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Critical density and impact of �(1232) resonance formation in neutron stars
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The critical densities and impact of forming �(1232) resonances in neutron stars are investigated within
an extended nonlinear relativistic mean-field (RMF) model. The critical densities for the formation of four
different charge states of �(1232) are found to depend differently on the separate kinetic and potential parts
of nuclear symmetry energy, the first example of a microphysical property of neutron stars to do so. Moreover,
they are sensitive to the in-medium � mass m� and the completely unknown �-ρ coupling strength gρ�. In the
universal baryon-meson coupling scheme where the respective �-meson and nucleon-meson coupling constants
are assumed to be the same, the critical density for the first �−(1232) to appear is found to be ρcrit

� = (2.08 ±
0.02)ρ0 using RMF model parameters consistent with current constraints on all seven macroscopic parameters
usually used to characterize the equation of state of isospin-asymmetric nuclear matter at saturation density ρ0.
Moreover, the composition and the mass-radius relation of neutron stars are found to depend significantly on the
values of the gρ� and m�.
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I. INTRODUCTION

Understanding properties of �(1232) resonances in con-
nection with possible pion condensation [1–3] in neutron
stars and density isomers in dense nuclear matter [4–8] is
a longstanding challenge of nuclear many-body physics. In
fact, the role of �(1232) resonances in neutron stars has
long been regarded as an important, and unresolved, issue
[9]. Significant works have been carried out to understand
in-medium properties of �(1232) resonances as well as
their effects on saturation properties of nuclear matter and
the equation of state (EOS) of dense matter using various
many-body theories and interactions; see, e.g., Refs. [10–15].
However, compared to the numerous investigations on the
possible appearance and effects of other particles, such as
hyperons and deconfined quarks, much less effort has been
devoted to the study of �(1232) resonances in neutron stars
in recent years. This is probably partially because of the
rather high �(1232) formation density ρcrit

�− in the core of
neutron stars predicted in the seminal work by Glendenning
et al. [16–18] using a mean-field model with parameters
well constrained by the experimental data available at the
time. Using default parameters of their model Lagrangian
leading to a symmetry energy of Esym(ρ0) = 36.8 MeV and
its density slope L(ρ0) ≡ 3ρ0dEsym(ρ)/dρ|ρ=ρ0 � 90 MeV
at saturation density ρ0 [16–18], and using the universal
baryon-meson coupling scheme in which the nucleon-meson
couplings are set equal to the �(1232)-meson couplings
(gσ�/gσN = gω�/gωN = gρ�/gρN = 1), the critical density
ρcrit

�− above which the first �−(1232) appears is above 9ρ0.
This led to the conclusion that �(1232) resonances played
little role in the structure and composition of neutron stars. In
the same studies, the extreme importance of symmetry energy
for the formation of both hyperons and �(1232) resonances
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was emphasized. In particular, by turning off the �-ρ coupling
which contributes the potential part of the symmetry energy
(retaining thus kinetic symmetry energy only), the ρcrit

�− is about
3ρ0 [16].

Interest has been renewed with recent studies using different
symmetry energies and/or assumptions about the baryon-
meson coupling constants which have found that the ρcrit

�− can
be as low as ρ0 and the inclusion of the �(1232) has significant
effects on both the composition and structure of neutron
stars [19–24]. These studies generally use some individual
sets of model parameters leading to macroscopic properties
of asymmetric nuclear matter (ANM) at saturation density
consistent with most if not all of the existing experimental
constraints.

During the past three decades, much progress has been
made in constraining the EOS of dense neutron-rich nuclear
matter. In particular, reasonably tight constraints on the
density dependence of the nuclear symmetry energy Esym(ρ),
especially around the saturation density, have been obtained
in recent years, see, e.g., Refs. [25–34] for comprehensive re-
views. For example, the 2013 global averages of the magnitude
and slope of the Esym(ρ) at ρ0 are, respectively, Esym(ρ0) =
31.6 ± 2.7 MeV and L = 58.9 ± 16.5 MeV based on 28
analyses of various terrestrial laboratory experiments and as-
trophysical observations [32]. Moreover, �(1232) resonances
play a very important role in heavy-ion collisions, see, e.g.,
Ref. [35] for reviews, especially for the production of particles
such as pions, kaons, and various exotic heavy mesons. In
particular, the masses of �(1232) resonances primarily created
in nucleon-nucleon (NN) collisions through the NN → N�
process act as an energy reservoir for subthreshold particle
production. The release of this energy in subsequent collisions
involving �(1232) resonances may help create new particles
that cannot be produced otherwise in the direct, first-chance
NN collisions. Thus, particle production has been widely used
in probing in-medium properties of �(1232) resonances. Since
�(1232) resonances and nucleons have isospins 3/2 and 1/2,
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respectively, the total isospin is 1 or 2 for the N� while it is
1 or 0 for the NN state. Because of the isospin conservation,
the �(1232) production can only happen in the total isospin
1 NN channel. Therefore, the abundances and properties of
�(1232) resonances are sensitive to the isospin asymmetry
of the system as neutron-neutron pairs always have isospin 1
while neutron-proton pairs can have isospin 1 or 0.

