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The density and temperature dependence of the nuclear symmetry free energy is investigated using microscopic
two- and three-body nuclear potentials constructed from chiral effective field theory. The nuclear force models
and many-body methods are benchmarked to properties of isospin-symmetric nuclear matter in the vicinity of the
saturation density as well as the virial expansion of the neutron matter equation of state at low fugacities. The free
energy per particle of isospin-asymmetric nuclear matter is calculated assuming a quadratic dependence of the
interaction contributions on the isospin asymmetry. The spinodal instability at subnuclear densities is examined
in detail.
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I. INTRODUCTION

Determining the thermodynamic equation of state (EoS) of
nuclear matter is a central objective in modern nuclear theory.
The isospin-asymmetry dependence of the EoS is essential
for many phenomena in nuclear physics and astrophysics
[1]. Next-generation radioactive beam facilities [2,3] studying
the reactions and structure of exotic neutron-rich isotopes
in particular provide motivation to improve our microscopic
description of highly isospin-asymmetric nuclear matter. To
a certain extent, the isospin-asymmetry dependence of the
EoS is described by the so-called symmetry free energy. In
this work, starting from microscopic calculations of the EoS
of isospin-symmetric nuclear matter and pure neutron matter
using two- and three-body chiral nuclear interactions, we
examine in detail the density and temperature dependence of
the symmetry free energy. Furthermore, we construct the EoS
of isospin-asymmetric nuclear matter, and study the behavior
of the nuclear liquid-gas instability as the proton fraction
is decreased. The present work is a first step toward the
development of a chiral effective field theory thermodynamic
equation of state across the temperatures, densities, and isospin
asymmetries relevant for describing astrophysical phenomena
and the matter produced experimentally in heavy-ion collisions
at moderate energies.

Chiral effective field theory (χEFT) provides the basis for
the study of strongly interacting matter at the energy scales
characteristic of normal nuclei [4–6]. In χEFT, microscopic
nuclear interactions are organized in a systematic expansion,
with many-nucleon forces naturally included. The low-energy
constants parametrizing the interactions are generally fixed by
high-precision fits to nucleon-nucleon scattering phase shifts
and properties of light nuclei. Employing chiral interactions in
calculations of nuclear many-body systems then gives pure
predictions without additional fine tuning, and theoretical
uncertainties can be estimated [6–10] by varying the resolution
scale, the fitting procedures applied to fix the low-energy
constants, and the chiral order of the nuclear potentials. In the
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case of isospin-symmetric nuclear matter, semiempirical con-
straints from the zero-temperature saturation energy, density,
and incompressibility as well as the critical point of the nuclear
liquid-gas phase transition have been reproduced with low-
momentum chiral nuclear forces in many-body perturbation
theory [11,12]. This motivates a study of isospin-asymmetric
nuclear matter, which is by comparison much less constrained
by experimental data.

The symmetry free energy F̄sym(T ,ρ) is defined as the dif-
ference between the free energy per particle in homogeneous
isospin-symmetric matter (SNM) and pure neutron matter
(PNM):

F̄sym(T ,ρ) = F̄ (T ,ρ,δ = 1) − F̄ (T ,ρ,δ = 0), (1)

where T is the temperature, ρ = ρn + ρp is the total nu-
cleon density, and δ = (ρn − ρp)/(ρn + ρp) is the isospin-
asymmetry parameter (with ρn/p the neutron/proton density).
The free energy per particle of homogeneous nuclear matter
with proton fraction Yp = (1 − δ)/2 can be written as

F̄ (T ,ρ,δ) = F̄ (T ,ρ,δ = 0) + F̄sym(T ,ρ) β(T ,ρ,δ) δ2, (2)

where β(T ,ρ,δ = 1) = 1. If isospin-symmetry breaking ef-
fects are neglected β(T ,ρ,δ) is an even function of δ. It
has been validated in various microscopic many-body cal-
culations (see, e.g., Refs. [13,14]) that the isospin-asymmetry
dependence of F̄ (T ,ρ,δ) at zero temperature is approximately
quadratic to high accuracy over the entire range 0 < δ � 1,
i.e., β(T = 0,ρ,δ) � 1. At finite temperatures however the
free Fermi gas contribution to F̄ (T ,ρ,δ) contains large terms
with quartic and higher powers of δ, which we quantify
explicitly in this work. By comparison, in initial calculations
we have found that at the densities and temperatures relevant
for the nuclear liquid-gas phase transition the interaction
contributions give rise to weaker nonquadratic terms and will
therefore be assumed to have a quadratic dependence on δ in
this work. Future research will address the accuracy of this
approximation in greater detail.

The liquid-gas phase transition in isospin-asymmetric
nuclear matter (ANM) involves isospin distillation: in the
transition region the system separates into two phases whose
proton concentrations deviate from the global value Yp, with
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0 � Y
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p < Yp and Yp < Y

liquid
p < 0.5 for the case Yp < 0.5.

These distillation effects are a generic property of first-
order phase transitions in binary thermodynamic systems.
If isospin-symmetry breaking effects are neglected, neutrons
and protons are thermodynamically indistinguishable in SNM.
Hence, thermodynamically SNM is a pure substance, and
there is no isospin distillation for δ = 0. The new features
of the phase transition in ANM were discussed in detail
in Refs. [15–19] using different phenomenological models
of the nuclear force. The transition region is comprised of
regions of metastable and unstable single-phase equilibrium,
corresponding to different dynamical phase separation mech-
anisms: nucleation and spinodal decomposition [20,21]. In
this work we focus mostly on the spinodal which delineates
the inner region of thermodynamic instability where no
metastable state can exist. The evolution of the unstable
spinodal region with increasing isospin asymmetry is analyzed
in terms of the trajectory of the critical temperature Tc(δ).
Moreover, we determine the neutron drip point in cold nuclear
matter and the fragmentation temperature above which no
self-bound drop of liquid nuclear matter can exist. It should
be emphasized that in the present paper we discuss the
liquid-gas instability of infinite nuclear matter, i.e., bulk
nucleonic matter without Coulomb interactions. The inclusion
of surface energies and the Coulomb repulsion of protons is
required for an accurate description of the matter produced
in intermediate-energy heavy-ion collisions. In neutron stars
and core-collapse supernovae the realization of the nuclear
liquid-gas instability is strongly affected by the presence of
a (highly incompressible) charge neutralizing background of
electrons (and myons) [22,23]. In particular, the competi-
tion between nuclear and Coulomb interactions (frustration)
entails the formation of mesoscopic inhomogeneities with
nontrivial spatial structures. These so-called pasta phases have
been studied extensively in the literature [24–31]. Including
these effects as well as the presence of few-nucleon bound
states [32–34] at very low densities represents a future
challenge.

