0.67 0.23

95% 143 0.432 4.3 1.87 0.21 0.072 0.026 0.010
×52.5 mb 230 98 11 3.8 1.4 0.53

95% 200 0.511 5.1 2.6 0.35 0.17 0.071 0.033
×34.9 mb 180 91 12 5.9 2.5 1.1

large value, which is an artifact of the fitting procedure [44].
Note that this results in the omission of the DOB interval for
N4LO at 50 MeV with Set A0.5–2 as c̄> is then less than c̄(k),
so the distribution is not defined in this case.

Overall, the prior sets Aε and Cε appear to be too
conservative for predictions at LO; we know that Aε and Cε

have incorporated less information than the alternatives so it
is no surprise that their posteriors are more widely distributed.
Importantly, we find that the posteriors for �k for k � 2 are
largely insensitive to the choice of prior, even for the 95% DOB
interval. As posteriors retain artifacts of the prior in inverse
proportion to the strength of the data, this similarity suggests

TABLE IX. DOB intervals for EKM σnp scaled by σLO with R = 0.9 fm. Results for prior Sets Aε , B (with σ = 1.0), and Cε , all without
the leading-omitted-term approximation.

Set Elab Q LO′ LO NLO N2LO N3LO N4LO

Aε 0.43 0.11 0.025 0.0055 0.0013 0.00080
Cε 50 0.255 0.48 0.12 0.028 0.0053 0.0011 0.00056
B 0.29 0.073 0.022 0.0052 0.0013 0.00076

Aε 0.59 0.21 0.048 0.015 0.0048 0.0018
Cε 96 0.354 0.69 0.25 0.060 0.019 0.0058 0.0021

68% B 0.40 0.143 0.043 0.014 0.0047 0.0017

Aε 0.74 0.32 0.089 0.040 0.016 0.0067
Cε 143 0.432 0.87 0.38 0.088 0.043 0.015 0.0059
B 0.51 0.22 0.080 0.038 0.016 0.0065

Aε 0.91 0.46 0.15 0.097 0.046 0.022
Cε 200 0.511 1.08 0.58 0.14 0.096 0.041 0.019
B 0.63 0.32 0.14 0.091 0.044 0.022
Aε 2.7 0.69 0.066 0.011 0.0023 0.0013
Cε 50 0.255 3.3 0.85 0.089 0.014 0.0027 0.0013
B 0.67 0.172 0.042 0.0091 0.0021 0.0012

Aε 3.8 1.3 0.13 0.030 0.0088 0.0030
Cε 96 0.354 4.8 1.7 0.20 0.050 0.0142 0.0049

95% B 0.97 0.34 0.088 0.026 0.0083 0.0029

Aε 4.7 2.0 0.24 0.083 0.030 0.012
Cε 143 0.432 6.0 2.6 0.29 0.114 0.038 0.014
B 1.22 0.53 0.17 0.071 0.028 0.0115

Aε 5.7 2.9 0.41 0.20 0.088 0.041
Cε 200 0.511 7.4 3.8 0.47 0.26 0.100 0.043
B 1.53 0.78 0.29 0.173 0.081 0.040
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FIG. 8. (Color online) Cross sections at 50 and 96 MeV for all orders from EKM, with DOB intervals at each order using a wide variety
of prior sets. Note the change in scale at each order. The thick error bars indicate 68% DOB intervals, while the thin error bars indicate 95%
DOB intervals. In each panel the dashed line is the result of the next-order calculation (NLO at LO, N2LO at NLO, etc.), shown to facilitate an
assessment of the statistical consistency of different prior choices. For each prior choice, the intervals on the left are from keeping only the first
omitted term, while those on the right are including four omitted terms. The shaded bands indicate the uncertainty from EKM.

that the data is sufficiently informative that any reasonable
prior is properly subservient and thus able to adapt to evidence
of the real world presented by the data.

IV. CHOICE OF EXPANSION PARAMETER

In the previous section, the scale �b in the expansion
parameter was taken from Ref. [10], where it was extracted
from error plots after the fit of the LECs. This identification
was certainly not rigorous in any statistical sense. Therefore,
here we explore how �b can be extracted from the convergence
pattern of the EFT for observables.