Naturally, both heavy-ion collisions and neutron stars are
places where the isovector properties and interactions of
�(1232) resonances are expected to play a significant role.
Indeed, useful information about the symmetry energy of dense
neutron-rich matter has been extracted from studying pion and
kaon productions in heavy-ion collisions [28,29]. It is espe-
cially worth noting that the isovector (symmetry) potential of
�(1232) resonances was recently found to affect appreciably
the ratio of charged pions in transport model simulations of
heavy-ion collisions at intermediate energies [36]. However, to
the best of our knowledge, no quantitative information about
the isovector interaction of �(1232) resonances has been ex-
tracted yet from any terrestrial experiments. On the other hand,
there are strong indications from both theoretical calculations
and phenomenological model analyses of electron-nucleus,
photoabsorption, and pion-nucleus scattering that the �(1232)
isoscalar potential V� (real part of its isoscalar self-energy �S)
is in the range of −30 MeV + VN � V� � VN with respect to
the nucleon isoscalar potential VN [24]. The in-medium masses
and widths of �(1232) resonances are also the focuses of many
experimental and theoretical studies using various reactions
and techniques. To the best of our knowledge, however, no
clear consensus has been reached yet. For instance, from
analyzing the (p,π ) invariant masses in the final state of
heavy-ion collisions at SIS/GSI energies, indications were
found for an approximately −60 MeV mass shift for �(1232)
resonances at the freeze-out of about 1/3 the saturation
density [37]. However, photoabsorption data and some ad-
vanced model calculations found no evidence of significant
in-medium �(1232) mass shift [38,39]. It is thus exciting
that new proposals to experimentally study at FAIR/GSI
the �(1232) resonance spectroscopy and interactions in
neutron-rich matter are being considered by the NUSTAR
Collaboration [40].

Similarly to the appearance of any other new hadron
above its production threshold in neutron stars, the addition
of �(1232) resonances will soften the EOS and influence
the composition of neutron stars [16–24]. Because of charge
neutrality, depending on the individual populations of the four
different charge states of �(1232) resonances, the density
dependence of the proton fraction in neutron stars may be
modified. Then different cooling mechanisms sensitive to the
proton fraction may come into play above certain densities.
Moreover, the formation of �(1232) resonances may also push
up critical densities for the appearance of various hyperons
[23]. As noticed earlier in the literature and emphasized
in Ref. [9], there are many interesting questions regarding
properties of �(1232) resonances in dense matter and their
impact on observables of neutron stars. Obviously, answers to
all of these questions naturally rely on the critical density of
�(1232) formation in dense neutron star matter.

FIG. 1. The maximum mass of � resonances produced in the
NN → N� process in a free Fermi gas of nucleons at density ρ.

In this work, we first identify analytically key microphysics
quantities determining the critical formation densities of the
four charge states of �(1232) resonances. Then, within a
nonlinear relativistic mean-field (RMF) model, we calculate
consistently the ρcrit

�− as a function of the �(1232) mass m�, the
isovector �-ρ coupling strength gρ�, and seven macroscopic
variables characterizing the EOS of ANM at ρ0 all within their
latest constraints. Finally, effects of the �(1232) formation on
the composition and mass-radius correlation of neutron stars
are studied.

II. KEY MICROPHYSICS DETERMINING THE �

FORMATION DENSITY IN NEUTRON STARS

To set a reference for our following studies we first
estimate the ρcrit

�− in a free Fermi gas of nucleons. For the
head-on collision of two nucleons both with Fermi momen-
tum |k| = kF = (3π2ρ/2)1/3 in the NN → N� process, the
maximum mass of the produced �(1232) resonance is mmax

� =
2(k2

F + m2
N)1/2 − mN, where mN is the average nucleon mass

in free space. It is well known that �(1232) has a Breit-Wigner
mass distribution around the centroid m0

� = 1232 MeV with
a width of about 120 MeV. The distribution starts at a
minimum of mmin

� ≡ mN + mπ � 1076 MeV, where mπ is
the pion mass. Shown in Fig. 1 is the mmax

� reachable in the
NN → N� process as a function of density. From this simple
estimate, where effects of the nuclear potentials are neglected,
the critical density ρcrit

� for producing the lightest �(1232)
resonance is about 3ρ0. To reach the centroid m0

� = 1232 MeV,
the density has to be far above 1 fm−3. This estimate also
illustrates the importance of considering the mass dependence
of the �(1232) formation density in more realistic calculations
for matter in neutron stars.

In interacting nuclear systems, the masses of �(1232)
resonances and their critical formation densities depend on the
in-medium self-energies of all particles involved. Assuming
neutron stars are made of neutrons, protons, �(1232) res-
onances, electrons, and muons, i.e., the npeμ� matter in
chemical and β equilibrium, the total baryon number density is

ρ = ρp + ρn + ρ�++ + ρ�+ + ρ�0 + ρ�− , (1)
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where

ρn =
(
kn

F

)3

3π2
, ρp =

(
k

p
F

)3

3π2
, (2)

ρ�++ =
(
k�++

F

)3

π2
, ρ�− =

(
k�−

F

)3

π2
, (3)

ρ�+ =
(
k�+

F

)3

3π2
, ρ�0 =

(
k�0

F

)3

3π2
, (4)

with k
j
F’s (j = p,n,�++,�+,�0,�−) being the

corresponding Fermi momenta. The chemical equilibrium
condition for reactions n → p + e + νe and p + e → n + νe

requires μe = μn − μp, where μe = [m2
e + (ke

F)2]1/2 =
[m2

e + (3π2ρxe)2/3]1/2 � (3π2ρxe)1/3 with xe ≡ ρe/ρ
the electron fraction. When the chemical potential of
electron is larger than the static mass of a muon, reactions
e → μ + νe + νμ, p + μ → n + νμ, and n → p + μ + νμ

will also take place. The latter requires

μn − μp = μμ =
√

m2
μ + (3π2ρxμ)2/3 (5)

besides μn − μp = μe, where mμ = 105.7 MeV is the mass of
a muon and xμ ≡ ρμ/ρ is the muon fraction. On the other hand,
the following four types of inelastic reactions will take place
between nucleons and the four charge states of � resonances:

�++ + n ←→ p + p, (6)

�+ + n ←→ n + p, (7)

�0 + p ←→ p + n, (8)

�− + p ←→ n + n. (9)

Their chemical equilibrium then requires

μ�++ = 2μp − μn, (10)

μ�+ = μp, (11)

μ�0 = μn, (12)

μ�− = 2μn − μp. (13)

In addition, the total charge neutrality in neutron stars requires
that xp + x�+ + 2x�++ = xe + xμ + x�− , where x�− ≡
ρ�−/ρ, x�+ ≡ ρ�+/ρ, and x�++ ≡ ρ�++/ρ, respectively.