The paper is organized as follows. In Sec. II we recall the
main results for the EoS of SNM obtained in Ref. [12], and
show results for additional derived thermodynamic quantities,
i.e., the entropy per nucleon and the internal energy per
nucleon. In Sec. III we extend the calculations to pure neutron
matter. The zero-temperature results are compared to those
from recent quantum Monte Carlo simulations while the
finite-temperature EoS at low densities is compared to the
virial expansion. In Sec. IV we investigate the temperature and
density dependence of the symmetry free energy, entropy, and
internal energy. The thermodynamics of isospin-asymmetric
nuclear matter is studied in Sec. V. In particular, we examine
in detail the dependence on isospin asymmetry of the EoS of
a free nucleon gas. Finally, Sec. VI provides a short summary.

II. ISOSPIN-SYMMETRIC NUCLEAR MATTER

In Ref. [12] we calculated the free energy per nucleon in
infinite homogeneous SNM using the Kohn-Luttinger-Ward
[35,36] many-body perturbation series including contributions

up to second order, i.e.,

F̄ (T ,ρ,δ = 0) = F̄0(T ,μ0) + F̄rel(T ,μ0) + λF̄1(T ,μ0)

+ λ2F̄2(T ,μ0) + O(λ3). (3)

Here, λ counts the number of interaction insertions, F̄0(T ,μ0)
corresponds to a nonrelativistic free nucleon gas, and
F̄rel(T ,μ0) is a correction term which together with F̄0

reproduces the properties of a relativistic free nucleon gas
over a wide range of densities and temperatures [37]. The
first- and second-order terms F̄1(T ,μ0) and F̄2(T ,μ0) receive
contributions from both the two-body and the three-body
nuclear force. The second-order term F̄2(T ,μ0) includes
(temperature and density dependent) self-energy corrections,
and has been evaluated by approximating the three-nucleon
interaction with a temperature and density dependent effective
two-body potential (for details see Refs. [12,38–41]. Explicit
formulas for the different contributions in Eq. (3) are given
in Ref. [12]. The effective one-body chemical potential μ0

is in one-to-one correspondence with the nucleon density
via

ρ(T ,μ0) = 1

π2

∑
τ

∫ ∞

0
dk k2

[
1 + exp

k2/2M − μ0

T

]−1

, (4)

where τ ∈ {−1/2,1/2} is the isospin projection quantum
number and M � 938.9 MeV is the average nucleon mass.
For Eq. (3) to be sufficiently converged at second order in λ,
low-momentum interactions have to be used, i.e., interactions
with restricted resolution in coordinate space (corresponding
to an ultraviolet cutoff in momentum space). The various sets
of N3LO (i.e., fourth order in the chiral expansion) two-body
and N2LO three-body chiral low-momentum interactions used
in Ref. [12] correspond to different regularization methods,
resolution scales �, and low-energy constants. For interactions
constructed at resolution scales � � 450 MeV appropriate
perturbative behavior was found. The SNM equation of state
obtained from the sets of two- and three-body potentials
denoted by n3lo414 (� = 414 MeV) and n3lo450 (� =
450 MeV), respectively (see Refs. [11,42,43] for details),
agree with empirical constraints from the zero-temperature
saturation energy, density, and incompressibility [44–47], and
with estimates for the critical point of the nuclear liquid-gas
phase transition obtained through the analysis of data from
multifragmentation, fission, and compound nuclear decay
experiments [48–51]. The values of these quantities obtained
from n3lo414 and n3lo450 in Ref. [12] are displayed in
Table I.1

From the free energy per nucleon the pressure and the
entropy per nucleon follow via standard thermodynamic

1Note that the value of the so-called critical compressibility factor
is Zc = Pc/(Tc ρc) � 0.29 for both n3lo414 and n3lo450; this is very
similar to the values of Zc of various atomic or molecular fluids [52],
but differs from the value Zc = 0.375 corresponding to equations of
state of the van der Waals–Berthelot type [53].
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TABLE I. Zero-temperature saturation energy Ēsat, density ρsat, and incompressibility K , as well as the critical temperature Tc, density
ρc, and pressure Pc of the liquid-gas phase transition in isospin-symmetric nuclear matter from the sets of chiral two- and three-body nuclear
interactions n3lo414 and n3lo450.

Ēsat (MeV) ρsat (fm−3) K (MeV) Tc (MeV) ρc (fm−3) Pc (MeV fm−3)

n3lo414 −15.79 0.171 223 17.4 0.066 0.33
n3lo450 −15.50 0.161 244 17.2 0.064 0.32

relations:

P (T ,ρ,δ = 0) = ρ2 ∂F̄ (T ,ρ,δ = 0)

∂ρ
,

S̄(T ,ρ,δ = 0) = − ∂F̄ (T ,ρ,δ = 0)

∂T
. (5)

The internal energy per nucleon is given by Ē = F̄ + T S̄. The
results for these quantities are shown in Fig. 1 for temperatures
in the range T = 0–25 MeV. The spinodal region2 where

2In SNM the unstable spinodal region corresponds to (∂P/∂ρ)T �
0, with (∂P/∂ρ)T = 0 on the spinodal; cf. Sec. V B.

the homogeneous (i.e., single-phase constrained) system is
unstable with respect to infinitesimal density fluctuations is
shown explicitly. Note that for low temperatures the region
of negative pressure extends into the metastable region (cf.
also Fig. 14), which is a generic property of liquids that are
self-bound at low temperatures and a well-known feature of
superheated molecular liquids [54].

III. PURE NEUTRON MATTER

The free energy per particle in PNM, F̄ (T ,ρ,δ = 1), is
obtained by restricting the isospin sum(s) in Eq. (4) and in
the different contributions in Eq. (3). Moreover, in PNM the
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FIG. 1. (Color online) Results for the free energy per nucleon F̄ (T ,ρ,δ = 0), the pressure P (ρ,T ,δ = 0), the entropy per nucleon
S̄(T ,ρ,δ = 0), and the internal energy per nucleon Ē(ρ,T ,δ = 0) in isospin-symmetric nuclear matter. The uncertainty bands correspond
to calculations using two different sets of chiral low-momentum two- and three-body interactions, n3lo414 (solid lines) and n3lo450 (dash-dot
lines). The unstable spinodal region is marked out explicitly. The critical point is shown as a circle (full circle for n3lo414, open circle for
n3lo450). The zero-temperature endpoint of the low-density part of the spinodal is located at ρ � 2 × 10−4 fm−3.
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FIG. 2. (Color online) Results for the free energy per particle F̄ (T ,ρ,δ = 1), the pressure P (ρ,T ,δ = 1), the entropy per particle S̄(T ,ρ,δ =
1), and the internal energy per particle Ē(ρ,T ,δ = 1) in pure neutron matter. The solid lines show the results from n3lo414, the dash-dot lines the
n3lo450 results. The thick dashed lines correspond to the model-independent virial equation of state (VEoS) determined from neutron-neutron
scattering phase shifts. The VEoS lines end where the fugacity is z = 0.5.