In the case of pQCD, CH discussed using an expansion
parameter that is different from αs . They introduced a scale
factor λ, so that the expansion is in powers of αs/λ [6]. This
changes the expressions for pr(�k|c0, . . . ,ck) by a rescaling
of the expansion parameter Q and a corresponding rescaling
of the coefficients themselves. We can rewrite the series for
an observable X in terms of the rescaled expansion parameter
and coefficients as

X = X0

∞∑
n=0

(cnλ
n) ×
(

Q

λ

)n

. (38)

In an EFT expansion this is equivalent to a rescaling of �b by
a factor λ.

Subsequent papers explored procedures for determining the
value of λ based on various criteria:

(i) In Refs. [7,8], λ was chosen empirically by comparing
the consistency of the computed DOB intervals with
known higher-order calculations. An extra factor of
(n − 1)! was also introduced along with λ in Eq. (38)—
motivated by effects from renormalon chains at higher
orders in the expansion. The authors denoted the
resulting scheme CH. We have no evidence for such a
factorial in our EFT expansions and do not consider it
further here.

(ii) In Ref. [45], it was proposed that with the best
expansion parameter, the coefficients should form a
normal distribution of mean μ and standard deviation
σ . This criterion was used to choose a value of λ. This
approach is consistent with naturalness for the {cn}, as
long as μ and σ are both O(1).

Here we explore these procedures for tuning the expansion
parameter in the EKM cross sections, and we also suggest
another criterion for assessing λ based on the assumption of
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FIG. 9. (Color online) Cross sections at 143 and 200 MeV for all orders from EKM, with DOB intervals at each order using a wide variety
of sets. Note the change in scale at each order. The thick error bars indicate 68% DOB intervals while the thin error bars indicate 95% DOB
intervals. In each panel the dashed line is the result of the next-order calculation (NLO at LO, N2LO at NLO, etc.), shown to facilitate an
assessment of the statistical consistency of different prior choices. For each prior choice, the intervals on the left are from keeping only the first
omitted term while those on the right are including four omitted terms. The shaded bands indicate the uncertainty from EKM.

naturalness in the EFT expansion for a particular value of �b.
If a λ emerges from such analyses that is measurably different
from 1, it suggests that the true breakdown scale of the EFT
expansion is not �b, but instead �bλ. Given the limited number
of coefficients (20 at most) at our disposal from the EKM
analysis, any statistical procedure can only determine λ, and
hence �b, within sizable error bars. Our goal in this section is
less to determine �b than to establish whether the choice �b =
600 MeV is consistent with our other a priori assumptions and
deductions about the convergence properties of the EFT.

A. Consistency checks based on higher-order calculations

In Refs. [7,8] λ was determined by checking the consistency
of CH DOB intervals obtained with expansion parameters
αs/λ in several large sets of pQCD observables. This is
done by examining actual vs expected success rates of the
pQCD calculations. As stated in Ref. [46], “For a finite set
of observables and a given model (with fixed parameters)
at order k, the success rate is defined as the number of
observables whose subsequent-order contributions are within
the uncertainty interval predicted by the model.”

We want to use the observed success rates n(p)/N for our
EFT calculation to infer the likelihood that p is the true success

rate for many different choices of p. If each observable being
considered is uncorrelated, the success rate should follow a
binomial distribution. Therefore, the likelihood for n successes
among N observables, given p, is

pr(n|p,N ) = N !

n!(N − n)!
pn(1 − p)N−n. (39)

We generalize the pdf (39) to its continuous version, the β-
distribution,

pr(a,b|p,N ) = (a + b − 1)!

(a − 1)!(b − 1)!
pa−1(1 − p)b−1, (40)

with a = n + 1 and b = N − n + 1. We can then compute
confidence intervals (CIs) on n (or, equivalently a) for a given
value of p (in practice we consider only the 68% and 95%
CIs). This can be done using standard integrals, and the result
expressed in terms of a range of success rates that are consistent
with the chosen value of p.

