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Chiral mirror-baryon-meson model and nuclear matter beyond mean-field approximation
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We consider a chiral baryon-meson model for nucleons and their parity partners in mirror assignment interacting
with pions and sigma and omega mesons to describe the liquid-gas transition of nuclear matter together with
chiral symmetry restoration in the high density phase. Within the mean-field approximation the model is known
to provide a phenomenologically successful description of the nuclear-matter transition. Here, we go beyond this
approximation and include mesonic fluctuations by means of the functional renormalization group. While these
fluctuations do not lead to major qualitative changes in the phase diagram of the model, beyond the mean-field
approximation, one is no longer free to adjust the parameters so as to reproduce the binding energy per nucleon,
the nuclear saturation density, and the nucleon sigma term all at the same time. However, the prediction of a clear
first-order chiral transition at low temperatures inside the high baryon-density phase appears to be robust.
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I. INTRODUCTION

Relativistic heavy-ion collisions probe the state of strong-
interaction matter at finite temperature and finite baryon
density [1,2]. A particularly interesting region in the phase
diagram is that of large baryon densities. In this work
we concentrate on cold nuclear matter in the vicinity of the
liquid-gas transition. Unfortunately the sign problem in lattice
QCD prevents a straightforward investigation of this region of
the phase diagram through Monte Carlo simulations. Methods
to circumvent this problem are being actively developed.
For example, complex Langevin dynamics has recently been
successfully used for full QCD at finite density albeit on still
rather small lattices [3]. Strong-coupling techniques can either
be used together with hopping parameter expansions for very
heavy quarks [4,5] or to derive a graph representation valid
also for light quarks but without continuum limit [6,7]. More
direct evidence of a first-order transition analogous to that
of nuclear matter has so far only been seen in G2-QCD at
finite density, a QCD-like theory with fermionic baryons but
without the sign problem, which can therefore be simulated
with standard lattice techniques [8,9].

Meanwhile, effective models such as the Walecka
model [10–12] have been used since the 1970s and are
still being used to describe the properties of nuclear matter
in the low temperature region of the QCD phase diagram
around the liquid-gas transition. In its simplest form the
Walecka model consists of a single nucleon field coupled to a
neutral scalar field and a neutral vector meson field. In the
mean-field approximation this model shows nuclear-matter
saturation, when adjusting the model parameters to realize
the nuclear-matter binding energy Eb � 16 MeV per nucleon
together with a saturation density of n0 = 0.16 fm−3. On the
other hand neutron matter remains unbound in the Walecka
model. In the chiral Walecka model the fundamental degrees
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of freedom are nucleons coupled to the scalar-pseudoscalar
sector in a chirally invariant way as well as to a neutral vector
meson. Early on, however, it was noticed that on the mean-field
level the chiral Walecka model leads to massless Lee-Wick
matter, with massless baryonic degrees of freedom in the chi-
rally restored phase. Nevertheless, using a phenomenological
parametrization of the effective action at zero-temperature
and density as the input, it has recently received renewed
interest. This is because it then proved to be very useful
for the investigation of nuclear and neutron matter at small
temperatures both in the mean-field approximation [13] and
beyond [14–16].

The difficulties with the chiral Walecka model at zero
temperature are related to the way the nucleon mass is
generated in this model: predominantly by dynamical chiral
symmetry breaking as in quark-meson-models. Unlike con-
stituent quarks, however, the nucleons are not expected to
become massless when chiral symmetry gets restored. This
is in fact supported by lattice studies in which the effects of
chiral symmetry restoration have been studied by removing
low-lying Dirac modes in valence quark propagators [17–19].
An alternative model to reflect the fact that the nucleon
mass stays finite when chiral symmetry gets restored, as
expected with increasing baryon chemical potential beyond the
nuclear-matter transition, must therefore include the nucleons’
parity partners [20,21], conventionally identified either with
the N (1535) or the heavier N (1650).1 Such models are called
parity-doublet or mirror models [23–25].

Parity-doublet models have provided very promising results
already at tree level and in mean-field (MF) approaches
[26–37]. This was the primary motivation to examine the
effects of including mesonic fluctuations in such a model
which is done here using the functional renormalization group
(FRG). The paper is organized as follows: In Sec. II we
review the mirror assignment, the parity-doublet model, and

1Here we use the N (1535) but for the purpose of our present study
one might as well use the N (1640) with very minor changes. For a
recent discussion of both assignments see, e.g., [22].
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the role of bosonic and fermionic fluctuations in this model. In
Sec. III we describe our results in the different approximation
schemes at first vanishing temperature, and finally also at finite
temperature before we summarize and conclude in Sec. IV.

