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Four-body calculation of elastic deuteron-deuteron scattering
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Fully converged calculations of deuteron-deuteron elastic scattering observables are performed at energies
above three- and four-body breakup threshold. Differential cross sections and analyzing powers are obtained
using realistic nucleon-nucleon force models together with the Coulomb repulsion between protons. For all
observables we find a very reasonable agreement with the available experimental data limited to deuteron beam
energies up to 25.3 MeV.
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I. INTRODUCTION

Four-nucleon reactions above breakup threshold pose a
highly challenging theoretical and computational problem. In
this regime rigorous and realistic results have been obtained so
far by only two methodologies. These are the complex-energy
method in the framework of momentum-space integral equa-
tions [1] and the complex scaling method in the framework of
coordinate-space differential equations [2].

In this work we continue our theoretical investigation
of four-nucleon (4N ) scattering above breakup threshold.
Previous studies [1,3–6] were mostly devoted to 4N reactions
initiated by nucleon-trinucleon (N + 3N ) collisions, i.e., neu-
tron (n) or proton (p) beams impinging on 3H or 3He targets.
While n + 3H and p + 3He elastic scattering are dominated
by states with total 4N isospin T = 1, the coupled n + 3He
and p + 3H reactions involve both T = 0 and T = 1. Overall
a good reproduction of the experimental data was achieved
when using realistic nucleon-nucleon (NN ) potentials. The
most remarkable discrepancies above breakup threshold are
the nucleon analyzing power and polarization, especially for
the 3H(p,n)3He charge exchange reaction, and the minimum
of the differential cross section in elastic p + 3He and n + 3He
scattering above 25 MeV nucleon energy. One may raise the
question whether these disagreements are dominated byT = 1
states, or if T = 0 components have similar shortcomings
as well. The study of deuteron-deuteron (d + d) elastic
scattering, the only 4N process dominated by T = 0 states,
may shed some light on this issue.

Therefore in the present work we concentrate on d + d
elastic scattering above breakup threshold. In Ref. [7] we
already calculated d + d reactions around Ed = 10 MeV
deuteron beam energy and found quite a good agreement
with data, but also some inconsistencies between different
data sets, thereby calling for a more extensive study over a
wider energy range. Here we present results at Ed ranging
from 4.75 MeV, just slightly above the three-cluster threshold
of 4.45 MeV, to 25.3 MeV. Restricting the model space to 4N
states with T = 0 precludes to obtain simultaneously reliable
amplitudes for 2H(d,p)3H and 2H(d,n)3He transfer reactions,
but has an important practical advantage; namely, it allows
for the reduction of the number of basis states needed to

get convergence for the d + d elastic observables and thereby
speeds up the calculations.

In Sec. II we present the theoretical framework and the
reliability of using T = 0 states alone to calculate d + d
elastic scattering. Differential cross section and analyzing
power results are shown in Sec. III and a summary is presented
in Sec. IV.

II. THEORY

The four-particle collision process is described by exact
Alt, Grassberger, and Sandhas (AGS) equations [8,9] for
the transition operators Uβα whose components are labeled
according to the chains of partitions. Given that neutrons
and protons in the isospin formalism are treated as identical
particles, there are only two chains of partitions that can be
distinguished by the two-cluster partitions, one (α = 1) being
of the 3 + 1 type, i.e., (12,3)4, and another (α = 2) being of the
2 + 2 type, i.e., (12)(34). For the nucleon-trinucleon scattering
in previous works we solved the symmetrized AGS equations
for Uβ1 but the reactions initiated by two deuterons require
transition operators Uβ2. In both cases the AGS equations
share the same kernel but differ in the driving term. Thus,
in the present work we solve the integral equations

U12 = (G0tG0)−1 − P34U1G0tG0 U12 + U2G0tG0 U22, (1a)

U22 = (1 − P34)U1G0tG0 U12. (1b)

Here t is the two-nucleon transition matrix, U1 and U2 are the
transition operators for the 1 + 3 and 2 + 2 subsystems,
P34 is the permutation operator of particles 3 and 4, and
G0 = (E + iε − H0)−1 is the free four-particle resolvent at
the available energy E, whereas H0 is the free Hamiltonian.
Although the physical scattering process corresponds to
ε → +0, the complex energy method uses finite ε value
when solving the AGS equations numerically. The physical
scattering amplitudes are then obtained by extrapolating finite
ε results to the ε → +0 limit. The extrapolation procedure as
well as the special method for integrals with quasisingularities
encountered when solving Eqs. (1) are described in detail in
our previous works [1,5,10].
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FIG. 1. (Color online) Deuteron-deuteron elastic scattering at
10 MeV beam energy. Differential cross section and deuteron
tensor analyzing power T20 calculated neglecting (solid curves) and
including (dashed curves) total isospin T = 1 states are compared.