As in Refs. [7,8], we have calculations of the cross sections
at several orders and energies and are trying to determine
values of λ that result in consistency between assumed values
of p and the resulting success rates n. To do this, we take
the set of 16 observables we have from the EKM results:
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calculations at LO, NLO, N2LO, N3LO for four different
laboratory energies. (Note that each observable must have a
higher-order result to which it can be compared.) We then
pick a value of λ and proceed to assess the consistency of
the success rates of the theory predictions for that λ via this
algorithm (adapted from pQCD to EFT for our purposes):

(i) Select a grid of p% DOB intervals with p ranging
from 0 to 100.

(ii) Use the formalism laid out in Secs. II and III to
compute the p% DOB interval for each observable
in the set.

(iii) For each next-order calculation that is within the DOB
interval of the previous order, count one success.

(iv) Take the number of successes and divide by the total
number of observables to get the actual success rate.

(v) Compare the actual success rate for this value of p with
the 68% and 95% CIs for the number of successes if
p were the true success rate, as computed from the
distribution (40).

This algorithm generates a function of p for this value of
λ. If the curve is within the 68% CI for the entire range of p
values, we say that the value of λ is consistent at 1σ with the
performance of the perturbative series. Moderate fluctuations
outside the 1σ band over limited regions of the entire p
domain can indicate a statistically consistent choice for λ, but
the concern is with curves that end up systematically outside
the 1σ region. This can occur in one of two ways. If the
curve starts to veer above the 1σ region, then that indicates the
EFT predictions are too successful. The expansion parameter
is overestimated, which means the EFT breakdown scale
is underestimated. Alternatively, the function n(p)/N may
deviate well below the 68% CI, in which case the EFT is
underperforming compared to statistical expectations. In that
case the stated expansion parameter is too small; i.e., �b is
overestimated. We note that this interpretation is somewhat
specific to EFT: In a case where we were confident of the
expansion parameter in the series we could instead use this
diagnostic to probe whether different prior choices are too
conservative or too aggressive.

Here, though, we try to draw conclusions on the perfor-
mance of the EFT expansion that are invariant under the choice
of priors defined above. We thus implement this procedure
for two different prior assumptions on c̄ and the coefficients
{cn}. In each case we use the approximation that the leading
term dominates for computational ease. The curves do not
change substantially if we go beyond the first-omitted-term
approximation.

We first consider Set A(1)
ε . The results of computing p%

success rates for various values of λ are shown by the lines in
Fig. 10. We include 68% and 95% confidence bands to evaluate
which λ curves meet our consistency criterion. With only 16
observables, the confidence bands are fairly wide, but still the
only curve which falls completely within the 68% interval is
λ = 1.3. The original expansion parameter at λ = 1 spends
some time above the 1σ region, which may reflect that DOB
intervals resulting from this prior are too conservative; i.e., the
actual success rate regularly exceeds the DOB that has been
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FIG. 10. (Color online) Empirical determination of λ by com-
paring results at different orders. The cross sections used are the
computations with the R = 0.9 fm regulator. Priors are Set A(1)

ε . For
full explanation, see text.

assigned. This is consistent with our earlier observation that
Set Aε priors produce overly conservative DOB intervals.

We also compute the intervals using Set C(1)
ε , which

accounts for the effects of each coefficient and is less
conservative. The results are contained in Fig. 11. We see that
even for these assumptions, the λ = 1 curve gets outside the
1σ band. The plot suggests λ = 1.1 is a more consistent choice
(other values near λ = 1.1 will, of course, also be consistent).
Because the DOB intervals computed with Set C(1)

ε priors are
more informed by the available coefficients, this result may
suggest that a small increase in the assigned breakdown scale
is appropriate. However, we note the small amount of data on
EFT convergence that is being used here; almost all rescalings
considered are consistent at the 2σ level. Such determinations
of �b from success rates can be sharpened by considering the
behavior of the EFT series for more observables.
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FIG. 11. (Color online) Empirical determination of λ by com-
paring results at different orders. The cross sections used are the
computations with the R = 0.9 fm regulator. Priors are Set C(1)

ε . For
full explanation, see text.
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B. Gaussian naturalness and the Forte method

