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Elastic electromagnetic form factors for the ρ+ meson are calculated in a Nambu–Jona-Lasinio model which
incorporates quark confinement through the use of the proper-time regularization scheme. A comparison is made
with recent lattice QCD results and previous quark model calculations for static quantities and the Sachs form
factors. The results are qualitatively in good agreement with the lattice QCD calculations, with the exception of
the quadrupole moment and corresponding form factor, which may be related to a lack of spherical symmetry on
the lattice.
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I. INTRODUCTION

The structure of hadrons presents a remarkable challenge to
the theory of strong interactions—quantum chromodynamics
(QCD)—and a critical feature of a hadron’s structure is its
distribution of charge and magnetization, which is empirically
related to its electromagnetic form factors [1]. The direct
calculation of hadron form factors using QCD is currently
only possible through lattice QCD, albeit limited to the low to
moderate Q2 region. However, to gain insight into the relevant
dynamical mechanisms behind the observed structure it is
useful to work with models that approximate key features of
QCD. An important focus for this comparison are the meson
form factors. Because of their short lifetimes [2] they present
a unique challenge experimentally—making both lattice QCD
and model calculations critical. The pion form factor has been
successfully measured over a wide range of four-momentum
transfer, while the vector meson form factors have not had
the same amount of experimental exploration. However, the
BABAR Collaboration has measured the cross section for the
reaction e+ + e− → ρ+ + ρ− [3], which has been analyzed
to garner information on the ρ meson form factors [4].

The ρ form factors, or equivalently the polarization am-
plitudes, have been calculated using a variety of methods, for
example, phenomenological models [5,6], constituent quark
models in the light front [7–13] and point form [14] frame-
works, QCD sum rules [15–18], and the Dyson-Schwinger
equations [19–22]. The first attempts to compute ρ form
factors using lattice QCD were reported in Refs. [23,24] in
the quenched framework. The recent work of Owen et al.
[25] and Shultz et al. [26] give two independent lattice QCD
calculations based upon different approaches. These lattice
results, and the previous work with quark models, provide a
solid background for comparison with results computed within
other models.

In this work we extend the ρ meson form factor calculation
of Ref. [27], where the focus was a comparison with the
axial-vector diquark form factors which formed a critical
part of a nucleon form factor calculation. Here we use the
same confining version of the Nambu–Jona-Lasinio (NJL)

model [28,29] to investigate the quark mass dependence of
the ρ form factors, and perform a detailed comparison with
the lattice QCD results of Refs. [25,26]. Following Ref. [27]
we include the dressing of the quark-photon vertex from the
inhomogeneous Bethe-Salpeter equation and a pion cloud,
which are critical for obtaining a good agreement with lattice
results. Similar finding were made in Ref. [30], where the same
framework was applied to the π and K form factors.

The outline of the paper is as follows: In Sec. II we briefly
review the NJL model as applied to q̄q bound states, and the
calculation of the ρ electromagnetic form factors is discussed
in Sec. III. The results are compared to those from lattice QCD
and various quark models in Sec. IV, and Sec. V presents our
conclusions.

II. NAMBU–JONA-LASINIO MODEL

In its original formulation the NJL model successfully
encapsulated the effects of dynamical chiral symmetry break-
ing, where the pion emerged as a Goldstone boson and the
nucleon was the fundamental degree of freedom [28,29]. The
NJL model has subsequently been re-expressed with quarks
as the fundamental constituents, making the relation with
QCD evident. Importantly, the NJL model [31] preserves the
fundamental symmetries of QCD. In particular, the generation
of mass through the dynamical breaking of chiral symmetry
is beautifully illustrated. In contrast, quark confinement is
not automatically incorporated in the model. However, it has
been shown that it can be mimicked by the introduction of
an infrared cutoff in the proper-time regularization scheme
[32–34]. The NJL model has a history of success in the
description of numerous meson [31,35,36] and baryon [35,36]
properties, including the nucleon parton distribution functions
[37–41] and electromagnetic form factors [27]. More recently
these studies have been extended to the computation of the
axial charges for strangeness conserved β decays in the baryon
octet [42] and possible insights into the solutions of long
time enigmas in QCD, such as the �I = 1/2 rule in kaon
decays [43]. It is this wealth of achievement, together with the
recent developments in lattice QCD, that encourages us to test
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FIG. 1. (Color online) NJL gap equation in the Hartree-Fock
approximation, where the thin line represents the elementary quark
propagator, S−1

0 (k) = /k − m + iε, and the shaded circle represents
the four-fermion interaction.

whether the model gives an accurate description of ρ meson
properties.