Within the framework of a given nuclear many-body
theory, Eqs. (10)–(13) can be used to calculate the critical
formation densities for the four charge states of �(1232)
resonances. Generally speaking, in relativistic mean-field
models, a baryon of bare mass mbaryon obtains a Dirac effective
mass m∗

dirac(baryon) = mbaryon + �S and a chemical potential
μbaryon = [k2

F + m∗2
dirac(baryon)]1/2 + �V, where �S and �V

are the real parts of its scalar and vector self-energies, respec-
tively. Consider the �− formation, for example, noticing that
μn − μp � 4Esym(ρ)δ and using nonrelativistic kinematics,
the Eq. (13) leads to the following condition for producing a
�− of bare mass m�− at rest:(

kn
F

)2

2m∗
dirac

= [3π2(1 + δ)ρ/2]2/3

2m∗
dirac

=m�− − mN − 4Esym(ρ)δ

+��
S − �N

S + ��−
V − �n

V, (14)

where m∗
dirac is the nucleon Dirac effective mass and δ = (ρn −

ρp)/ρ is the isospin asymmetry of nucleons before �(1232)
resonances are produced. Given the density dependencies
of the symmetry energy and self-energies, this equation
determines the ρcrit

�− in neutron stars at β equilibrium. It
also shows clearly what microphysics quantities determine
the ρcrit

�− . In particular, the difference in � and nucleon
masses m�− − mN, the symmetry energy Esym(ρ), and the
difference in both scalar ��

S − �N
S and vector ��−

V − �n
V

self-energies are all characteristics of baryon interactions. It
also indicates where the model dependence and uncertainties
are. As we mentioned earlier, experimental data indicate that
the difference in nucleon and �(1232) isoscalar self-energies
can be up to about 30 MeV while there is simply no
experimental indication so far about the difference in their
isovector self-energies. We notice that in many studies in the
literature the �(1232) resonances and nucleons are assumed
to have the same scalar and vector self-energies. In this case,
then, the ρcrit

�− is completely determined by the �(1232) mass
m� and the nuclear symmetry energy as a function of density
Esym(ρ).

The nonlinear RMF model has been very successful in
describing many nuclear properties and phenomena during the
past few decades, see, e.g., Refs. [41–59]. The total Lagrangian
density of the nonlinear RMF model of Ref. [54] augmented by
the Yukawa couplings of the � fields to various isoscalar and
isovector meson fields can be written as [5–8,16,19,22–24]

L = ψN[γμ(i∂μ − gωNωμ − gρN �τN · �ρμ)

− (mN − gσNσ )]ψN

+ψ�ν[γμ(i∂μ − gω�ωμ − gρ��τ� · �ρμ)

− (m� − gσ�σ )]ψν
�

+ 1
2∂μσ∂μσ − 1

2m2
σ σ 2 − UN(σ )

+ 1
2m2

ωωμωμ − 1
4ωμνω

μν + 1
4cωN

(
g2

ωNωμωμ
)2

+ 1
2m2

ρ �ρμ · �ρμ − 1
4 �ρμν · �ρμν

+ 1
2

(
g2

ρN �ρμ · �ρμ
)
�Vg2

ωNωμωμ, (15)

where ωμν ≡ ∂μων − ∂νωμ and ρμν ≡ ∂μ �ρν − ∂ν �ρμ are
strength tensors for the ω and ρ meson fields, respectively. ψN,
ψν

�, σ , ωμ, and �ρμ are the nucleon Dirac field, Schwinger-
Rarita field for � resonances, isoscalar-scalar meson field,
isoscalar-vector meson field, and isovector-vector meson field,
respectively, and the arrows denote isovectors, UN(σ ) =
bσNmN(gσNσ )3/3 + cσN(gσNσ )4/4 is the self-interaction term
of the σ field. The parameter �V represents the coupling
constant of mixed interaction between the isovector ρ and
isoscalar ω mesons. It is known to be important for calculating
the density dependence of the symmetry energy [54]. In terms
of the expectation values of the meson fields, σ , ω0, and
ρ

(3)
0 , where the subscript “0” denotes the zeroth component

of the four-vector while the superscript “(3)” denotes the
third component of isospin, the nucleon and �(1232) isoscalar
self-energies are, respectively,

�N
S = −gσNσ , (16)
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and

��
S = −gσ�σ . (17)

Their isovector self-energies are, respectively,

�N
V = gωNω0 + τ 3

p/ngρNρ
(3)
0 (18)

and

��
V = gω�ω0 + τ 3

i gρ�ρ
(3)
0 (19)

with τ 3
p = +1, τ 3

n = −1, and i = �++, �+, �0, �−, τ 3
�++ = +3, τ 3

�+ = +1, τ 3
�0 = −1, τ 3

�− = −3.
In terms of the ratios of �-meson over nucleon-meson coupling constants xσ ≡ gσ�/gσN, xω ≡ gω�/gωN, and xρ ≡ gρ�/gρN,

the Eqs. (10)–(13) lead to the following conditions determining the critical densities for forming the four charge states of �(1232)
resonances:

ρcrit
�− :

(
kn

F

)2

2m∗
dirac

� �� + gσN(1 − xσ )σ − gωN(1 − xω)ω0 − 6(1 − xρ)Epot
sym(ρ)δ − 4Ekin

sym(ρ)δ, (20)

ρcrit
�0 :