three-body contributions proportional to the low-energy con-
stants cE,D and c4 are absent [38]. The results for the free
energy per particle, the pressure, the entropy per particle,
and the internal energy per particle in PNM are shown in
Fig. 2. Note that the uncertainty bars obtained by varying
the resolution scale (n3lo414 vs n3lo450) increase with
temperature and are significantly reduced as compared to
the SNM results, which is due to the decreased magnitude
of nuclear interactions in PNM. At very low temperatures
the internal energy per particle increases monotonically with
increasing density (as required by the absence of a liquid-gas
instability in PNM), but otherwise there is a local minimum at
finite density.

At very low energies, where higher partial waves are
unimportant, the interaction between neutrons is characterized
by the neutron-neutron scattering length as . In the regime
where as � −19 fm is large compared to the interparticle
separation, 1 � |kF as | (with kF the Fermi momentum),
a perturbative approach to neutron matter is not reliable.
The model-independent virial equation of state (VEoS)
computed by Horowitz and Schwenk in Ref. [55] from
neutron-neutron scattering phase shifts provides a benchmark

for perturbative calculations of low-density neutron matter
at nonzero temperature. In the virial expansion, the grand
canonical expressions for the pressure and the density are
expanded in powers of the fugacity z = exp(μ/T ), leading to

P (T ,z,δ = 1) = 2T

λ3
(z + z2b2(T ) + O(z3)),

ρ(T ,z,δ = 1) = 2

λ3
(z + 2z2b2(T ) + O(z3)), (6)

where μ is the chemical potential, and λ = √
(2π )/(MT ) is

the neutron thermal wavelength. The second virial coefficient
is given by

b2(T ) = 1

21/2πT

∫ ∞

0
dE exp[−E/(2T )] δtot(E) − 2−5/2, (7)

where δtot(E) is the sum of the isospin-triplet elastic scattering
phase shifts at laboratory energy E. From the pressure and
density as functions of the fugacity the free energy per particle
F̄ , entropy per particle S̄, and internal energy per particle
Ē follow again from standard thermodynamic relations (see
Ref. [55] for details). The results for these quantities are shown
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FIG. 3. (Color online) Interaction contribution to the internal
energy per particle, Ēint(ρ,T ,δ = 1), in pure neutron matter at
T = 10 MeV and low densities. The different lines correspond to
the results from microscopic chiral nuclear interactions at first order
(labeled “HF”) and second order in Eq. (3) as well as the virial
expansion truncated at second order (VEoS) and with uncertainty
bands obtained by estimating the third-order term. The n3lo414 and
n3lo450 results are almost identical.

as green dashed lines in Fig. 2.3 One sees that in the case of
F̄ , P , and S̄ there are almost no visible deviations between
the VEoS and the perturbative results. This seemingly perfect
agreement is however misleading, because the discrepancies
corresponding to the different treatment of the interactions
in the virial and the perturbative approach are overpowered
by the large size of the (nonrelativistic) free Fermi gas
contribution. The deviations are more transparent in the case
of the internal energy per particle due to cancellations of the
free Fermi gas terms in the free energy and entropy. The virial
and perturbative results are closer at larger temperatures,
since the EoS is less sensitive to the physics of large scattering
lengths at higher momentum scales.

The differences between the virial and the perturbative
results for the internal energy per particle are examined
more closely in Fig. 3 for T = 10 MeV. To depict the
deviations more clearly we have subtracted the noninteracting
contributions, i.e., the quantity shown is Ēint = Ē − Ē0 − Ērel.
The virial results include uncertainty bands obtained from
estimating the neglected third virial coefficient as |b3(T )| �
|b2(T )|/2. We also show the perturbative results at the
Hartree-Fock level [first order in Eq. (3)]. One sees that
compared to the Hartree-Fock results the inclusion of second-
order contributions leads to much closer agreement with the
virial expansion. The second-order calculation still slightly

3Note that we have added the relativistic correction term to the
VEoS lines. In particular, the zero-density limit of the internal

energy per particle is given by Ē(T ,ρ,δ)
ρ→0−−→ Ē0(T ,ρ,δ) |ρ→0 +

Ērel(T ,ρ,δ) |ρ→0 = 3T/2 + 15T 2/(8M). This agrees with the expan-
sion in powers of T of the internal energy per particle of a relativistic
classical ideal gas, Ēclassical = 3T + MK1(M/T )/K2(M/T ) [where
K1,2(M/T ) are modified Bessel functions].
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FIG. 4. (Color online) Energy per particle in pure neutron matter
at zero temperature, Ē(T = 0,ρ,δ = 1), obtained from various many-
body methods (see text for details). The inset magnifies the behavior at
very low densities where quantum Monte Carlo simulations, labeled
“QMC [AV18]”, are expected to be most accurate.

underpredicts the attractive interaction contributions, in con-
trast to the pseudopotential approach based on nucleon-
nucleon scattering phase shift data that was explored in
Ref. [56]. We conclude that while the perturbative approach
cannot fully capture the large scattering length physics of
low-density neutron matter, the resulting errors are reasonably
small when second-order contributions are included.

In recent years, the zero-temperature EoS of PNM from
chiral nuclear interactions has been studied by numerous au-
thors within various many-body frameworks [8,39,43,57–66].
We compare our results to results obtained from perturbative
calculations with various chiral interactions by the Darmstadt
group (red band in Fig. 8 in Ref. [57]) in Fig. 4. In addition to
the N2LO chiral three-neutron forces, their calculations also
include all N3LO three- and four-neutron interactions. The
uncertainty bands in their results were obtained by allowing
large variations of the low-energy constants parametrizing the
many-neutron forces. One sees that the (almost overlapping)
results from n3lo414 and n3lo450 lie within these bands.
In Fig. 4 we also show results obtained from auxiliary-field
quantum Monte Carlo simulations with chiral N3LO two-body
(AFQMC [NN]) and N3LO two-body plus N2LO three-body
forces (AFQMC [NN+3N]) by Wlazłowski et al. [58]. The
perturbative and the AFQMC results are very similar at
densities ρ � 0.006 fm−3, where both are in close agreement
with the (fixed-node) quantum Monte Carlo calculations
(based on the AV18 potential) of Gezerlis and Carlson [67].
However, at higher densities the EoS predicted by the AFQMC
calculations (with three-body forces included) is significantly
more repulsive. This discrepancy may be (partly) related to
systematic errors in the AFQMC treatment (cf. also Ref. [66]).