The asymptotic d + d channel state is a pure total isospin
T = 0 state. However, due to the charge dependence of
the NN interaction the scattering equations (1) couple the
states with different T . Nevertheless, the effect of T > 0
states on the d + d elastic scattering is of second order in
the charge-dependent terms of the NN interaction that are
dominated by the pp Coulomb force; a smaller contribution
from the hadronic part is present as well. Therefore at not too
low energies one may expect these effects to be small. This
conjecture is well supported by our test calculations for d + d
elastic scattering where we find a tiny effect of the T = 1
states, as presented in Fig. 1 for the differential cross section
dσ/d� and tensor analyzing power T20, both as functions of
the center-of-mass (c.m.) scattering angle �c.m.. The results in
the next section therefore are obtained by solving Eqs. (1) with
T = 0 states alone. This reduces the number of basis states
by more than a factor of 2 thereby speeding up the practical
calculations significantly. With T = 0 the isospin of the 3N
subsystem is limited to Ty = 1

2 ; the needed isospin components
of the two-nucleon transition matrix t are given in Ref. [5]).

The pp Coulomb force is included using the method of
screening and renormalization [11,12] where the screening
radius R = 10 to 12 fm is found to be sufficient to get
convergence for the Coulomb-distorted short-range part of
the amplitude. The obtained results are well converged with
respect to the partial-wave expansion. When solving Eqs. (1)
we take into account isospin-singlet 2N partial waves with
total angular momentum jx � 4 and isospin-triplet 2N partial
waves with orbital angular momentum lx � 7, 3N partial
waves with spectator orbital angular momentum ly � 7 and
total angular momentum J � 13

2 , and 4N partial waves
with 1 + 3 and 2 + 2 orbital angular momentum lz � 7.
Initial and final deuteron-deuteron states with relative orbital

angular momentum L � 4 are sufficient for the calculation of
observables except at the 25.3 MeV beam energy where we
take into account also the states up to L � 6 yielding a small
but visible contribution.

III. RESULTS

The scattering of two deuterons is both challenging from the
computational point of view and interesting vis-à-vis nucleon-
trinucleon scattering. Since deuterons are loosely bound and
spatially large objects, their collision gives rise to much higher
breakup cross sections than encountered in other 4N reactions
initiated by either neutrons or protons.

We calculate differential cross section and deuteron an-
alyzing powers for d + d elastic scattering at deuteron beam
energies Ed ranging from 4.75 to 25.3 MeV. Given the identity
of the deuterons, the observables are either symmetric or
antisymmetric with respect to the center-of-mass scattering
angle �c.m. = 90◦. At all considered energies the results are
obtained using the realistic inside-nonlocal outside-Yukawa
(INOY04) potential by Doleschall [13,14]. It nearly repro-
duces the experimental values of 3He and 3H binding energy
without an additional 3N force. To investigate the dependence
of the results on the interaction model, at several energies,
i.e., Ed = 6, 10, 11.5, 11.57, and 25.3 MeV, we show
also the predictions obtained with other high-precision NN
potentials. These are the chiral effective field theory potential at
next-to-next-to-next-to-leading order (N3LO) [15], the charge-
dependent Bonn potential (CD Bonn) [16], and its extension
CD Bonn + � [17] explicitly including an excitation of a
nucleon to a � isobar. This mechanism generates effective 3N
and 4N forces that are mutually consistent but quantitatively
still insufficient to reproduce 3N and 4N binding energies,
although they reduce the discrepancy [18]. The predictions of
3He and 3H binding energy for all employed force models are
collected in Table I.

In Fig. 2 we show results for the d + d elastic differential
cross section in the Ed range between 5.46 and 14.2 MeV. In
this regime dσ/d� shows quite a simple angular dependence,
having forward and backward peaks where dσ/d� becomes
infinite due to the Coulomb force and a single local minimum at
�c.m. = 90◦. The calculations describe the data [19–22] well up
to Ed = 12.1 MeV and show little sensitivity to the NN force
model as one may naively expect given the large size of both
projectile and target nuclei. The largest observed difference
between the four employed force models amounts about 6%
at Ed = 6 MeV around �c.m. = 40◦ and 140◦. For Ed above
12.3 MeV small discrepancies between data and calculations

TABLE I. 3H and 3He binding energies (in MeV) for different
NN potentials.

B(3H) B(3He)

N3LO 7.85 7.13
CD Bonn 8.00 7.26
CD Bonn + � 8.28 7.53
INOY04 8.49 7.73
Experiment 8.48 7.72
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FIG. 2. (Color online) Differential cross section of d + d elastic scattering as a function of c.m. scattering angle at deuteron beam energies
ranging from 5.46 to 14.2 MeV. Results are obtained using INOY04 potential (solid curves), and, at 6.0 and 11.57 MeV, also CD Bonn + �

(dashed-dotted curves), CD Bonn (dotted curves), and N3LO (double-dotted-dashed curves) potentials. The experimental data are from Refs.
[19–24].