(
kn

F

)2

2m∗
dirac

� �� + gσN(1 − xσ )σ − gωN(1 − xω)ω0 − 2(1 − xρ)Epot
sym(ρ)δ, (21)

ρcrit
�+ :

(
k

p
F

)2

2m∗
dirac

� �� + gσN(1 − xσ )σ − gωN(1 − xω)ω0 + 2(1 − xρ)Epot
sym(ρ)δ, (22)

ρcrit
�++ :

(
k

p
F

)2

2m∗
dirac

� �� + gσN(1 − xσ )σ − gωN(1 − xω)ω0 + 6(1 − xρ)Epot
sym(ρ)δ + 4Ekin

sym(ρ), (23)

where �� ≡ m� − mN is the �-nucleon mass differ-
ence and E

pot
sym(ρ) = 2−1ρg2

ρN(m2
ρ + �Vg2

ρNg2
ωNω2

0)−1 and

Ekin
sym(ρ) = 6−1k2

F(k2
F + m

∗,2
dirac)−1/2 are, respectively, the poten-

tial and kinetic part of the symmetry energy in the nonlinear
RMF model [29].

Several interesting conclusions can be made qualitatively
from inspecting the above four conditions. Generally, the
critical densities depend differently on the three coupling
ratios xσ , xω, and xρ as they have different natures. The
isoscalar coupling ratios xσ and xω affect the four �(1232)
resonances the same way, i.e., the xσ lowers while the xω

raises their critical formation densities, while the isovector
coupling ratio xρ acts differently on the four different charge
states of �(1232) resonances. Moreover, the kinetic and
potential parts of the symmetry energy have separate and
different effects. In particular, in the universal baryon-meson
coupling scheme, i.e., xσ = xω = xρ = 1, the critical densities
for creating �− and �++ depend only on the �� and
the kinetic symmetry energy Ekin

sym(ρ) besides the m∗
dirac,

while those for the �0 and �+ are determined only by
the �� and m∗

dirac. In this case, assuming the Ekin
sym(ρ) is

always positive as in the case of RMF, noticing that the
Fermi surface of protons is lower than that of neutrons
at any density in neutron-rich matter, i.e., k

p
F < kn

F, one
then sees immediately the following sequence of appearance
ρcrit

�− < ρcrit
�0 < ρcrit

�+ < ρcrit
�++ [16,24]. However, we notice that

the short-range nucleon-nucleon correlation (SRC) [60–62]
may lead to negative kinetic symmetry energies even at
normal density of nuclear matter, see, e.g., Refs. [63–69].
In this case, the order of appearance of �− and �++, thus
the fraction of various particles and the structure of neutron

stars may differ. We remark here that this is the first time that
some physics quantities in neutron stars are found to depend
separately on the kinetic and potential parts instead of the total
symmetry energy.

Some earlier studies, see, e.g., Refs. [6,8,23,24], indicate
that xσ ≈ xω ≈ 1.0. Effects of slight deviations from this value
on properties of neutron stars have also been reported, see,
e.g., Ref. [21]. To the best of our knowledge, however, little is
known about the range of xρ and its effects in either heavy-ion
collisions [36] or neutron stars. Moreover, most studies so far
are limited to density isomers due to �(1232) formation in
symmetric nuclear matter where it is sufficient to consider
only effects of the xσ and xω.

In the universal baryon-meson coupling scheme, the default
set (SH-NJ) of RMF model parameters leads to the following
values of macroscopic quantities characterizing the EOS
of ANM at ρ0 = 0.149 fm−3: the binding energy E0(ρ0) =
−16.09 MeV, the Dirac effective mass m∗0

dirac(ρ0)/mN =
0.64, the incompressibility K0(ρ0) = 230 MeV, the skewness
coefficient J0(ρ0) = −415 MeV, the magnitude Esym(ρ0) =
31.17 MeV, and slope L(ρ0) = 48.64 MeV of symmetry
energy. We remark that almost all of these bulk parameters
are extracted from a fit to the properties of finite nuclei [59]
with the exception of the skewness coefficient J0 that has been
obtained by fixing the maximum mass of a neutron star at
Mmax = 2.01M	 [70]. Variations around this parameterization
will be investigated in the following.

For � resonances of mass m� = 1232 MeV, we study
in Fig. 2 the ρcrit

�− dependence on the xρ while keeping all
other quantities at their default values. It is seen that the
ρcrit

�− increases approximately linearly with xρ . At xρ = 1,
the ρcrit

�− is only about 2.1ρ0 consistent with that found in
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FIG. 2. (Color online) Dependence of the critical density ρcrit
�− for

�− formation in neutron stars on the relative �-ρ coupling strength
xρ = gρ�/gρN.

Refs. [21,23,24] but much smaller than the one found by
Glendenning et al. [16–18]. However, unless the value of xρ is
somehow constrained, the ρcrit

�− will remain underdetermined.
Delta resonances in free-space have the Breit-Wigner mass

distribution

f (m�) = 1

4

�2(m�)(
m� − m0

�

)2 + �2(m�)/4
(24)

with the mass-dependent width given by [71,72]

�(m�) = 0.47q3/
(
m2

π + 0.6q2)(GeV), (25)

where q = [([m2
� − m2

N + m2
π ]/2m�)2 − m2

π ]1/2 is the pion
momentum in the � rest frame in the � → π + N decay
process. Shown in red in Fig. 3 is the free-space �(1232) mass
distribution. It is known that the �(1232) mass distributions
may be modified in a nuclear medium [40]. This effect
is beyond the scope of the RMF model used here as it does
not consider the imaginary part of the �(1232) self-energy
self-consistently. However, we can examine how the ρcrit

�−
depends on the bare �(1232) mass m� by varying its value in
Eqs. (20)–(23). As one expects and as indicated by Eqs.
(20)–(23), the ρcrit

�− increases with m� in the universal coupling
scheme. Our numerical calculations shown with the blue line