II. PARITY-DOUBLET MODEL AND THE NUCLEAR
MATTER TRANSITION

A. Mirror assignment and chirally invariant mass

First recall the possible representations for baryons under
chiral SU (2)L × SU (2)R transformations by considering the
product of three ( 1

2 ,0) ⊕ (0, 1
2 ) quark representations where

one assigns, without loss, say the first label in the product
representations (m,n) to an irreducible representation of
SU (2)L and the second to one of SU (2)R , yielding [26]((

1
2 ,0

) ⊕ (
0, 1

2

)) ⊗ ((
1
2 ,0

) ⊕ (
0, 1

2

)) ⊗ ((
1
2 ,0

) ⊕ (
0, 1

2

))
= 5

((
1
2 ,0

) ⊕ (
0, 1

2

)) ⊕ 3
((

1, 1
2

) ⊕ (
1
2 ,1

))
⊕((

3
2 ,0

) ⊕ (
0, 3

2

))
. (1)

For the isodoublet of proton and neutron one thus of course
uses the same ( 1

2 ,0) ⊕ (0, 1
2 ) representation as for the quarks,

for left- and right-handed Dirac fermions ψl/r ≡ 1∓γ5

2 ψ , so
that the nucleon fields transform just like the pair of up and
down quark fields.

If one now considers two baryon species ψ1 and ψ2, both
in a ( 1

2 ,0) ⊕ (0, 1
2 ) representation, there are two possibilities:

Assigning the first label of the first species say to ψ1,l as before,
the first label of the second species can either refer to ψ2,l or
to ψ2,r . The first assignment, where both fermions transform
exactly in the same way, is called the naive assignment whereas
the second assignment, where the transformation properties
of the second left/right-handed fermion species under chiral
transformations are interchanged relative to the first, is referred
to as the mirror assignment. These two assignments are the
only possibilities in a two-baryon system, provided both
species belong to a ( 1

2 ,0) ⊕ (0, 1
2 ) representation. Explicitly,

they correspond to the transformation properties

ψ1,l → �Lψ1,l , ψ1,r → �Rψ1,r ,

ψ2,l → �Lψ2,l , ψ2,r → �Rψ2,r

(2)

for the naive assignment, and

ψ1,l → �Lψ1,l , ψ1,r → �Rψ1,r ,

ψ2,r → �Lψ2,r , ψ2,l → �Rψ2,l

(3)

for the mirror assignment, where �R,L ∈ SU (2)R,L.
Obviously, the generic kinetic term

Lkin =
∑
i=1,2

ψ̄i i /∂ψi (4)

is invariant under chiral transformations, irrespective of the
assignment. Conversely, for both assignments a conventional
Dirac-mass term

Lm = −mψ̄iψi (5)

explicitly breaks chiral symmetry in either case. Hence, it is
impossible to write down a chirally invariant mass term for a

single Dirac-fermion species. Interestingly, however, this is no
longer true for two fermion species in the mirror assignment.
In this case a mass term of the form

Lm,mirror = m0(ψ̄2ψ1 + ψ̄1ψ2)

= m0(ψ†
2rψ1l + ψ

†
1lψ2r + ψ

†
1rψ2l + ψ

†
2lψ1r ) (6)

remains invariant under the full chiral SU (Nf )L × SU (Nf )R .
In the naive assignment such a term would of course also
break chiral symmetry. The particularly appealing feature of
the mirror model thus is the possibility of having a chirally
invariant local mass term.

B. Construction of the parity-doublet model

The parity-doublet (or mirror) model consists of two species
of mirror-assigned baryons with a chirally invariant mass term
of the form of Eq. (6). Compared to the previous subsection
they are introduced as N1 ≡ ψ1 and N2 ≡ γ5ψ2 so that N2

has the opposite parity of N1 and the eigenvalues of the
mass matrix in the chiral limit are both m0, rather than
±m0 for that in Eq. (6); see [26]. Both baryon species are
coupled to the scalar/pseudoscalar meson sector 	φ = (σ,	π )
in an SO(4)-invariant way. The corresponding Euclidean
Lagrangian (including baryon chemical potential μB and a
vector coupling to the ω meson) then reads

L = N̄1(/∂ − μBγ0 + h1(σ + iγ5 	τ 	π ) + ihvγ
μωμ)N1

+ N̄2(/∂ − μBγ0 + h2(σ − iγ5 	τ 	π ) + ihvγ
μωμ)N2

+m0(N̄1γ5N2 − N̄2γ5N1) + Lmes. (7)

Note that the mirror baryon N2 transforms as N2 →
e−iθaγ 5T a

N2 under axial transformations whereas the original
baryon transforms as N1 → eiθaγ 5T a

N1, which requires oppo-
site signs in their Yukawa couplings to the pion. Furthermore,
we have assumed the same strength ihv for the Yukawa
coupling of both to the isoscalar vector meson which is
imaginary here, in order to describe a repulsive four-fermion
vector interaction. The mesonic part is given by

Lmes = 1
2∂μ

	φ∂μ 	φ + 1
4FμνF

μν + U (φ2,ω2) − cσ , (8)

where Fμν = ∂μων − ∂νωμ and the mesonic potential at tree-
level, i.e., in the microscopic bare action at the ultraviolet
cutoff scale , or in the mean-field approximation is of the
form

U (φ2,ω2) = −μ2

2
φ2 + λ

4
φ4 + λ6φ

6 + m2
ω

2
ω2, (9)

with φ2 = σ 2 + 	π2 and parameters μ2,λ,λ6. A nonvanishing
pion mass is taken into account by means of an explicit linear
breaking term cσ , i.e.,

VM = U (φ2,ω2) − cσ. (10)

The vector meson could in principle be consistently
included as a fluctuating field, for example in the Stueckelberg
formalism [38,39], but with mω = 782 MeV its mass is
comparatively large so that it will not have much of an impact
as a fluctuating meson field in loops. Instead, we therefore
simply evaluate its expectation value on a given solution
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for the effective potential in a mean-field treatment in the
following. Due to the repulsive nature of the vector interaction,
this expectation value will be purely imaginary corresponding
to a stationary phase approximation for complex saddle
points.