emerge, mostly around �c.m. = 90◦. However, one probably
should question the quality of the data [23] near �c.m. = 90◦
where, in contrast to all other sets, a local maximum is present,
as well as the quality of the data [24] that lacks symmetry with
respect to �c.m. = 90◦ and seems to be inconsistent with a
smooth energy-dependence seen in theoretical predictions and
other data sets. Our calculations overpredict the 14.2 MeV
data [24] by up to 9% but underpredict the 13.8 MeV data [20]
around the minimum by the same amount. Unfortunately, the
available experimental data are very scarce above Ed = 15
MeV. To the best of our knowledge, up to Ed = 35 MeV,
which is the reach of the present calculations, there is only
one reliable data set at Ed = 25.3 MeV [25]. As shown in
Fig. 3, at this higher energy the differential cross section
finally develops a more complicated angular dependence with
a local maximum at �c.m. = 90◦ and two local minima around
�c.m. = 70◦ and 110◦. The calculations reproduce well the
shape of the data but slightly underpredict its magnitude
by about 6% at forward angles and around �c.m. = 90◦.
Although the outlook is somehow contradictory, it looks like
the calculations slightly underpredict the experimental dσ/d�
data above Ed = 13 MeV. In contrast to lower energies where
the minimum region is insensitive to the NN potential, at
Ed = 25.3 MeV at �c.m. = 90◦ the spread of predictions is
about 3% but shows no correlation with 3N binding energy.

In Fig. 4 we present the vector analyzing power iT11 and
tensor analyzing powers T20, T21, and T22 for Ed = 4.75, 6.0,

8.0, 10.0, and 11.5 MeV. Given the symmetry (T20, T22) or
antisymmetry (iT11, T21) of these observables with respect to
�c.m. = 90◦ and the absence of the data for backward angles,
we show only the regime up to �c.m. = 120◦. The overall
agreement between theoretical predictions and experimental
data is good. Due to the large spatial size of the deuteron,
all these spin observables are very small in their magnitude,
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FIG. 3. (Color online) Differential cross section of d + d elastic
scattering at Ed = 25.3 MeV. Curves are as in Fig. 2. The experimen-
tal data are from Ref. [25].
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FIG. 4. (Color online) Deuteron analyzing powers in d + d elastic scattering at Ed = 4.75, 6.0, 8.0, 10.0, and 11.5 MeV. Curves are as in
Fig. 2. The experimental data are from Refs. [26–28].

in a sharp contrast with reactions involving initial and/or
final nucleon-trinucleon states. Unlike the differential cross
section, the analyzing powers exhibit not only a more complex
behavior as functions of energy and scattering angle, but also
a greater sensitivity to the used NN force model, especially
for T20 and around the extrema of iT11 and T22. While tensor
analyzing powers monotonically increase in their magnitude
with moderate changes in the shape as the energy increases,
the vector analyzing power iT11 exhibits a change of sign
after nearly vanishing at Ed = 8.0 MeV. The error bars exceed
the force model dependence for iT11 and T21. Predictions
based on N3LO and CD Bonn potentials slightly deviate
from the data for T20 above 10 MeV whereas INOY04 and
CD Bonn + � reproduce the data well. However, INOY04
slightly underestimates the magnitude of T22 whereas CD
Bonn + � provides the best description of this observable. In
general, the dependence of the observables on the details of the
interaction is more complicated than just a simple scaling with
the trinucleon binding energy or deuteron D-state probability.
The �-isobar excitation appears to be more important than in
the nucleon-trinucleon scattering.

Although there is no data available for polarization ob-
servables at Ed = 25.3 MeV, we present them in Fig. 5
to demonstrate the increase in their magnitude and the

development of a more complicated angular dependence.
However, the relative sensitivity to the NN force model is
not increased.
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FIG. 5. (Color online) Deuteron analyzing powers in d + d elas-
tic scattering at Ed = 25.3 MeV. Curves are as in Fig. 2.
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IV. SUMMARY
In the present manuscript we solve the four-body AGS

equations for d + d elastic scattering over a wide energy
range above breakup threshold using realistic force models
between nucleons that are based on either chiral effective field
theory or meson exchange theory. The Coulomb interaction
between protons is included through the method of screening
and renormalization. The calculations are fully converged
in terms of partial wave expansion and discretization grids
for the momentum variables. In these calculations we have
only included total isospin T = 0 states alone, given that
T = 1 states have an extremely small contribution to d + d
elastic scattering, as demonstrated in Sec. II. Overall, no

striking disagreement with the data is observed. The calculated
observables follow the energy trend of the experimental data
up to Ed = 25.3 MeV, which is the maximum energy we
have calculated at this time. We find that there is a slight
underprediction of the differential cross section minimum
beyond 13.2 MeV; however, this is not in a full analogy with the
p + 3He and n + 3He elastic scattering since the discrepancy
in d + d neither increases with the beam energy from 13.8 to
25.3 MeV nor scales with 3N binding energy. We also observe
no increase in sensitivity for spin observables compared to
what is found in N + 3N scattering. In contrast to N + 3N
and p + d collisions, the vector analyzing power in d + d
elastic scattering is described quite well.
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