FIG. 3. (Color online) The � mass m� dependence of the critical
density ρcrit

�− for �− formation in neutron stars (blue) and the Breit-
Wigner mass distribution of � resonances in free space (red).

indicate that the increase is almost linear. Considering the
mass distribution, while the ρcrit

�− for � resonances around m0
�

is about 2.1ρ0, it gradually decreases for lower � masses.
Of course, these low-mass � resonances are less likely to be
produced compared to the ones near m0

�. On the other hand,
the � mean lifetime τ� = �/�(m�) is only about 1.7 fm/c
at m0

� but increases very quickly for lower masses. Thus,
the main population of � resonances in neutron stars may
not necessarily peak at m� = 1232 MeV. A detailed study
of this issue will require a full account of the π − N − �
dynamics in neutron stars that is also beyond the scope
of the RMF model used here. Nevertheless, our results
indicate that the appearance of � resonances, especially the
ones with low masses around 2ρ0, may compete with other
particles, such as hyperons, thus possibly modifying the widely
accepted and long-time viewpoint that hyperons should appear
earlier than �(1232) resonances in neutron stars [16,73]. To
the best of our knowledge, however, no study to date has
considered consistently the effects of the mass distribution
and the associated mass-dependent lifetimes of � resonances
in neutron stars.

III. EFFECTS OF NUCLEAR EQUATION OF STATE ON
THE FORMATION OF �(1232) RESONANCES IN

NEUTRON STARS

Equation (13) for determining the critical density ρcrit
�− can

be rewritten as

μmin
�− =m� + ��− = 2μn − μp � μn + 4Esym(ρ)δ. (26)

The left-hand side is given in terms of the microscopic
quantities, i.e., �(1232) mass and the three �-meson coupling
constants in the total self-energy ��− = −gσ�σ + gω�ω0 −
3gρ�ρ

(3)
0 . Using the parabolic approximation for the EOS

of ANM E(ρ,δ) � E0(ρ) + Esym(ρ)δ2 + O(δ4) and assuming
the density is not too far from ρ0, the right-hand side of Eq. (26)
can be expanded in terms of χ = (ρ − ρ0)/3ρ0 and the isospin
asymmetry δ as

μmin
�− � mN + E0(ρ0) +

(
χ

3

ρ

ρ0
+ χ2

2

)
K0

+ χ2

6

(
ρ

ρ0
+ χ

)
J0 + (2δ + 3δ2)Esym(ρ0)

+
[

ρ

3ρ0
δ2 + χ (2δ + 3δ2)

]
L(ρ0), (27)

where higher-order terms in the expansion have been
neglected (for full details see Ref. [58]). Here K0 =
9ρ2

0 d2E0(ρ)/dρ2|
ρ=ρ0

and J0 = 27ρ3
0 d3E0(ρ)/dρ3|

ρ=ρ0
are

the incompressibility and skewness coefficient of symmetric
nuclear matter (SNM) at ρ0, respectively. This expansion is
very easy to understand considering the energy conservation
in the � production process NN → N�, i.e., the minimum
energy of the � is the energy of a nucleon (sum of nucleon rest
mass and its mechanical energy). Since all seven macroscopic
quantities used to characterize the EOS of ANM, i.e., (a) the
saturation density ρ0 of SNM where the pressure P (ρ0) = 0,
(b) the binding energy E0(ρ0), (c) incompressibility K0, (d)
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FIG. 4. Critical density for the formation of �− resonance from the nonlinear RMF model by varying individually ρ0 (a), E0(ρ0) (b), m∗0
dirac

(c), K0 (d), J0 (e), Esym(ρ0) (f), and L(ρ0) (g).

skewness coefficient J0, (e) nucleon effective mass m∗0
dirac,

(f) magnitude Esym(ρ0), and (g) slope L(ρ0) of the symmetry
energy, are all explicit functions (see, e.g., Refs. [58,74,75])
of the seven RMF microscopic model parameters, i.e., gσN,
gωN, gρN, bσN, cσN, cωN, and �V, Eq. (27) allows us to
explore the ρcrit

�− dependence on the seven microscopic or
macroscopic parameters. Since the macroscopic quantities
are either empirical properties of nuclear matter or directly
related to experimental observables, it is more useful for
the purposes of this work to examine the ρcrit

�− by varying
individually the seven macroscopic quantities. We notice that
within both the RMF and Skyrme-Hartree-Fock approaches
similar correlation analyses [76] have been successfully
applied to study the neutron skin [76,77], the giant monopole
resonances (GMR) of finite nuclei [78], the higher-order bulk
characteristic parameters of ANM [79], the electric dipole
polarizability αD in 208Pb [80], the correlation between the
maximum mass of neutron stars and the skewness coefficient of
the SNM [58], as well as the relationship between the Esym(ρ)
and the symmetry energy coefficient in the mass formula of
nuclei [81].

In Fig. 4 we show the ρcrit
�− obtained in the universal coupling

scheme as a function of the seven macroscopic parameters
within their respective uncertain ranges. Among them, the
J0 = −250 ± 250 MeV and L = 50 ± 20 MeV currently have
the largest uncertainties. Examining the results shown in Fig. 5,
we make the following two observations: (i) The values of
ρcrit

�− from all seven correlations overlap around ρcrit
�− = (2.08 ±

0.02)ρ0. Notice that this result depends on the value of J0 in the
default set, which had been fixed to obtain the maximum stellar
mass configuration matching the observed 2.01M	 neutron
star. With this assumption, this result is the most reliable
prediction for the ρcrit