In Ref. [45], Forte et al. suggest that, for QCD expansions,
the best λ is the one that makes all the expansion coefficients
closest to the same size, which they interpret as a statement that
the coefficients should be normally distributed around a single
number μ with variance σ 2 [45]. For a quantity for which
the known information is a mean and standard deviation, in
this case a particular coefficient cn, the method of maximum
entropy results in a distribution that is a Gaussian [20,22]:

pr(cn|λ,μ,σ ) = 1√
2πσ

exp

[
− (|cn|λn − μ)2

2σ 2

]
. (41)

If we have several known coefficients, all of which are
drawn from a distribution with the same mean and standard
deviation, the joint pdf pr(c0, . . . ,ck|λ,μ,σ ) becomes the
standard likelihood function. If σ = c̄ and μ = 0 such a
distribution corresponds to the Set C prior of Table I.

Forte et al. consider the probability distribution for both
μ and λ given a set of {cn} [45]. This can be obtained from
Eq. (41) using Bayes’ theorem:

pr(λ,μ|c0, . . . ,ck,σ ) = pr(c0, . . . ,ck|λ,μ,σ ) pr(λ,μ|σ )

pr(c0, . . . ,ck|σ )
.

(42)
Forte et al. assign no prior information to λ and μ other than
that both are larger than zero, and neither quantity depends
on σ a priori. They then take the prior and the evidence in
the denominator to be an overall normalization factor that is
independent of λ and μ and so do not calculate them explicitly
(cf. discussion of a scale-invariant prior for λ below). The pdf
for λ and μ can then be written

pr(λ,μ|c0, . . . ,ck,σ ) ∝ pr(c0, . . . ,ck|λ,μ,σ ), (43)

meaning that maximizing the probability of λ and μ is
equivalent to minimizing

χ2 =
NO∑
i=1

k∑
n=0

(∣∣c(i)
n

∣∣λn − μ

σ

)2

, (44)

where {c(i)
n } is the set of EFT coefficients found for the ith

observable, and NO is the number of observables being used
to form the χ2. In our case NO = 4: the cross sections at the
four different energies analyzed by EKM.3 Note also that for
chiral EFT for NN scattering the coefficient c1 is known to be
zero, and so the n = 1 term should be omitted from the sum.

The assumption that λ has a uniform prior is not consistent
with arguments regarding the invariance of the pdf under
a change of scale [23]. In fact, λ should be treated as a
scale parameter. So, in contrast to Ref. [45], we assign a
uniform prior to the logarithm of λ, resulting in a probability
distribution for λ and μ that is

pr(λ,μ|c0, . . . ,ck,σ ) ∝ 1

λ
× e−χ2/2, (45)

3In general, there would be N0nc terms in the χ 2 sum, but we omit
the N4LO coefficient from the 50-MeV cross section, because it is
clearly an outlier. Our χ 2 thus has 19 terms in the sum.

with the parameter space for λ and μ restricted to both being
positive. Assuming σ = 1, we find that the maximum of
the probability (43) for the R = 0.9 fm EKM coefficients
occurs at λ = 0.92, μ = 0.69. To consider the pdf of λ
only, we marginalize over the parameter μ and maximize
pr(λ|c0, . . . ,ck,σ ) to find λ = 1.01+0.18

−0.19, which is consistent
with the Forte et al. hypothesis at a 68% DOB. Larger σ ’s
generate still wider ranges. From this point of view too, then,
�b = 600 MeV is a consistent choice for the R = 0.9 fm np
scattering EFT-expansion coefficients.

C. χ 2 test

Alternatively, we can demand that the mean of the cn’s
be fixed at μ = 0 and that the width σ should affect the
results as in Set C Gaussian pdfs on the coefficients, where
c̄ is an important feature of the prior. This leaves us with the
probability

pr(λ,μ = 0|c0, . . . ,ck,σ ) ∝ 1

λ
exp

[
−χ2(μ = 0)

2

]
, (46)

where χ2(μ = 0) is given by Eq. (44) with μ = 0.
We can then test whether, for a given λ, the data, i.e., the

EKM coefficients from their R = 0.9 fm calculation, follow
a normal distribution with mean zero and width σ . We do
this by comparing χ2(μ = 0) with the way that χ2 should
be distributed for a normal distribution with 19 degrees of
freedom. Once again, to do this we must fix σ . With the choice
σ = 1 we find that λ = 1.09 gives χ2 of 19—the central value
one would expect for this many data points.4 Using the rule of
thumb for large number of degrees of freedom, N [47], that
the χ2 should have a width of

√
2N indicates that λ could

(68% DOB) be anywhere between 1.01 and 1.15. As in the
previous section, choices of σ > 1 will increase this range of
possibilities.