Rewriting the Lagrangian in momentum space we find

L = �̄S−1
0 � + Lmes, (11)

where � = (N1
N2

) and

S−1
0 =

(−i /p + h1(σ + iγ5 	π 	τ ) + ihv /ω − μBγ 0 m0γ5

−m0γ5 −i /p + h2(σ − iγ5 	π 	τ ) + ihv /ω − μBγ 0

)
. (12)

C. Fermionic and bosonic fluctuations in the
parity-doublet model

In the mean-field approximation the inverse baryon propa-
gator is given by

S−1
0 =

(−i /p + h1σ − μ̃B m0γ5

−m0γ5 −i /p + h2σ − μ̃B

)
, (13)

where μ̃B = μB − ihvω0 is the baryon chemical potential
shifted by a potentially nonzero value of the zero component of
the ω-meson field, with �μB = ihvω0 � 0, in the rest frame of
an isotropic thermal medium in which the expectation values
of the spatial components vanish. The determinant required
for the computation of the grand potential is given by

det γ0S
−1
0 ≡ ((p0 − iμ̃B)4 + αp (p0 − iμ̃B)2 + βp)2, (14)

where

αp = 2m2
0 + 2 	p 2 + h2

1σ
2 + h2

2σ
2,

βp = α2
p

4
− 1

4
(h1 − h2)2σ 2[4m2

0 + (h1 + h2)2σ 2]. (15)

Its zeros m± = ip0 (at vanishing 3-momentum 	p = 0 and
chemical potential μ̃B = 0) define the mean-field baryon
masses, which are given by

m± = 1
2

( ± (h1 − h2)σ +
√

4m2
0 + (h1 + h2)2σ 2

)
. (16)

In particular, in the chirally symmetric case for σ = 0 the
baryons become degenerate with mass m0 again. Evaluating
the mean-field grand potential for a sharp momentum cutoff
leads to

� = �q + VM = −T
∑
p0

∫
d3p

(2π )3
Tr ln S−1

0 + VM (17)

with

�q = −2Nf

∑
±

∫
d3p

(2π )3
ln

[
cosh

(
ε±
p + μ̃B

2T

)]

= −2Nf

∑
±

∫
d3p

(2π )3

[ |ε±
p + μ̃B |

2
+ |ε±

p − μ̃B |
2

+T ln
(
1 + e− |ε±p +μ̃B |

T

)+ T ln
(
1 + e− |ε±p −μ̃B |

T

)]
, (18)

where we have introduced single-quasiparticle energies

ε±
p =

√√√√αp

2
±

√
α2

p

4
− βp . (19)

For m0 = 0 one simply has ε±
p =

√
	p 2 + m2

±. The expression
for the fermionic part of the grand potential then reduces to a
sum of two usual ones, as e.g., in quark-meson models, with
masses m+ = h1σ and m− = h2σ , respectively. The number
of flavors here is Nf = 2, representing two isodoublets: one
for the nucleons (p,n) and one for their parity partners.

The mean-field calculation can be improved by including
mesonic fluctuations, which is done here within the framework
of the functional renormalization group (FRG), a powerful
nonperturbative tool in quantum field theory and statistical
physics; see [40–44] for QCD-related reviews. The central
object in the approach pioneered by Wetterich is the effective
average action �k which generalizes the effective action �
by introducing a coarse graining scale up to which quantum
fluctuations are included. On a technical level this is achieved
by means of a regulator function Rk which acts like a mass
term in the IR. The RG scale k is taken from the ultraviolet
(UV) cutoff scale  down to zero and in turn the effective
average action interpolates between a microscopic bare action
at  and the effective action � at k = 0. The evolution of
the effective average action with k is described by an exact
one-loop equation, however involving full field- and scale-
dependent propagators, which takes the form

∂k�k = 1

2
Tr

[
1

�
(2)
k + Rk

∂kRk

]
, (20)

where �
(2)
k is the second functional derivative of the effective

average action with respect to the fields. The trace includes a
momentum integration as well as traces over all inner indices.

To evaluate (20) one has to specify an ansatz for the effective
action. Here we work in the local potential approximation
(LPA) where the only scale-dependence stems from the
effective potential, and correspondingly we use

�k =
∫

d4x L|U→Uk
(21)

with the Lagrangian from Eq. (7) starting with a bare potential
U at k =  of the form as given in Eq. (9). The flow for
the effective potential decomposes into fermionic and bosonic
contributions,

∂kUk = ∂kUk,F + ∂kUk,B . (22)
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Using the three-dimensional (3D) analogue of the LPA-
optimized regulator from Ref. [45],

Rk,F ( 	p) = −i 	p · 	γ
(√

k2

	p2
− 1

)
θ (k2 − 	p2), (23)

the fermionic contributions to the flow of the effective potential
can be obtained analogous to that of the quark-meson-diquark
model for two-color QCD in [46], giving

∂kUk,F = −Nf k4

6π2

∑
±

{
2
(
k2 + m2

0 − ε±
k

2
) + (

h2
1 + h2

2

)
σ 2(

ε∓
k

2 − ε±
k

2
)
ε±
k

×
[

tanh

(
ε±
k + μ̃B

2T

)
+ tanh

(
ε±
k − μ̃B

2T

)]}
, (24)

where we have again used the single-quasiparticle energies
ε±
k defined in (19), here at 	p 2 = k2. As in the mean-field

approximation, for m0 = 0 the two fermion species decouple
and (24) reduces to the sum of two quark-meson model
contributions to the flow of the effective potential.