IV. SYMMETRY FREE ENERGY, ENTROPY,
AND INTERNAL ENERGY

From the results for the free energy per particle in homo-
geneous SNM and PNM the symmetry free energy F̄sym(T ,ρ)
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FIG. 5. (Color online) Left column: results for the symmetry free energy F̄sym(T ,ρ), the symmetry entropy times temperature T S̄sym(T ,ρ),
and the symmetry internal energy Ēsym(T ,ρ), plotted as functions of density. The insets show the noninteracting (free Fermi gas) contribution
to the different symmetry quantities. Right column: F̄sym(T ,ρ), T S̄sym(T ,ρ), and Ēsym(T ,ρ) as functions of temperature at different densities.
The lines are interpolated, with calculated data points at T/MeV = 0,3,5,8,10,12,15,20,25.

is obtained via Eq. (1). The symmetry entropy and internal
energy are related to the symmetry free energy via S̄sym =
−∂F̄sym/∂T and Ēsym = F̄sym + T S̄sym. The results for F̄sym,
T S̄sym and Ēsym are shown as functions of density at different
temperatures in the left column of Fig. 5. In the insets we show

the noninteracting contribution to these quantities, i.e.,

F̄nonint,sym(T ,ρ) = F̄0(T ,ρ,1) − F̄0(T ,ρ,0) + F̄rel(T ,ρ,1)

− F̄rel(T ,ρ,0), (8)

015801-6



THERMODYNAMICS OF ISOSPIN-ASYMMETRIC NUCLEAR . . . PHYSICAL REVIEW C 92, 015801 (2015)

 0

 5

 10

 15

 20

 25

 30

 0  5  10  15  20  25

F
in

t,s
ym

 [M
eV

]

T [MeV]

n3lo414
n3lo450

ρ=0.025 fm-3

ρ=0.05 fm-3

ρ=0.085 fm-3

ρ=0.12 fm-3

ρ=0.17 fm-3

ρ=0.22 fm-3

 0

 5

 10

 15

 20

 25

 30

 35

 0  5  10  15  20  25

E
in

t,s
ym

 [M
eV

]

T [MeV]

ρ=0.025 fm-3

ρ=0.05 fm-3

ρ=0.085 fm-3

ρ=0.12 fm-3

ρ=0.17 fm-3

ρ=0.22 fm-3

n3lo414
n3lo450

FIG. 6. (Color online) Temperature dependence of the interaction contributions to the symmetry free energy, F̄sym,int(T ,ρ), and the symmetry
internal energy, Ēsym,int(T ,ρ), at different densities. The lines are interpolated, with calculated data points at T/MeV = 0,3,5,8,10,12,15,20,25.

in the case of the symmetry free energy. In the right column
of Fig. 5 we show F̄sym(T ,ρ), T S̄sym(T ,ρ), and Ēsym(T ,ρ) as
functions of temperature at different densities.

One sees that in the considered range of densities and tem-
peratures, F̄sym is a monotonic increasing function of density
and temperature. The density and temperature dependence of
T S̄sym is more involved. At low densities T S̄sym decreases
monotonically with T , but for densities ρ � 0.2 fm−3 a local
minimum is found at T ∼ 10 MeV.4 The results from n3lo414
and n3lo450 are very similar for densities well below nuclear
saturation density, but at higher densities the dependence on the
resolution scale becomes significant. In particular, the decrease
in the slope of F̄sym with increasing density is more pronounced
in the n3lo450 results. The T dependence of T S̄sym(T ,ρ)
approximately balances that of F̄sym(T ,ρ), and as a result their
sum, the symmetry internal energy Ēsym increases with density
but varies only very little with temperature. At densities near
nuclear saturation density the deviations of Ēsym(T ,ρ � ρsat)
from its value at zero temperature are below 0.5 MeV.

In Fig. 6 we show the symmetry quantities with the
noninteracting contributions subtracted, i.e.,

F̄int,sym(T ,ρ) = F̄sym(T ,ρ) − F̄nonint,sym(T ,ρ), (9)

as functions of temperature at different densities. In both cases
the interaction contributions tend to counteract the temperature
dependence of noninteracting contributions; cf. the insets in
Fig. 5. In the case of F̄sym (and also T S̄sym) the noninteracting
contributions dominate, but in the case of Ēsym the size of the
noninteracting contributions and the ones from chiral nuclear
interactions is more balanced, and the T dependence of both
contributions approximately cancels each other, leading to the
observed approximate temperature independence at densities
near nuclear saturation density.

4We note that the temperature dependence of F̄sym and T S̄sym

approaches linear behavior in the limit of vanishing density,
F̄sym(T ,ρ →0) = −T S̄sym(T ,ρ →0) = T ln 2.

In Fig. 7 we compare our results for the symmetry (free)
energy at zero temperature to the results obtained by Drischler
et al. [14] from calculations of the EoS of neutron-rich matter
using several renormalization group–evolved chiral nuclear
interactions. For comparison we also show the results from
microscopic calculations within a variational approach by
Akmal et al. [68] based on the AV18 two-body and the Urbana
UIX three-body potential.5 While the results of Drischler et al.
are compatible with our results, the calculations by Akmal
et al. predict a symmetry energy that deviates visibly from the
n3lo414 and n3lo450 results. In Fig. 7 we also show recent

5The results by Akmal et al. include relativistic boost corrections as
well as an artificial correction term added to reproduce the empirical
saturation point of SNM (“corrected” in Table VI and “A18 + δv +
UIX*” in Table VII in Ref. [68]).
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FIG. 7. (Color online) Symmetry (free) energy as a function of
density at zero temperature, F̄sym(T = 0,ρ). The results from the
chiral nuclear interactions n3lo414 and n3lo450 are compared to
those of Drischler et al. [14] and Akmal et al. [68]. Also shown are
empirical constraints from the analysis of isobaric analog states and
neutron skins (IAS+NS).
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TABLE II. Value of the (zero-temperature) symmetry energy
at saturation density J , the slope parameter L, and the isobaric
incompressibility Kτ , extracted from the results obtained from the
sets of chiral nuclear two- and three-body interactions n3lo414 and
n3lo450.

J (MeV) L (MeV) Kτ (MeV)

n3lo414 32.51 53.8 −424
n3lo450 31.20 48.2 −434

empirical constraints obtained from the analysis of isobaric
analog states and neutron skins (IAS+NS) [69]. One sees that
the n3lo414 and n3lo450 results lie in the IAS+NS bands in
the entire constrained density region 0.04 � ρ/fm−3 � 0.16.