D. Summary of expansion-parameter checks

In any case, while none of these methods provides a
crisp result for �b from the 19 data points analyzed, it is
reassuring that there is little evidence for a large change
in �b. Minimally, EKM’s estimate �b ≈ 600 MeV for their
R = 0.9 fm calculation is consistent with these analyses,
and the breakdown scale may, in fact, be a little higher.
Further investigations employing these techniques with EFT
coefficients drawn from many more observables will provide
more definitive answers.

V. SUMMARY AND OUTLOOK

We have adapted and extended the Bayesian framework
originally introduced in the context of pQCD by CH [6] to
evaluate truncation errors in EFT expansions. Assumptions
about the nature of the coefficients in the expansion are en-
coded as priors on the coefficients of higher-order terms in the

4Including the N4LO coefficient from the 50-MeV cross section
lowers the results for λ by about 10%.
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EFT series. The pdfs for these coefficients then ultimately also
include information on the distribution of coefficients at orders
that are calculated. Here we employed priors derived from the
notion of “naturalness” of EFT coefficients, i.e., the idea that
they should beO(1) when the observable and the momentum of
the process in question are measured in appropriate units. We
took the coefficients in the EFT expansion of cross sections
to be natural in this sense. Such a choice is uncontroversial
for perturbative processes, e.g., meson-meson scattering at
momenta well below the chiral-symmetry-breaking scale. It
remains to be fully investigated for cross sections in NN
scattering, where the relationship between the underlying
scales and observables is quite complex; we rely here on an
empirical validation (see Fig. 5).

We investigated the influence of two prior pdfs for EFT
coefficients on the truncation errors. The first was the CH
characterization of an upper bound c̄; the second was a
Gaussian of width c̄. We also investigated the influence of
priors on c̄ itself on the results. We did this in the context
of representative examples in Sec. II and, in Sec. III, using
results from the order-by-order calculations of neutron-proton
cross sections by EKM in Ref. [11] (obtained with a regulator
parameter R = 0.9 fm). Combining the insights from both
sections we find the following:

(i) Priors that reflect a natural size for c̄ give similar DOB
intervals at the lowest orders.

(ii) The resulting error bands are tighter than those for
which the scale of c̄ is not constrained.

(iii) For higher orders, 68% DOB intervals show little
dependence on prior choice; 95% DOB intervals have
larger, but still quite small, dependence.

These results have wide applicability to observables;
they can be used in many EFT contexts. In the case of
neutron-proton scattering our formulas provide a statistical
interpretation to error bars obtained by EKM in Ref. [10].
Their error bar is obtained in the case that the distribution
of coefficients is uniform, in which case it is a j/(j +
1) ∗ 100% DOB interval for the omitted terms in a Nj LO
calculation. However, as already stated, truncation errors in
these calculations at NLO or beyond (i.e., which include at
least two orders beyond leading) were only mildly dependent
on prior choice. In particular, the 68% DOB intervals obtained
in our Bayesian framework varied by at most 15% among all
the priors considered here, and the variation was less than that
in calculations beyond NLO. Error bands at a given order
were also consistent with a statistical interpretation when
compared with known higher-order results. Truncation errors
at leading order are sensitive to prior choice, because–given the
choice of scaling observable we made—almost no information
on the pattern of coefficients emerges from a leading-order
calculation. Comparison of the resulting error band with the
known results of NLO, N2LO, N3LO, and N4LO calculations
suggests that the CH choice of a θ -function distribution for
coefficients, and a scale-independent distribution for the width
of that θ function, is too conservative, at least for this case.
Overall, then, at sufficiently high order, the prior picked from
Table I hardly matters; in practice k = 2 may be enough.

At lower orders priors provide a rigorous way to explore
different assumptions about the pattern of coefficients in the
EFT.