�− consistent with all of the constraints
within the RMF model considered. We note that increasing J0

raises the maximum mass and lowers the critical density ρcrit
�− ;

hence the range ρcrit
�− =(2.08 ± 0.02)ρ0 constitutes an upper

limit on ρcrit
�− . Since the inclusion of � resonances inevitably

softens the EOS, the magnitude of J0 should therefore be much
larger than the one used in our default set to be consistent with
the current observation of the two solar-mass neutron star.
With the other six macroscopic quantities fixed within their
current uncertainty ranges, the critical density ρcrit

�− will take

an even smaller value than the upper limit predicted above. And
this is one of the main reasons why we have not considered
hyperons in the present work, because they appear at much
higher densities than ρcrit

�− . (ii) A reasonable and quantitative
measure of the sensitivity of ρcrit

�− to each individual variable is
the response functionQ ≡ |(dy/y)/(dx/x)|, where dy/y is the
relative change in ρcrit

�− with respect to its mean value and dx/x
is the relative change in the variable x with respect to its mean
value. The value of Q is approximately Q[E0(ρ0)] = 0.53,
Q[ρ0] = 0.40, Q[K0] = 0.29, Q[m∗0

dirac] = 0.18, Q[J0] =
0.17,Q[Esym(ρ0)] = 0.11, andQ[L(ρ0)] = 0.10 following the
same order of importance in the expansion of the minimum �
chemical potential in Eq. (27).

The seemingly stronger correlation between the ρcrit
�− and J0

compared to the correlations of ρcrit
�− with the other six variables

is because of the relatively larger uncertainty in J0. On the
other hand, some of the weaker correlations shown in Fig. 4
may become much stronger if one goes beyond their current
constraints. For example, shown in Fig. 5 are the correlations
of the ρcrit

�− with the reduced slope L(ρr)/w of Esym(ρ) at three
reference densities of ρr/ρ0 = w = 0.7,1.0 and two while
fixing the magnitudes of Esym(ρ) and other variables at their
default values. It is seen that the ρcrit

�− increases much faster

FIG. 5. (Color online) Critical density for the formation of �−

resonance as a function of the scaled density slope of symmetry
energy L(wρ0)/w at three reduced densities of ρr/ρ0 = w = 0.7,1
and 2, respectively.
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for L(ρr)/w � 70 MeV. This feature is consistent with that
found in Ref. [24]. Noting again that some earlier studies have
used models predicting L values high than 90 MeV, they thus
predicted correspondingly much large values for the ρcrit

�− .

IV. EFFECTS OF � RESONANCES ON THE
COMPOSITION AND STRUCTURE OF NEUTRON STARS

Having shown that the ρcrit
�− depends sensitively on

the completely unknown �-ρ coupling strength gρ�

and the � mass m�, and it is about ρcrit
�− = (2.08 ± 0.02)ρ0

in the universal coupling scheme for m� = 1232 MeV using
RMF model parameters consistent with all existing constraints
on the nuclear EOS, we now turn to effects of � formation
on properties of neutron stars. This study is carried out within
the npeμ� model omitting other particles such as hyperons
and quarks at high densities. This model is sufficient for the
purposes of this work. Moreover, we restrict ourselves to
studying effects of the � formation on the composition and
mass-radius relation of neutron stars by varying the � mass
and its coupling strength with the ρ meson. In constructing
the EOS of various layers in neutron stars for solving the
Oppenheimer-Volkoff (OV) equation, we follow a rather
standard scheme. For the core we use the EOS of β-stable
and charge-neutral npeμ� matter obtained from the nonlinear
RMF model described earlier. The inner crust with densities
ranging between ρout = 2.46 × 10−4fm−3 corresponding to
the neutron dripline and the core-crust transition density
ρt determined self-consistently using the thermodynamical
method [57,82] is the region where complex and exotic nuclear
structure—collectively referred to as the “nuclear pasta”—
may exist. Because of our poor knowledge about this region,
we adopt the polytropic EOSs parameterized in terms of the
pressure P as a function of total energy density ε according to
P = a + bε4/3 [82,83]. The constants a and b are determined
by the pressure and energy density at ρt and ρout [82]. For the
outer crust [84], we use the Baym-Pethick-Sutherland EOS
for the region with 6.93 × 10−13 fm−3 < ρ < ρout and the
fundamental measure theory EOS for 4.73 × 10−15 fm−3 <
ρ < 6.93 × 10−13 fm−3, respectively.

Shown in Fig. 6 are fractions of different species, i.e., xi =
ρi/ρ, in neutron stars using two parameter sets with the �-ρ
coupling strength corresponding to xρ = 1 and 2, respectively.
These calculations are done with m� = 1232 MeV. It is seen
that the appearance of �− affects significantly the fractions
of others particles depending on the value of the xρ as one
expects. The modified fractions of the lighter particles e and
μ will affect their weak decays and thus the possible kaon
condensation. Moreover, the strong boost of the proton fraction
above the �− production threshold may have a significant
impact on the cooling processes in neutron stars [85]. A
detailed investigation of these consequences requires a self-
consistent extension of the model considered here and is on
the agenda of our proposed future work.

Finally, we study in Fig. 7 effects of both the � mass m�

and the xρ parameter on the mass-radius relation of neutron
stars. Without including the � resonances (black line), as we
mentioned earlier the default value of J0 was chosen to predict
a maximum neutron star mass of 2.01M	, consistent with the

FIG. 6. (Color online) Fractions of different species in neutron
stars composed of neutrons, protons, � resonances, electrons, and
muons within the nonlinear RMF model using two sets of model
parameters with xρ = gρ�/gρN = 1 and 2, respectively.

latest observations. As given in Eqs. (24) and (25), �(1232) has
an intrinsic mass distribution and each mass has its own width
(lifetime) in free space. Notably, it is possible to form �(1232)
with masses much smaller than the centroid of 1232 MeV
in low energy NN → N� or π + N → � reactions. As one
expects, including � resonances reduces both the maximum
mass and the corresponding radius. Moreover, the effect is
stronger for � resonances with masses smaller than the
centroid. These low-mass � resonances have lower production
thresholds and are thus more abundant. They then soften the
EOS more, starting at lower densities reached in the cores of
lighter neutron stars. Of course, effects of the � resonance
on properties of neutron stars depend on the value of xρ . As
shown in Fig. 6 and discussed earlier, a larger value of xρ leads
to a higher ρcrit

�− . Thus, the effect of varying m� appears at a
higher mass (higher central density) of neutron stars when the
value of xρ is increased from 1 to 2.