For densities close to nuclear saturation density the sym-
metry (free) energy at zero temperature is usually expanded
around J = F̄sym(T = 0,ρsat) in terms of x = (ρ/ρsat − 1)/3:

F̄sym(T = 0,ρ) = J + Lx + 1
2Ksymx2 + O(x3), (10)

where L = ∂F̄sym(T = 0,ρ)/∂ρ |ρ=ρsat is called the slope
parameter, and Ksym = ∂2F̄sym(T = 0,ρ)/∂ρ2 |ρ=ρsat the sym-
metry incompressibility. The density where the ground state
energy per particle in isospin-asymmetric nuclear matter has
a local minimum is related to the parameters in the above
expansion via ρsat(δ) � ρsat[1 − 3Lδ2/K] (cf. Ref. [70]).6 The
corresponding incompressibility K(δ) obeys the approximate
relation

K(δ) � K + Kτ δ2, Kτ = Ksym − 6L, (11)

where Kτ is usually called the isobaric incompressibility.
In recent years, much effort has been invested in deter-
mining the parameters in Eq. (10). The empirical values
of J = 29.0–32.7 MeV and to a lesser degree also L =
40.5–61.9 MeV are relatively well constrained (values from
[71]; see also [8,59,72–74]), whereas experimental determi-
nations of Kτ suffer from large uncertainties. For instance,
from measurements of neutron skin thicknesses [75] the value
Kτ = −500+125

−100 MeV was obtained, which is compatible with
the giant monopole resonance measured in Sn isotopes [76]
giving Kτ = −550 ± 100 MeV. Theoretical studies using a
selection of Skyrme interactions however led to an estimate of
Kτ = −370 ± 120 MeV [70].7 Our results for J , L, and Kτ

are given in Table II. They are in agreement with the mentioned
constraints.

V. THERMODYNAMICS OF ISOSPIN-ASYMMETRIC
NUCLEAR MATTER

In this section we examine the thermodynamic equation of
state of isospin-asymmetric nuclear matter (ANM). The free

6The densities ρsat(δ) correspond to stable self-bound states only
for isospin asymmetries up to the neutron drip point, δ � δND; cf.
Secs. V C and V D.

7However, in each case a slightly different definition of Kτ is used,
with the differences corresponding to higher-order terms in Eq. (11)
and finite-size effects [70].

energy per particle in homogeneous ANM is calculated as
follows. The dependence of the nonrelativistic free Fermi gas
contributions on the isospin asymmetry δ is treated exactly,
while the relativistic correction term and the interaction
contributions are assumed to have a quadratic dependence on
the isospin asymmetry:

F̄ (T ,ρ,δ) � F̄0(T ,ρ,δ) + F̄rel(T ,ρ,0) + F̄sym,rel(T ,ρ) δ2

+ F̄int(T ,ρ,0) + F̄sym,int(T ,ρ) δ2. (12)

This approach is motivated in Sec. V A, where we investigate
in detail the dependence on isospin asymmetry of the nonin-
teracting contributions F̄0(T ,ρ,δ) and F̄rel(T ,ρ,δ).

In Sec. V B we then discuss the construction of the spinodal
in ANM and present our results for the trajectory of the
critical temperature. The dependence of the neutron and proton
chemical potentials on isospin asymmetry is examined in Sec.
V C, and we determine the neutron drip point in cold nuclear
matter. Finally, in Sec. V D we show results for the free energy
per particle and pressure in isospin-asymmetric nuclear matter
and determine the values of T and δ where an isolated drop of
liquid nuclear matter becomes unstable.

A. Isospin dependence of free nucleon gas

Here we examine the δ dependence of the noninteracting
contributions to the free energy per particle in homogeneous
ANM.8 We compute the four leading terms in an expansion of
F̄0(T ,ρ,δ) and F̄rel(T ,ρ,δ) in powers of δ2. The results show
that the accuracy of the quadratic approximation for F̄0(T ,ρ,δ)
decreases significantly with increasing temperature, which
necessitates the exact calculation of this contribution. The
relativistic correction term on the other hand can be safely ap-
proximated via F̄rel(T ,ρ,δ) � F̄rel(T ,ρ,0) + F̄sym,rel(T ,ρ) δ2.

The noninteracting contributions to the free energy density,
F0 = F n

0 + F
p
0 and Frel = F n

rel + F
p
rel, can be expressed in

terms of polylogarithms Liν(x) = ∑∞
k=1 k−νxk , i.e.,

F
n/p
0

(
T ,μ

n/p
0

) = −αT 5/2(ln(−xn/p)Li3/2(xn/p) − Li5/2(xn/p)),

(13)

F
n/p
rel

(
T ,μ

n/p
0

) = 15αT 7/2

8M
Li7/2(xn/p), (14)

where μ
n/p
0 are the neutron and proton effective one-

body chemical potentials, xn/p = − exp(μn/p
0 /T ) and α =

2−1/2(M/π )3/2. For given values of T , ρ and δ the effective

8As noted in Sec. I, in initial calculations we have found that
at the densities and temperatures relevant for the liquid-gas phase
transition the interaction contributions give rise to comparatively
weaker terms with quartic and higher powers in δ. The contributions
from two-nucleon interactions F̄1,NN and F̄2,NN (which give the
dominant contribution to F̄int at subnuclear densities) were found
to be quadratic in δ to high accuracy. In the case of F̄1,3N we have
found that higher-order terms in δ are more sizable, but still small
compared to those that emerge from F̄0 (at finite T ). Future research
will quantify the isospin-asymmetry dependence of the interaction
contributions in more detail.
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FIG. 8. (Color online) Temperature dependence of the first weight factor βnonint,2 and the ratios βnonint,2n/βnonint,2(n+1) for n = 1,2,3 at
different densities, corresponding to the expansion of F̄nonint(T ,ρ,δ) in powers of δ2. The full lines show the results with the relativistic
correction term included, the dotted lines the nonrelativistic results. Note that the deviations between the relativistically improved and the
nonrelativistic results decrease with increasing values of n, indicating the opposite convergence behavior of the expansion in powers of δ2 of
F̄0 and F̄rel, respectively.

one-body chemical potentials μ
n/p
0 are uniquely determined by

ρn/p = −αT 3/2Li3/2(xn/p).
The noninteracting contribution to the free energy per

particle, F̄nonint = (F0 + Frel)/(ρn + ρp), as a function of tem-
perature T , nucleon density ρ, and isospin asymmetry δ can be
expanded9 in powers of δ2 around its value in SNM (δ = 0):

F̄nonint(T ,ρ,δ) = F̄nonint(T ,ρ,0) +
∞∑

n=1

B̄nonint,2n(T ,ρ)δ2n. (15)

The various expansion coefficients B̄nonint,2n are given by

B̄nonint,2n(T ,ρ) = 1

(2n)!