The bosonic contribution to the flow of the effective poten-
tial is identical to the expression in quark-meson models [43]
and reads, for the 3D analogue of the LPA-optimized regulator,

∂kUk,B = k4

12π2

[
1

εσ
k

coth

(
εσ
k

2T

)
+ 3

επ
k

coth

(
επ
k

2T

)]
, (25)

where one introduces mesonic single-quasiparticle energies
via

εσ
k = √

k2 + 2U ′
k + 4U ′′

k φ2 , επ
k =

√
k2 + 2U ′

k , (26)

with the notations U ′
k = ∂

∂φ2 Uk and U ′′
k = ∂2

∂φ2∂φ2 Uk .

D. Parameter fixing and phenomenology of the
nuclear-matter transition

The most relevant degrees of freedom to describe the phase
diagram of strong-interaction matter near the nuclear-matter
transition are collective mesonic and baryonic excitations.
Since there are no baryons in the vacuum one should in
principal fix the model parameters at T = 0 with a value of the
baryon chemical potential close to the onset of nuclear matter
where one has small nucleonic excitation energies. Due to the
Silver-Blaze property one can in principle equally well fix the
model parameters at T = μB = 0, however. In the LPA this
is known to introduce a slight artificial μB dependence, and
hence a Silver-Blaze problem, mainly because the curvature
masses extracted from the mesonic effective potential are
not exactly the physical ones. Calculating mesonic two-point
functions in random-phase approximation or from their own
flow equations [46–50] one observes that the physical pole
masses can differ quite significantly from the curvature masses.
In the quark-meson-diquark model for two-color QCD or the
quark-meson model for QCD at finite isospin density one
verifies at mean-field level that the RPA-pole masses agree
with the onset of Bose-Einstein condensation of diquarks or
charged pions, respectively, as they must. In contrast, one
then deduces that especially the pion curvature mass can
deviate from this by up to 30% [46,47]. Beyond mean field,

pole masses in present truncations for two-point functions are
typically considerably closer to such onsets than curvature
masses as well. To completely resolve this discrepancy, and to
reduce the unnaturally large differences between curvature and
pole masses, one has to include wave-function renormalization
beyond the LPA [51].

In the parity-doublet model these differences are much
smaller, however, because the baryons are much heavier
than the quarks in quark-meson models. Even in the chirally
symmetric regime the mirror baryons have their explicit mass
m0 which is of the order of 800 MeV and implies that their
fluctuations are suppressed below RG scales k ∼ 800 MeV. A
manifestation of this is that we have to start the flow already
in the broken phase when using a typical UV cutoff scale 
of about 1 GeV. Unlike the fermionic fluctuations in quark-
meson models, the baryonic fluctuations of the parity-doublet
model alone, between the UV cutoff and m0, are thus not
strong enough to drive the system into the broken phase.
The mesonic fluctuations dominate the flow at T = μ = 0.
In purely mesonic O(N ) models, on the other hand, the
difference between pole and curvature masses is known to be a
few percent effect and hence negligible [48,52]. We therefore
neglect this discrepancy here as well and use the standard
curvature masses to fix the parameters in our calculations.
In addition, we have verified, however, that a larger value for
the pion curvature mass, as a simple fix to compensate missing
wave-function renormalization in the vacuum, does not change
our results in any substantial way.

From the effective potential in the IR one easily extracts
meson curvature masses as

mσ =
√

2U ′
k + 4U ′′

k φ2 , mπ =
√

2U ′
k , k → 0. (27)

The parameters in the UV potential VM are adjusted to realize
the physical pion mass mπ = 138 MeV in the IR, which
essentially determines the parameter c. Due to its nature as
a broad resonance the mass of the sigma meson is not so well
constrained, we fix it to reasonable values of mσ � 500 MeV.

As usual, the Goldberger-Treiman relation is used to
connect the minimum of the mesonic potential in the vacuum at
	π = 0, σ = σ̄0 to the pion decay constant, σ̄0 = fπ = 93 MeV.
The Yukawa couplings h1 and h2 are then fixed from Eq. (16)
for a given m0 by the masses m± of the nucleon (939 MeV)
and its parity partner (1535 MeV).