Obviously, by including the � resonances we can no longer
obtain a maximum neutron star mass of 2.01M	 with the
default parameter set. Moreover, we found that by varying

FIG. 7. (Color online) The mass-radius correlation of neutron
stars without and with � resonances of different masses using
xρ = gρ�/gρN = 1 and 2, respectively.
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the value of J0 in its uncertain range, we cannot recover a
maximum mass of 2.01M	 with xρ = 1. We confirm that
indeed there is a “Delta puzzle” consistent with the finding
of Refs. [23,24]. Thus, if indeed � resonances can be formed
around 2ρ0 as in the universal coupling scheme, our findings
call for serious considerations of the various EOS stiffening
mechanisms proposed in the literature. On the other hand, as
we mentioned earlier, there is currently no constraint on the
xρ neither theoretically nor experimentally. Since the critical
density for � formation increases approximately linearly with
xρ , it is therefore critical to first constrain independently the xρ ,
such as from heavy-ion collisions, before the “Delta puzzle”
in understanding properties of neutron stars can be resolved.

V. SUMMARY AND DISCUSSIONS

The possible formation and roles of �(1232) resonances in
neutron stars are outstanding issues in nuclear astrophysics.
The first and most important piece of information necessary
for resolving these issues is the critical density above which
the �(1232) can be formed in neutron stars. Previous studies
have indicated that the critical densities range from ρ0 to
very high values only reachable in the core of very massive
neutron stars. In this work, within the extended nonlinear RMF
model, we found that the critical formation densities for the
four different charge states of �(1232) resonances depend
differently on the separate kinetic and potential parts of the
nuclear symmetry energy, the in-medium � mass m� and the
completely unknown �-ρ coupling strength gρ�. This is the
first time a microphysical property of neutron star matter has
been shown to depend differently on the potential and kinetic
parts of the symmetry energy. Assuming that the respective
�-meson and nucleon-meson coupling constants are the same,
the critical density for the first �−(1232) to appear is found
to be ρcrit

�− =(2.08 ± 0.02)ρ0 using RMF model parameters
consistent with current constraints on all seven macroscopic
parameters characterizing the EOS of ANM at ρ0. We also
found that the composition and the mass-radius relation of
neutron stars are significantly affected by the formation of
�(1232) resonances. In particular, the effects of the �(1232)
formation depend sensitively on the values of the gρ� and
the in-medium � mass m� which are also being probed with
terrestrial laboratory experiments.

To this end, it is interesting to note that, since the early work
by Kubis and Kutschera [86], the isovector, Lorentz-scalar
δ meson has been incorporated in several RMF models
in predicting the EOS of dense neutron-rich matter and
its applications in understanding properties of relativistic
heavy-ion collisions and neutron stars [87–95]. Since the δ
contributes negatively to the symmetry energy in contrast
to the ρ meson, to fit the saturation properties of nuclear
matter, reproduce the known symmetry energy of about 31
MeV at saturation density, and avoid the bounding of pure
neutron matter, the ρ-nucleon coupling has to be readjusted
significantly compared to its value in the RMF model without
considering the δ meson since there is no known mechanism
to determine the δ-nucleon coupling independently. The net
effect of including the δ meson is thus to stiffen the symmetry
energy at suprasaturation densities where the ρ contribution

dominates. Indeed, applications of these models have found
that the δ may play an appreciable role in determining the
hadron-quark phase transition [91,92], the crust-core transition
and the formation of a pasta phase [93], and the mass-radius
relation of neutron stars [89,94], as well as the cooling
mechanism of protoneutron stars [95]. We have no physical
reason to preclude possible δ meson effects in determining
the critical density for �(1232) formation in neutron stars.
However, to consider effects of the δ meson one has to
introduce all the necessary but unknown δ-baryon coupling
constants. Given the fact that our main findings in this work
already depend on the completely unknown �-ρ coupling, the
inclusion of the δ into our current model is thus not beneficial
for the main purposes of this work.
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APPENDIX A: DERIVATION OF EQ. (20)

We start from the relation μ�− = 2μn − μp, where

μn =
√(

kn
F

)2 + m
∗,2
dirac + gωNω0 − gρNρ

(3)
0 , (A1)

μp =
√(

k
p
F

)2 + m
∗,2
dirac + gωNω0 + gρNρ

(3)
0 , (A2)

μ�− =
√(

k�−
F

)2 + (m� − gσ�σ )2 + gω�ω0 − 3gρ�ρ
(3)
0 ,

(A3)

are the chemical potential of neutron, proton, and �−, and
m∗

dirac = mN − gσNσ . The condition to determine ρcrit
�− suggests

that we can set ρ�− = 0, k�−
F = 0. Then, using the relation

above, we find that

m� − gσ�σ + gω�ω0 − 3gρ�ρ
(3)
0

=
√(

kn
F

)2 + m
∗,2
dirac + gωNω0 − gρNρ

(3)
0 + μn − μp, (A4)

where the last two terms on the right-hand side can be
expressed as [57,82]

μn − μp � 4Esym(ρ)δ. (A5)

The expression for the symmetry energy in the nonlinear RMF
model can be written as [29]