∂2nF̄nonint(T ,ρ,δ)

∂δ2n

∣∣∣∣
δ=0

. (16)

9Odd-order terms in δ in the expansion of F̄nonint arise only from
the neutron-proton mass difference �M � 1.4 × 10−3M , which we
neglect in this work.

Setting δ = 1 in Eq. (15) we obtain the noninteracting
symmetry free energy as the sum of the above coefficients, i.e.,

F̄nonint,sym(T ,ρ) =
∞∑

n=1

B̄nonint,2n(T ,ρ)

= F̄nonint,sym(T ,ρ)
∞∑

n=1

βnonint,2n(T ,ρ). (17)

Here, we have introduced the weight factors βnonint,2n =
B̄nonint,2n/F̄nonint,sym as a means to specify the relative size of
the different expansion coefficients.

The rules of multivariable calculus lead to the following
expression for the δ derivative of order n of F

n/p
i , i ∈ {0,rel},

at fixed density and temperature:

(
∂nF

n/p
i

∂δn

)
T ,ρ

= − (±1)n αT 5/2(n − 1)!

(1 ± δ)n
Y (n)

i (xn/p). (18)
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FIG. 9. (Color online) Temperature dependence of the first weight factor αnonint,2 and the ratio αnonint,2/αnonint,4, corresponding to the
expansion in powers of δ2 of the noninteracting contributions to the internal energy per particle, Ē0 and Ērel. Note the logarithmic scale in the
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where the functions Y (n)
i are defined recursively as

Y (n)
i (xn/p) = xn/p

max(n − 1,1)

Li3/2(xn/p)

Li1/2(xn/p)

∂

∂xn/p
Y (n−1)

i (xn/p)

− (1 − δn,1) Y (n−1)
i (xn/p), n � 1, (19)

with δk,l the Kronecker delta. The expressions to start the
recursion are

Y (0)
0 (xn/p) = ln(−xn/p) Li3/2(xn/p) − Li5/2(xn/p),

Y (0)
rel (xn/p) = − 15T

8M
Li7/2(xn/p). (20)

One then obtains for B̄nonint,2n the expression

B̄nonint,2n(T ,x) = T

2n Li3/2(x)

(
Y (2n)

0 (x) + Y (2n)
rel (x)

)
, (21)

where x = − exp(μ0/T ), with μ0 the nucleon effective one-
body chemical potential, which is uniquely determined by
ρ = −2αT 3/2Li3/2(x).

The results for the first weight factor βnonint,2 =
B̄nonint,2/F̄nonint,sym and the ratios βnonint,2n/βnonint,2(n+1) for
n = 1,2,3 are displayed in Fig. 8. Note that the limits ρ → 0
and T → 0 do not commute. The ρ → 0 limit of the symmetry
coefficients at finite temperature is given by

B̄nonint,2n(T 	= 0,ρ → 0)

= T

(2n)!

∂2n

∂δ2n
((1 + δ) ln(1 + δ) + (1 − δ) ln(1 − δ))|δ=0

= T

n(2n − 1)
, (22)

which comes entirely from the logarithmic terms,
∼ ln(−xn/p) = μ

n/p
0 /T , in the expression for F̄0 = (F n

0 +
F

p
0 )/(ρn + ρp). The asymptotic behavior of the weight factors

βnonint,2n for T → ∞ is determined by the fact that the
ρ → 0 and T → ∞ limits of βnonint,2n = B̄nonint,2n/F̄nonint,sym

coincide.10 As apparent from Fig. 8, the asymptotic behavior
sets in at relatively low values of T , causing the conver-
gence rate of the quadratic expansion of F̄nonint to decrease
significantly with increasing temperature. This behavior is
entirely caused by the presence of the logarithmic terms in the
nonrelativistic contribution, i.e., by the first term proportional
to the sum of the effective one-body chemical potentials,
∼μn

0 + μ
p
0. The ρ → 0 limit of the second term in F̄0

proportional to [Li5/2(xn) + Li5/2(xp)]/[Li3/2(xn) + Li3/2(xp)]
equals −T , which is independent of δ; the convergence rate of
the expansion in powers of δ2 of this term alone increases
very strongly with increasing temperature. Similarly, the
ρ → 0 limit of F̄rel equals −15T 5/2/(8M), and the quadratic
approximation of the relativistic correction term becomes
increasingly accurate with increasing temperature.

For comparison, in Fig. 9 we show the results for the weight
factors αnonint,2n in the analogous expansion in powers of δ2

of the noninteracting contributions to the internal energy per
particle, Ē0 and Ērel. The noninteracting contributions to the
neutron and proton internal energy densities are given by

E
n/p
0

(
T ,μ

n/p
0

) = −3αT 5/2

2
Li5/2(xn/p), (23)

E
n/p
rel

(
T ,μ

n/p
0

) = −75αT 7/2

16M
Li7/2(xn/p)

+ 45αT 7/2

16M

Li5/2(xn/p) Li3/2(xn/p)

Li1/2(xn/p)
. (24)

Both Ē0 → 3T/2 and Ērel → 15T 2/(2M) become indepen-
dent of δ as ρ → 0, and the convergence rate of the expansion
of both terms increases strongly with increasing temperature
(the increase is significantly more pronounced in the case of
Ē0, which is reflected in the increase of the deviations between

10This follows from the fact that xn/p → 0 in both the ρ → 0 and
the T → ∞ limit.

015801-10



THERMODYNAMICS OF ISOSPIN-ASYMMETRIC NUCLEAR . . . PHYSICAL REVIEW C 92, 015801 (2015)

relativistically improved and the nonrelativistic results with
increasing values of n).

B. Spinodal and critical temperature

The onset of spinodal instability is associated with the
violation of a number of equivalent stability criteria [77,78],
which are derived from the fundamental principle of maximum
entropy. In the canonical representation the corresponding
stability requirement is that the free energy density F = ρF̄
at fixed temperature T is a convex function of the component
densities ρ1 and ρ2, implying that the Hessian matrix Fij has
no negative eigenvalues. In the unstable region delineated by
the spinodal the (analytical) free energy density is concave;
in the metastable region between the spinodal and binodal
(coexistence boundary) the free energy density is locally
convex and the system is protected against phase separation
by a nucleation barrier. The Hessian matrix Fij is given by

Fij (T ,ρ1,ρ2) =
[
∂2F (T ,ρ1,ρ2)

∂ρi∂ρj

]

=
[
∂μi(T ,ρ1,ρ2)

∂ρj

]
, i,j ∈ {1,2}. (25)

Its eigenvalues are given by

ξ±(T ,ρ1,ρ2) = 1

2
[tr[Fij ] ± (tr[Fij ]2 − 4det[Fij ])1/2]

= 1

2

[F11 + F22 ± (
(F11 − F22)2 + 4F2

12

)1/2]
.