For determining the in-medium condensate [31,53,54]
at the phase transition one uses the Feynman-Hellmann
theorem [55] in combination with the Gell-Mann-Oakes-
Renner relation. This provides a connection between the
saturation density of nuclear matter n0 and the in-medium
chiral condensate σ̄ (n0)

σ̄ (n0)

σ̄0
= 1 − σN

m2
πf 2

π

n0. (28)

Of course, the ratio σ̄ (n0)
σ̄0

also depends on the value of the
so-called nucleon sigma term σN . The remaining model
parameters m0 and hv can be used to fix the right saturation
density of symmetric nuclear matter n0 � 0.16 fm−3 and a
phenomenologically reasonable value for the nucleon sigma
term σN � 36 MeV [54].
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III. RESULTS

A. Extended mean field

We first discuss our results from the extended mean-field
(eMF) approximation which amounts to only taking the
fermionic contributions to the FRG flow into account. This
is comparable to the mean-field approximation provided that
the contributions from the vacuum term are properly included
in the grand potential [46].

Due to the fermionic minus sign, the fermionic contribution
to the flow generally generates a negative mesonic mass term
and hence drives the σ field away from zero and into the broken
phase. The integrated fermionic flow in the parity-doublet
model thereby decreases more rapidly with σ as compared to
quark-meson model calculations. This is because the baryon
masses start out with a rather large chirally invariant mass m0

for σ = 0 already and further increase with σ , cf. Eq. (16).
Starting our flow at  = 1 GeV the baryonic fluctuations
therefore get suppressed rapidly with σ which results in a
comparatively large negative contribution to the curvature of
the effective potential near the origin in field space at σ = 0.
With the infrared minimum fixed at σ̄0 = fπ it then turns out
that we have to include a small λ6φ

6 term in order to generate
an overall infrared potential that is sufficiently shallow around
σ̄0, for a sufficiently low curvature mass of the σ meson around
500 MeV. This problem can be avoided by starting the flow at
a larger UV scale . We have verified that the value of λ6 for
constant infrared parameters indeed decreases with increasing
. The same is true for the UV potential in the microscopic
bare action when we include the mesonic fluctuations which
counteract the fermionic ones. In the parity-doublet model,
where the latter are not so strong, we start at  = 1 GeV just
in the broken phase already, i.e., with a small negative mass
term in the UV potential as mentioned above. For σ meson
masses around 500 MeV we then occasionally also need a
small irrelevant coupling λ6 in the UV potential, if  is not
sufficiently large relative to m0.

Our eMF results for the zero-temperature chiral condensate
σ̄ over the baryon chemical potential μB in the region of the
nuclear-matter transition with m0 = 820 MeV and different
vector couplings hv are shown in Fig. 1. The parameter set with
hv = 4.10 reproduces the nuclear-matter binding energy of
Eb � 16 MeV per nucleon [by the location of the discontinuity
at μc

B = (939 − 16) MeV = 923 MeV marked by the dotted
red vertical line] together with a saturation density of n0 �
0.16 fm−3 and an in-medium condensate σ̄ (n0) � 69 MeV
(marked by the dotted red horizontal line), corresponding to a
nucleon-sigma term of σN � 36 MeV; cf. Eq. (28).

The corresponding solutions for �μB = ihvω̄0 of the ω-
gap equation—see the Appendix—as a function of σ̄ are shown
in Fig. 2. These were all obtained at μB = 892 MeV which
corresponds to the nuclear-matter transition for the smallest
vector coupling hv = 0.30. This illustrates how the first-order
phase transition at μc

B gets shifted to larger values of μB , and
weakened at the same time, by an increasing vector coupling,
due to a nonzero shift �μB in the chemical potential. In order
to achieve this desired effect it is crucial, however, to have a
nontrivial solution with nonzero �μB = ihvω̄0 for σ̄ values
larger than the in-medium condensate at saturation density,
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FIG. 1. (Color online) The chiral condensate for m0 = 820 MeV
as a function of baryon chemical potential μB . The plot focusses on
the nuclear-matter transition and shows results for different vector
couplings hv . Increasing values of hv shift the transition to larger μB .
The binding energy per nucleon (vertical dotted line), the in-medium
condensate (horizontal dotted line), and the nuclear saturation density
of symmetric nuclear matter are reproduced for hv = 4.1.

σ̄ (n0), which is between 50 and 69 MeV for the parameters
used here (cf. Fig. 1). We also note that the bifurcation point
in the ω-gap equation stays put at around σ̄ � 80 MeV for all
values of the vector coupling, which implies that μc

B cannot
be shifted any further, once σ̄ (n0) reaches this value, because
�μB(σ̄ (n0)) remains at zero regardless of the size of the vector
coupling from then on.

Figure 3 shows the baryon density as a function of μB

for m0 = 820 MeV and hv = 4.10, i.e., with the parameters
for a phenomenologically correct eMF description of the
nuclear-matter transition. At μc

B = 923 MeV the density jumps
discontinuously from zero to n0 � 0.16 fm−3, the saturation
density of symmetric nuclear matter. The second discontinuous
transition (not shown in Fig. 1) is observed at μB � 1472 MeV.
It occurs at a density of around 13.7 times the saturation density
and would thus hardly be relevant for the equation of state
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FIG. 2. (Color online) Solutions �μB = ihvω̄0 of the ω-gap
equation at m0 = 820 MeV, μB = 892 MeV as a function of the
chiral condensate for different values of the vector coupling hv .
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FIG. 3. (Color online) Baryon number density as a function of
baryon chemical potential μB for m0 = 820 MeV and hv = 4.10.

of nuclear matter in neutron stars. Mesonic fluctuations might
well change this, however, as they tend to bring both transitions
much closer together as we will see in the next subsection.