Indeed, the application of Bayesian methods to data is often
criticized because of the apparently subjective selection of
prior pdfs. However, the priors manifest what would otherwise
be implicit assumptions, so that they can be tested. The
information encoded in those assumptions is then modified
in light of subsequent data: In this case the distribution of
low-order coefficients influences the distributions computed
for coefficients that enter the assessment of the truncation
error. Furthermore, the development of specific pdfs for those
higher-order coefficients allows a statistical interpretation of
the “theory error”—or at least the part of it that results from
the truncation of the EFT series. This allows crisp answers
to questions regarding, for example, how theory error bars
should be combined, or the extent to which theory errors on
different quantities are correlated. Those answers may have
some sensitivity to the choice of prior on the higher-order
coefficients, but the advantage of the Bayesian framework
is that the consequences of prior assumptions about the
distribution of coefficients (uniformly distributed or Gaussian,
natural or scaleless) can be traced through to the statistical
uncertainties on the EFT calculation. Those assumptions can
then—if necessary—be refined.

Such refinement may be necessary in light of the need
to identify an EFT breakdown scale before extracting the
(supposedly) O(1) coefficients which are input to our analysis.
Misidentification of the breakdown scale is one manner in
which a particular prior could fail. But, in this case, we showed
in Sec. IV that this breakdown scale �b = 600 MeV leads to
success rates taken from the EFT predictions at four different
energies, and for four different orders, that are statistically
consistent with the DOB intervals resulting from our Bayesian
formalism. Furthermore, the distribution of coefficients with
the R = 0.9 fm regulator choice is consistent with a Gaussian
distribution. Qualitatively, a natural distribution is not seen
for the coefficients obtained using a second, larger, value
of R. The calculation at this larger regulator radius reflects
cutoff artifacts, which lead to peculiar convergence of the
EFT expansion. The breakdown of the EFT is then not set
by �b, but by the effects of this softer cutoff. With the general
formalism for probability distributions of EFT coefficients
laid out here, it will be important to check when the EFT
coefficients obtained over a wide range of cutoff values and
observables are empirically consistent with the application of
naturalness priors to observables in the NN system.

The Bayesian approach to error estimation presented here
is an alternative to procedures that calculate error bands based
on variation of the EFT regulator, which could be a cutoff
in either momentum or coordinate space. While variation with
regulator scale gives a lower bound on the uncertainty (theories
should, after all, be regulator invariant up to higher-order
terms), the resulting error band has no statistical interpretation.
A particular flaw is the arbitrariness of the interval in which
the cutoff is varied; for QCD this is only of mild concern,
because the dependence on the regulator parameter is only
logarithmic. However, running in the chiral EFT applied to
NN scattering is much faster: It can contain high positive
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powers of the regulator (momentum) scale. This concern
is exacerbated by the narrow range that is possible before
encountering irremediable cutoff artifacts or spurious deep
bound states. It is also the case that residual cutoff dependence
only reflects the contribution from omitted contact operators.
These only enter the chiral expansion for NN observables
at even orders, and so examination of cutoff dependence
alone may substantially underestimate the EFT truncation
error. More generally, when computed using only cutoff
variation, the error bands for predictions of observables (as
opposed to quantities used to fit EFT LECs) generically exhibit
undesirable systematics (e.g., sometimes growing wider with
order) and often underestimate the error when compared with
actual higher-order calculations [4]. In contrast, the Bayesian
assessment of truncation errors laid out here is applicable to all
EFTs, admits a statistical interpretation of truncation errors, is
justified when regulator parameters cannot be varied widely,
and predicts decreased errors at all orders, not just when new
LECs are added.

The truncation-error assessment described here is just one
piece of a broader framework for EFT UQ using Bayesian
methods. We have under development analogous procedures,

together with a suite of diagnostic tools, for parameter
estimation and the assessment and propagation of errors—
both statistical and truncation—in fitted LECs and predicted
observables. Bayesian model selection is also well suited for
addressing fundamental questions in nuclear EFT, such as
the comparative efficacy of theories with different degrees
of freedom, from pionless to chiral EFTs with and without an
explicit �(1232).
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