(26)

The signs of the eigenvalues are invariant under (lin-
ear) basis transformations. From the data F (T ,ρ,δ) they
are readily evaluated using as independent density pa-
rameters ρ1 = ρn + ρp = ρ (nucleon density) and ρ2 =
ρn − ρp = ρ δ (isospin asymmetry density). In this ba-
sis the Hessian matrix becomes diagonal at δ = 0
with eigenvalues ξ+ = (∂2F/∂ρ2

2 )T ,ρ1 |ρ2=0 > 0 and ξ− =
(∂2F/∂ρ2

1 )T ,ρ2 |ρ2=0 = ρ−1(∂P/∂ρ)T ,δ|δ=0 (this result depends
on the neglect of isospin-symmetry breaking effects). Hence,
in SNM the region inside the spinodal corresponds to a neg-
ative isothermal compressibility κT = ρ−1(∂ρ/∂P )T ,δ , where
κ−1

T > 0 is a stability criterion for a pure substance.
The exact expressions for the nonrelativistic free Fermi gas

contribution to the Hessian matrix components are given by11

F0,11
(
T ,μn

0,μ
p
0

) = −T −1/2

4α

(
1

Li1/2(xn)
+ 1

Li1/2(xp)

)

= F0,22
(
T ,μn

0,μ
p
0

)
, (27)

F0,12
(
T ,μn

0,μ
p
0

) = −T −1/2

4α

(
1

Li1/2(xn)
− 1

Li1/2(xp)

)
, (28)

where again xn/p = − exp(μn/p
0 /T ) and α = 2−1/2(M/π )3/2.

In the limit δ → 1 the proton density vanishes, ρp → 0, and

11Note that F0,11 = F0,22, but Fint,11 	= Fint,22.
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FIG. 10. (Color online) Trajectories of the critical temperature
Tc(δ) determined from n3lo450 and n3lo414. The trajectories end
at δ � 0.9994. Also shown are the trajectories of the temperatures
TκT

(δ) where the region with negative isothermal compressibility κT

vanishes. The calculated data points are shown explicitly.

the proton effective one-body chemical potential diverges (at
finite T ), μ

p
0 → −∞, thus Li1/2(xp) → 0. Hence, the exact

calculation of the nonrelativistic free Fermi gas contribution
F0(T ,ρ,δ) leads to divergent behavior of the Hessian compo-
nents in the limit of vanishing proton concentration. The same
divergent behavior is obtained in the exact calculation of F0,ij

at zero temperature. The unstable region then vanishes at a
value δ < 1 for all values of T . This constraint is lost if the
free Fermi gas contribution is approximated by truncating the
expansion in powers of δ2 of F0(T ,ρ,δ) at a finite order, e.g.,
at first order as in the usual quadratic isospin approximation.

The evolution of the critical temperature Tc(δ) where (for
a given value of δ) the unstable concave region vanishes is
depicted in Fig. 10. The results from n3lo414 and n3lo450 are
very similar; in both cases the critical lines end approximately
at an isospin asymmetry δend

c � 0.9994 or a proton concen-
tration Y end

p,c � 3 × 10−4. The value δend
c � 0.9994 exceeds

the critical line endpoints obtained in Refs. [15,79,80] using
different phenomenological models. We note that in nuclear
matter with δ 	= 0 the coexistence region does not vanish at the
critical temperature Tc(δ) but at a higher temperature Tmax(δ),
the so-called maximum temperature [15,16]. The existence
of a neutron drip point (see Sec. V C) entails that at zero
temperature the binodal extends to δ = 1 over a finite region
of densities or pressures. The trajectory of the maximum
temperatures therefore reaches its zero-temperature endpoint
at vanishing proton fraction Y end

p,max = 0.
For comparison, in Fig. 10 we also show the trajectory of the

temperature TκT
(δ) where the region with negative isothermal

compressibility κT vanishes at fixed δ. The exact expression
for the nonrelativistic free Fermi gas contribution to κ−1

T is
given by

κ−1
T ,0 = − αT 5/2

4
(Li3/2(xn) + Li3/2(xp))2

×
(

(1 + δ)2

Li1/2(xn)
+ (1 − δ)2

Li1/2(xp)

)
. (29)
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FIG. 11. (Color online) Neutron and proton chemical potentials, μn(T ,ρ,δ) and μp(T ,ρ,δ), in (homogeneous) isospin-asymmetric nuclear
matter at temperatures T/MeV = 0,15, calculated using n3lo414 (solid lines) and n3lo450 (dash-dot lines). Stable self-bound states are shown
as thick bright red lines with circles (full circles for n3lo414, open circles for n3lo450); the lines end at the neutron drip point δND � 0.30.

For both n3lo414 and n3lo450 the TκT
(δ) trajectories end at

approximately δend
κT

� 0.82 or Y end
p,κT

� 0.09, which exceeds the
values Y end

p,κT
� 0.053 from Ref. [81] obtained in an in-medium

chiral perturbation approach and Y end
p,κT

� 0.045 from Ref. [82]
obtained by applying the functional renormalization group to
a chiral nucleon-meson model.

C. Stable self-bound liquid

From the data F (T ,ρ,δ) the neutron and proton chemical
potentials are obtained via

μn/p(T ,ρ,δ) = ∂F (T ,ρ,δ)

∂ρ
± 1 ∓ δ

ρ

∂F (T ,ρ,δ)

∂δ
. (30)

The results for μn(T ,ρ,δ) and μp(T ,ρ,δ) are displayed in
Fig. 11 for temperatures T/MeV = 0,15. One sees that
μn(T ,ρ,δ) increases and μp(T ,ρ,δ) decreases with δ. The
chemical potentials at finite T diverge as ρ → 0, but at
zero temperature μn/p → 0 for ρ → 0. The origin of this
feature is the collapse of Fermi-Dirac distribution functions
into Heaviside step functions at T = 0, which eliminates

the logarithmic divergence of the free energy per particle at
vanishing density [12,15].