That the second transition within the high-density phase
is indeed the chiral transition is demonstrated in Fig. 4 which
shows the chiral condensate over the baryon chemical potential
again: The upper blue curve corresponds to the result of Fig. 1
with correct nuclear-matter parameters; the pion mass was
thereby adjusted to its physical value, mπ = 138 MeV. The
lower green curve was obtained with the same parameters
except for the explicit chiral symmetry-breaking parameter
which was set to c = 0 for the chiral limit with mπ = 0. The
fact that σ̄ then drops to zero in the second transition allows
us to unambiguously identify this as the chiral first-order
phase transition of the model inside the high-baryon-density
phase. These results also allow to deduce the parameters of the
nuclear-matter transition in the chiral limit, with σ̄0 � 80 MeV,
Eb � 47 MeV, n0 � 0.064 fm−3, and σ̄ (n0) � 0.89 σ̄0.

In Fig. 5 the corresponding masses of the nucleons and
their parity partners as a function of μB are shown for both the
physical pion mass and in the chiral limit as well. It is evident
that they become degenerate at large μB , after the second
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FIG. 4. (Color online) The chiral condensate as a function of μB

for the nuclear-matter and for the chiral phase transition of the model,
with physical pion mass and in the chiral limit.
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FIG. 5. (Color online) Masses of the nucleons and their parity
partners at m0 = 820 MeV for physical pion mass and in the chiral
limit.

phase transition. For a physical pion mass the splitting of the
baryon masses stays finite after the chiral phase transition and
then smoothly tends to zero with m± → m0. This confirms the
mechanism through which chiral symmetry is realized in the
parity doublet model. Rather than yielding vanishing masses
in the chiral limit, the baryon masses become degenerate at
m± = m0, as observed in the lattice QCD simulations upon
chiral symmetry restoration [17–19].

B. FRG results with mesonic fluctuations

In this section we present our results obtained from the full
FRG flow: the solutions of the full flow equation discretized
on a grid in field space [43], including the fluctuations from
collective mesonic excitations as per Eq. (25).

In Fig. 6 the resulting expectation value of chiral condensate
σ̄ is shown as a function of baryon chemical potential μB .
The two representative data sets correspond to two different
values for m0 = 800 and 900 MeV with different vector
couplings hv = 0.3 and hv = 0, respectively. In both sets
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FIG. 6. (Color online) The chiral condensate as a function of
μB for the nuclear-matter and the chiral phase transition with
m0 = 800 MeV and parameters fixed to the in-medium condensate
(horizontal dotted line), and m0 = 900 MeV with parameters fixed to
the binding energy per nucleon (vertical dotted line).
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FIG. 7. (Color online) Masses of the nucleons and their parity
partners at m0 = 800 and 900 MeV with physical pion masses; full
FRG results with parameters as in Fig. 6.

the other parameters were adjusted to reproduce the physical
pion and baryon masses. For m0 = 800 MeV the nuclear-
matter and chiral phase transitions occur at μ

c (n)
B � 866 MeV

and μ
c (χ)
B � 896 MeV, respectively. For m0 = 900 MeV

these values are μ
c (n)
B � 923 MeV for nuclear matter and

μ
c (χ)
B � 1009 MeV for the chiral transition. The corresponding

nuclear-matter saturation densities for the two parameter sets
are n0 � 0.10 fm−3 with m0 = 800 MeV and n0 � 0.01 fm−3

with m0 = 900 MeV. They are both much smaller than the
phenomenological n0 � 0.16 fm−3 which appears to be due
to missing density contributions from the omega meson. As
can be seen in this figure we generally observe that one can
either reproduce the physical binding energy per nucleon (as
indicated by the dotted red vertical line) or the correct in
medium condensate (the dotted red horizontal line) but not
both at the same time.

The corresponding baryon masses are shown for the same
two parameter sets in Fig. 7. As before, they both tend to m0

from above and below beyond the chiral transition which is
generally closer to the liquid-gas transition than in the eMF
results as mentioned above.

The reason why, in contradistinction to mean-field and
eMF calculations, the repulsive vector interaction is ineffective
in shifting the nuclear-matter transition with full mesonic
fluctuations becomes clear from Figs. 8(a) and 8(b). In these
figures we plot the shifts �μB in the baryon chemical potential
from the solutions to the ω-gap equations over the chiral
condensate for various vector couplings with the two values
of m0 used in Fig. 6.

For m0 = 900 MeV the bifurcation point in the ω-gap
equation always lies below the value of the in-medium
condensate σ̄ (n0) at the respective saturation density. In this
case the regime of nonvanishing �μB = ihvω̄0 does not
extend beyond the position of the minimum in the σ direction
of the effective potential at saturation density, and larger vector
couplings thus have no effect on the nuclear-matter transition.
In the case with m0 = 800 MeV, even though the bifurcation
point at σ̄ � 75 MeV lies slightly above σ̄ (n0) � 69 MeV,
the repulsive vector coupling only has a very minor influence
on the in-medium condensate. For example, without vector
coupling we obtain with this parameter set σ̄ (n0) � 67 MeV
which we can shift to the phenomenological σ̄ (n0) � 69 MeV
by increasing the vector coupling from hv = 0.0 to hv = 0.3.
Larger vector couplings will not lead to any substantial further
shift in the nuclear-matter transition. In addition, we have
verified that the bifurcation points in the ω-gap equation
remain where they are in Figs. 8(a) and 8(b) also for much
larger values of the vector coupling hv than those shown there.
We conclude that the non-vanishing �μB values essentially
only change the form of the local potential away from the
minimum. Depending on the chiral nucleon-mass parameter
m0 they either do not at all influence or do not significantly
influence the grand potential which is evaluated at σ̄0 and σ̄ (n0)
on either side of the transition.