Esym(ρ) = Ekin
sym(ρ) + Epot

sym(ρ) = kF

6
√

k2
F + m

∗,2
dirac

+ 1

2

g2
ρNρ

m2
ρ + �Vg2

ρNg2
ωNω2

0

. (A6)
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The equation of motion for the ρ
(3)
0 field is given as

m2
ρρ

(3)
0 = gρN

(−ρδ − �VgρNρ
(3)
0 g2

ωNω2
0

)
. (A7)

Rearranging this last equation, we find

ρ
(3)
0 = − gρNρδ

m2
ρ + �VgρNg2

ωNω2
0

. (A8)

This in turn can be rearranged to give

− 2gρNρ
(3)
0 = 2g2

ρNρδ

m2
ρ + �VgρNg2

ωNω2
0

� 4Epot
sym(ρ)δ

= 4
[
Esym(ρ) − Ekin

sym(ρ)
]
δ. (A9)

The ω0 in the expression of symmetry energy (A6) is evaluated
at δ = 0, whereas the one appearing in Eq. (A8) has the value
of δ generally being nonzero, hence we used the “�” symbol
in the second line. Expanding now [(kn

F)2 + m
∗,2
dirac]1/2 as

√(
kn

F

)2 + m
∗,2
dirac � k

n,2
F

2m∗
dirac

+ m∗
dirac, (A10)

and using the relation above we find

k
n,2
F

2m∗
dirac

= �� + gσN(1 − xσ )σ − gωN(1 − xω)ω0 + gρN(1 − xρ)ρ(3)
0 − 4xρE

kin
sym(ρ)δ − 4(1 − xρ)Esym(ρ)δ, (A11)

� �� + gσN(1 − xσ )σ − gωN(1 − xω)ω0 + gρNρ
(3)
0 + 6xρE

pot
sym(ρ)δ − 4Esym(ρ)δ, (A12)

� �� + gσN(1 − xσ )σ − gωN(1 − xω)ω0 + (6xρ − 2)Epot
sym(ρ)δ − 4Esym(ρ)δ, (A13)

= �� + gσN(1 − xσ )σ − gωN(1 − xω)ω0 + (6xρ − 6)Esym(ρ)δ − (6xρ − 2)Ekin
sym(ρ)δ, (A14)

= �� + gσN(1 − xσ )σ − gωN(1 − xω)ω0 + (6xρ − 6)Epot
sym(ρ)δ + 4Ekin

sym(ρ)δ, (A15)

where xφ = gφN/gφ� with φ = σ , ω, and ρ, and �� = m� − mN. This last equation is the Eq. (20) reported in the main part of
this paper. The derivation of Eqs. (21)–(23) follows using similar arguments and steps.

APPENDIX B: DERIVATION OF EQ. (27)

Once again we start from the relation μ�− = 2μn − μp and obtain

μ�− =2μn − μp = μn + μn − μp � μn + 4Esym(ρ)δ + O(δ3), (B1)

where Esym(ρ) is the nuclear symmetry energy, δ ≡ 1 − 2xp is the isospin asymmetry, and xp is the proton fraction. The chemical
potential for neutrons can be expressed as

μn = ∂εN

∂ρn
= ∂εN

∂ρ
+ 2τ n

3 ρp

ρ2

∂εN

∂δ
, (B2)

where ρ and δ are two independent variables. In obtaining the expression above we have used the relation

∂

∂ρJ

= ∂ρ

∂ρJ

∂

∂ρ
+ ∂δ

∂ρJ

∂

∂δ
= ∂

∂ρ
+ 2τ J

3 ρJ

ρ2

∂

∂δ
, (B3)

where J = n,p, ρn = ρp, and ρp = ρn. When the density is smaller than ρcric
�− , there are only neutrons, protons, electrons, and

muons present in the system. Neglecting the contribution from electrons and muons, εN can be taken as the energy density of
nuclear matter only. That is,

εN(ρ,δ) = [E(ρ,δ) + mN]ρ, (B4)

where mN = 939 MeV is the static mass of the nucleon and E(ρ,δ) is the equation of state of asymmetric nuclear matter, which
in turn can be written as

E(ρ,δ) � E0(ρ) + Esym(ρ)δ2 + O(δ4). (B5)

Then

μ�− � μn + 4Esym(ρ)δ

= E(ρ,δ) + mN + ρ
∂E(ρ,δ)

∂ρ
+ 2τ n

3 ρp

ρ2

∂

∂δ
(ρEsym(ρ)δ2) + 4Esym(ρ)δ

� E0(ρ) + Esym(ρ)δ2 + mN + ρ
∂E(ρ,δ)

∂ρ
+ 2τ n

3 ρp

ρ

∂

∂δ
(Esym(ρ)δ2) + 4Esym(ρ)δ
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= E0(ρ) + Esym(ρ)δ2 + mN + ρ
∂E(ρ,δ)

∂ρ
+ 4Esym(ρ)δ(1 − xp)

= E0(ρ) + Esym(ρ)δ2 + mN + ρ
∂E(ρ,δ)

∂ρ
+ Esym(ρ)(2δ + 2δ2)

= E0(ρ) + mN + ρ

[
∂E0(ρ)

∂ρ
+ ∂

∂ρ
(Esym(ρ)δ2)

]
+ Esym(ρ)(2δ + 3δ2)

� E0(ρ0) + mN +
(

1

2
χ2 + ρ

3ρ0
χ

)
K0 +

(
1

6
χ3 + ρ

6ρ0
χ2

)
J0

+ (2δ + 3δ2)Esym(ρ0) +
(

(2δ + 3δ2)χ + ρ

3ρ0
δ2

)
L(ρ0), (B6)

which is the desired Eq. (27). Note that K0 ≡ K0(ρ0) and J0 ≡ J0(ρ0), and, in the derivation above, we have made use of the
following relation:

∂χ

∂ρ
= ∂

∂ρ

ρ − ρ0

3ρ0
= 1

3ρ0
. (B7)
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