The Gibbs conditions for the coexistence of two bulk
phases I (liquid) and II (gas) in mutual thermodynamic
equilibrium are

T I = T II, P I = P II, μI
n = μII

n , μI
p = μII

p . (31)

Whereas at finite T liquid-gas equilibrium corresponds to finite
values of density and isospin asymmetry in both phases, the
vanishing of μn/p(T = 0,ρ,δ) at vanishing density entails that
at T = 0 the Gibbs conditions for the neutron and proton
chemical potentials can in most cases not be satisfied, leading
to a gas phase that is either empty (vacuum) or contains only
neutrons [15,83]. The neutron drip point, δND, is given by the
value of δ where the neutron chemical potential at vanish-
ing temperature and pressure becomes positive. For isospin
asymmetries δ � δND an isolated drop of cold liquid nuclear
matter is stable (in equilibrium with the vacuum), defining a
stable self-bound state. As seen from Fig. 11, in our equation
of state neutron drip occurs at an isospin asymmetry δND �
0.30 or a proton concentration Yp,ND = (1 − δND)/2 � 0.35,
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which is similar to results obtained with effective Skyrme
interactions [83,84].

D. Metastable self-bound liquid

The zero-temperature results for the (ground state) energy
per particle Ē = F̄ and the pressure P = ρ2∂F̄ /∂ρ are
displayed in Fig. 12 as functions of the nucleon density ρ
for different values of δ. The trajectory of the points where
the energy per particle has a local minimum and the pressure
is zero is shown explicitly. These points correspond to the
properties of a drop of cold liquid nuclear matter surrounded
by vacuum. For δ � δND � 0.30 the cold drop is stable (the
local energy minimum lies on the binodal, cf. Sec. V C),
and for δND < δ < δFP � 0.66 the local energy minimum
lies in the metastable region between the binodal and the
spinodal. We refer to the point δFP � 0.66 where the trajectory
of the local energy minima encounters the spinodal as the
fragmentation point (FP). The energy per particle at neutron
drip and at the fragmentation point is ĒND � −13.0 MeV and
EFP � −3.1 MeV, respectively. For comparison we follow the
local energy minima also into the unstable spinodal region;
i.e., we show also the point where both derivatives of the
(analytical) energy per particle vanish (saddle point, SP) at
δSP � 0.81 as well as the local energy minimum at δ � 0.76.
For δ � 0.76 the energy per particle is positive at all (finite)
densities, and for δ � δSP the pressure is a semipositive definite
function of density.

The finite-temperature results for the free energy per
particle F̄ (T ,ρ,δ) and the pressure P (T ,ρ,δ) are shown in
Fig. 13 for temperatures T/MeV = 5,15. At finite T the
trajectories of the local free energy minima lie entirely in
the metastable region; an isolated drop of hot liquid nuclear
matter has to be stabilized by a surrounding nucleon gas.
At T = 5 MeV the trajectory ends at δFP � 0.61, defining
the fragmentation temperature for nuclear matter with proton
concentration Yp � 0.195. The T = 5 MeV saddle point is
located at δSP � 0.68 for n3lo414 and δSP � 0.69 for n3lo450.

For T = 15 MeV no local free energy minimum exists; for
T � 13.5 MeV the analytical free energy per particle is a
monotonic increasing function of density for all values of δ
(cf. Fig. 15).

The relation between the spinodal, the binodal, and the
trajectories of the local free energy minima is illustrated
in Fig. 14. The two plots in Fig. 14 represent isoplethal
(δ = const) and isothermal cross sections of the respective
surfaces (spinodal, binodal, surface of local free energy
minima) in (T ,ρ,δ) space (cf. also Refs. [15,17]). In the
second plot we also show the surface with divergent isothermal
compressibility κT = ρ−1(∂ρ/∂P )T ,δ , which corresponds to
the violation of the stability criterion κ−1

T > 0 for a one-
component system. Hence, the saddle point (SP) where both

 0
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FIG. 15. (Color online) Trajectory of the fragmentation temper-
ature TFP(δ) above which no metastable self-bound state can exist
(lower red line). For comparison we also show the trajectory of the
points where the (analytical) free energy per particle has a saddle
point, TSP(δ) (upper blue line). The calculated data points are shown
explicitly.
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derivatives of the free energy per particle with respect to
the nucleon density vanish coincides with the fragmentation
point (FP) where a liquid drop becomes unstable only for
δ = 0 where nuclear matter behaves like a pure substance. For
δ 	= 0 the more restrictive two-component stability criteria are
needed [77] (κ−1

T > 0 is not a relevant stability criterion in that
case) and the SP is located in the interior of the spinodal.

Finally, in Fig. 15 the trajectory of the fragmentation
temperatures TFP(δ) is shown [for comparison we also show the
saddle point temperatures TSP(δ)]. This trajectory determines
the range of temperatures and isospin asymmetries for which
a self-bound liquid state exists.

VI. SUMMARY

In this work, we have investigated in detail the
temperature and density dependence of the symmetry
free energy F̄sym(T ,ρ) = F̄ (T ,ρ,δ = 1) − F̄ (T ,ρ,δ = 0) in
homogeneous nuclear matter using chiral effective field
theory interactions constructed at resolution scales � =
414,450 MeV. The free energy per particle of isospin-
symmetric nuclear matter, F̄ (T ,ρ,δ = 0), and of pure neutron
matter, F̄ (T ,ρ,δ = 1), have been calculated in second-order
many-body perturbation theory (Kohn-Luttinger-Ward for-
malism). Constraints from the nuclear saturation point, the
critical point of the liquid-gas phase transition, and the density
dependence of F̄sym at zero temperature are reproduced,
and our results are in reasonable agreement with the virial
expansion of the neutron matter equation of state at low
fugacities.

The four leading coefficients in an expansion of the
noninteracting contributions F̄0 and F̄rel in terms of δ2 have
been examined, and we have found that the convergence rate of
the expansion of F̄0 decreases significantly with temperature.
Therefore we have used the exact expressions for F̄0 in
computing the free energy per particle F̄ (T ,ρ,δ) in isospin-
asymmetric nuclear matter. The many-body contributions from
nuclear interactions on the other hand have been assumed to
have a quadratic dependence on the isospin asymmetry δ.

From the results for F̄ (T ,ρ,δ) we have computed the
pressure P (T ,ρ,δ) and the neutron and proton chemical
potentials μn/p(T ,ρ,δ), and we have constructed the trajectory
of the critical temperature Tc(δ). The critical line ends at a
proton fraction Y end

p,c � 3 × 10−4. The neutron drip point in
infinite nuclear matter at zero temperature has been located at
Yp,ND � 0.35. Furthermore, we have determined the trajectory
of the fragmentation temperature TFP(δ) above which no
metastable self-bound state exists.

Future work will be aimed at improving the description of
the isospin-asymmetry dependence of the interaction contribu-
tions to the thermodynamic equation of state, a more detailed
treatment of the low-density region including Coulomb and
surface effects, and the extrapolation of the equation of state
to higher temperatures and densities required for simula-
tions of core-collapse supernovae and binary neutron star
mergers.
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