C. Finite temperature results

Since the flow equation for the effective potential in the
parity-doublet model of the previous section is already formu-
lated for finite temperatures, it is in principle straightforward
to obtain the phase diagram of the model in the (T ,μB) plane.
In this subsection we present first results from the full RG flow
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(right), and values for the chemical potential at the respective zero-temperature nuclear-matter transitions μB = 866 MeV and μB = 923 MeV,
as in Fig. 6.
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FIG. 9. (Color online) Chiral condensate over chemical potential μB and temperature T from the full FRG flow for the two different
parameter sets with m0 = 800 MeV (left) and m0 = 900 MeV (right) from Sec. III B, both with hv = 0.

at finite temperature (and chemical potential). As the impact
of the repulsive vector-meson interaction can be neglected
in full RG calculations, as we have seen, it is not included
here; i.e. we use hv = 0 in the following. These results are
only meant to give a rough qualitative estimate of the critical
temperatures T (n)

c for the nuclear-matter and T
(χ)
c for the chiral

transition.
We have chosen the two parameter sets from Sec. III B

(cf. Fig. 6), both with hv = 0 here, to perform the finite
temperature calculations presented in this subsection. The
results are summarized in Figs. 9(a) and 9(b) as well as in
Figs. 10(a) and 10(b).

In Fig. 9(a) the chiral condensate for m0 = 800 MeV (with
hv = 0 and the other parameters as in Sec. III B) is plotted
over the (T ,μB) plane. As expected, both first-order phase
transitions, the nuclear matter and the chiral transition, get
weaker with increasing temperature and eventually become
continuous. The corresponding critical lines in the (T ,μB)
plane are shown in Fig. 10(a). The location of the critical
endpoint (CEP) of the nuclear-matter transition can be es-
timated to be at T (n)

c ∼ 19 MeV and μ
c (n)
B � 871 MeV. In

comparison, that of the chiral CEP is around T
(χ)
c ∼ 18 MeV

and μ
c (χ )
B � 896 MeV.

The analogous plots of the chiral condensate and the critical
lines for the parameter set with m0 = 900 MeV are shown in
Figs. 9(b) and 10(b). In this case the nuclear-matter transition

is much weaker in the first place. It thus also turns continuous
already at a very low temperature of T (n)

c �2 MeV with μ
c (n)
B �

925 MeV. We estimate the location of the chiral CEP to now
be around T

(χ)
c ∼19 MeV and μ

c (χ)
B �1012 MeV.

Relative to their corresponding zero temperature transi-
tions at μ

c (n)
B � 866 MeV and μ

c (χ)
B � 895 MeV for m0 =

800 MeV, or μ
c (n)
B � 923 MeV and μ

c (χ)
B � 1015 MeV for

m0 = 900 MeV, especially the nuclear-matter CEPs tend to
appear at somewhat larger μB values. The chiral first-order
transitions from T = 0 to T

(χ)
c basically almost follow lines of

constant μB , especially for m0 = 900 MeV.
The slope of the first-order lines in the (T ,μB) plane is

determined by a Clausius-Clapeyron equation [56],

dTc

dμc

= −�n

�s
. (29)

For the discontinuity in the number density we have �n > 0
with increasing μB across the first-order lines in both cases.
For an order-disorder transition one would expect the entropy
per particle to increase, and with �n > 0 hence also the
discontinuity in the entropy density to be larger than zero,
i.e., �s > 0. This is the typical behavior of the chiral transition
line in mean-field studies. Here, �s in the chiral transition with
mesonic fluctuations, and explicit symmetry breaking appears
to be very small. It may well be positive in the chiral limit.
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FIG. 10. (Color online) First-order lines with the corresponding critical endpoints in the (T ,μB ) plane for the liquid-gas (green) and chiral
(red) phase transitions using the same data sets as in Figs. 9(a) and 9(b) for m0 = 800 MeV (left) and m0 = 900 MeV (right).
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More interestingly, because the entropy per particle de-
creases from the gaseous to the liquid phase, it is possible to
have �s < 0 in the liquid-gas transition of nuclear matter
despite the fact that the number density increases across
the transition. This is what we obtain for the nuclear-matter
transition in the parity-doublet model with mesonic fluctu-
ations for m0 = 900 MeV and at low temperatures also for
m0 = 800 MeV. It is a genuine effect of mesonic fluctuations
that they tend to change the sign in the discontinuity of
the entropy density as compared to mean-field studies. It
is known from the quark-meson model where they change
the mean-field chiral transition into a transition to bound
quark matter [57]. The same effect turns the relativistic
analogue of a Chandrasekhar-Clogston transition inside the
pion condensation phase at finite isospin chemical potential,
as observed at mean field with �s > 0, into a first-order
transition to a stable Sarma phase with �s < 0, when mesonic
fluctuations are included [47,58]. This would be analogous to
a partially polarized phase in ultracold Fermi gases at unitarity.
For the nuclear-matter transition in QCD it appears to be rather
unusual to have �s < 0. It is not observed in chiral effective
field theory for example [59]. Since �n tends to be too small in
our FRG results with mesonic fluctuations, however, especially
for m0 = 900 MeV, the slope of the nuclear-matter transition
line might still turn out to be negative with fluctuations as
well, if a more realistic �n, with �n � 0.16 fm−3 at T = 0,
is sufficient for the entropy density to also increase across the
transition (leading to �s > 0) despite the fact that the entropy
per particle should decrease.

IV. CONCLUSIONS

We conclude that the inclusion of a heavy parity partner in
a chiral baryon-meson model such as the parity-doublet model
within an FRG framework allows for a simultaneous descrip-
tion of the liquid-gas transition of nuclear matter together with
a chiral first-order transition inside the high-baryon-density
phase. The quantitative properties of symmetric nuclear matter
are well reproduced in the extended mean-field approximation
without collective mesonic fluctuations. Including mesonic
fluctuations does not change the qualitative conclusion of the
existence of two distinct first-order phase transitions which
can be identified as a liquid-gas transition of nuclear matter
and the chiral phase transition at which the nucleons become
degenerate with their parity partners.

First calculations at finite temperature (and chemical
potential) provide the general features of the phase diagram of
the model with the two first-order lines ending in two distinct
critical endpoints. The inclusion of mesonic fluctuations
thereby has effects, especially on the liquid-gas transition,
that are known from quark-meson models. As compared to
(extended) mean-field studies they lead to a sign change in
the slope of the critical line indicating a sign change in the
discontinuity of the entropy density.

In contrast to the case with purely baryonic fluctuations,
however, the repulsive isoscalar vector meson interaction
turns out to be inefficient in adjusting the binding energy
per nucleon of symmetric nuclear matter. As a result, the
FRG treatment of the parity-doublet model with mesonic

fluctuations does not provide a quantitatively fully successful
phenomenological description of the nuclear-matter transition
at this point. A possible remedy which has proven to work
for the chiral Walecka model [13,14] would be to parametrize
the effective potential in the vacuum and to consider only
thermal fluctuations. In a longer term one might embed the
parity-doublet model into a (Polyakov-)quark-meson-baryon
model to include the effects of fluctuating light quark degrees
of freedom in the chirally restored and deconfined phase and
at the initial microscopic scales.
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APPENDIX: GAP EQUATIONS

For the grand potential we need to minimize the resulting
effective action with respect to the σ -meson field. The ω
meson is not included as a fluctuating field here, but treated
in a stationary phase approximation with a complex saddle
point for the ω0 integration as mentioned in the main text. For
both the minimum of the effective potential in the σ direction
and the (purely imaginary) saddle point in ω0, we thus require
the partial derivatives of U0, where U0 = Uk for k → 0, with
respect to σ and ω0 to vanish when σ = σ̄ and ω0 = ω̄0. The
corresponding two gap equations are of the form

∂

∂σ

(∫
dk ∂kUk

)∣∣∣∣
σ=σ̄ ,ω0=ω̄0

= c (A1)

and

∂

∂ω0

(∫
dk ∂kUk

)∣∣∣∣
σ=σ̄ ,ω0=ω̄0

= −m2
ωω̄0 . (A2)

Vice versa, Eqs. (A2) and (A1) define the expectation values
of the meson fields σ̄ and ω̄0.

The gap equation for ω0 can be derived from the fermionic
RG flow in Eq. (24). The derivative with respect to ω0 is
thereby equivalent to a derivative with respect to the baryon
chemical potential μB ,

∂

∂ω0
= −ihv

∂

∂μB

. (A3)

For T → 0 the gap equation for ω0 can be obtained analytically
in closed form from the expression

∂

∂ω0

∫
dk ∂kUk

∣∣∣∣
σ̄ ,ω̄0

= ihv

4

6π2

∑
±

k±4
F γ ±(k±

F )∣∣∂kε
±
k (k)

∣∣
k=k±

F

∣∣ , (A4)

with

γ ±(k) = 2
(
k2 + m0 − ε±2

k

) + σ 2
(
h2

1 + h2
2

)
ε±
k

(
ε∓2
k − ε±2

k

) . (A5)

Here, k±
F are the Fermi momenta defined by

ε±
k (k±

F ) = μ̃B. (A6)
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Equation (A4) also allows us to obtain the baryon number
density,

nB = − ∂U0

∂μB

= 1

ihv

∂

∂ω0

∫
dk ∂kUk

∣∣∣∣
σ̄ ,ω̄0

. (A7)

With n±
b for the contributions to the number densities of

nucleons and their parity partners separately we thus find

nB =
∑
±

n±
B = 4

6π2

∑
±

k±4
F γ ±(k±

F )∣∣∂kε
±
k (k)

∣∣
k=k±

F

∣∣ . (A8)
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