In the application of the NJL model to the solution of
the form factors of the ρ meson, we use a two-flavor NJL
Lagrangian which in the q̄q interaction channel reads:

L = ψ̄(i/∂ − m̂)ψ + 1

2
Gπ [(ψ̄ψ)2 − (ψ̄γ5 �τψ)2]

−1

2
Gω(ψ̄γ μψ)2 − 1

2
Gρ[(ψ̄γ μ�τψ) + (ψ̄γ μγ5 �τψ)2],

(1)

where �τ are the Pauli matrices representing isospin and
m̂ = diag[mu,md ] is the current quark mass matrix. We
assume mu = md = m. The fermion coupling Gπ represents
the strength of the scalar (q̄q) and pseudoscalar (q̄γ5q)
interaction channels and is responsible for the dynamical
generation of the dressed quark masses through the breaking
of chiral symmetry. The strength of the vector-isoscalar and
vector-isovector four-fermion interactions is given by Gω and
Gρ , respectively. The explicit breaking of U (1) axial symmetry
is often modeled by the inclusion of an extra six-fermion
determinant interaction term, which describes the η and η′
mass splitting [31]; however, this is not directly related to our
calculation so we do not consider it. We regularize the NJL
interaction through the proper-time regularization scheme,
using an infrared cutoff (
IR) to remove unphysical decay
thresholds for hadrons into quarks [32–34].

The dressed quark masses are given by the solution of
the gap equation depicted in Fig. 1, which in the proper-time
scheme reads

M = m + 3

π2
M Gπ

∫ 1/
2
IR

1/
2
UV

dτ
e−τM2

τ 2
, (2)

giving a dressed quark propagator of the form:

S(k)−1 = /k − M + iε. (3)

The description of mesons as q̄q bound states in the NJL
model is obtained via the Bethe-Salpeter equation (BSE) in
the random-phase approximation, as illustrated in Fig. 2. The

=
qq

+

FIG. 2. (Color online) Bethe-Salpeter equation for antiquark-
quark (meson) correlations in the NJL model using the random phase
approximation.

solution of the BSE in each meson channel is given by a
two-body t matrix that depends on the nature of the interaction
channel [27], where the reduced t matrices for the π , ρ, and ω
mesons read

τπ (q) = −2i Gπ

1 + 2 Gπ �PP (q2)
, (4)

τ
μν
ρ(ω)(q) = −2i Gρ(ω)

1 + 2 Gρ(ω) �V V (q2)

×
[
gμν + 2 Gρ(ω) �V V (q2)

qμqν

q2

]
, (5)

and the bubble diagrams are defined by

�PP (q2) = 6i

∫
d4k

(2π )4
TrD[γ5 S(k) γ5 S(k + q)], (6)

�V V (q2)

(
gμν − qμqν

q2

)

= 6i

∫
d4k

(2π )4
TrD[γ μ S(k) γ ν S(k + q)]. (7)

The meson masses are given by the poles in the reduced t
matrices, that is,

1 + 2 Gπ �PP

(
q2 = m2

π

) = 0, (8)

1 + 2 Gρ �V V

(
q2 = m2

ρ

) = 0, (9)

1 + 2 Gω �V V

(
q2 = m2

ω

) = 0. (10)

Expanding the full t matrices about these poles gives the
homogeneous Bethe-Salpeter vertices for the π , ρ, and ω
mesons:

�i
π =

√
Zπ γ5 τi, �μ,i

ρ =√
Zρ γ μ τi, �μ

ω =
√

Zω γ μ, (11)

where the meson-quark-quark couplings read [30,31,36]

Z−1
π = − ∂

∂q2
�PP (q2)

∣∣∣
q2=m2

π

, (12)

Z−1
ρ(ω) = − ∂

∂q2
�V V (q2)

∣∣∣
q2=m2

ρ(ω)

. (13)

III. ρ ELECTROMAGNETIC FORM FACTORS

The electromagnetic current for a ρ meson is parametrized
by three form factors and takes the form

jμ,αβ
ρ (p′,p) =

[
gαβF1ρ(Q2) − qαqβ

2 m2
ρ

F2ρ(Q2)
]
(p′ + p)μ

−(qαgμβ − qβgμα)F3ρ(Q2), (14)

where the polarizations of the incoming and outgoing ρ
mesons are represented by the Lorentz indices α and β,
respectively, and μ is the photon polarization. From these
form factors one can define three Sachs form factors for the
ρ, namely, the charge [GC(Q2)], magnetic [GM (Q2)], and
quadrupole [GQ(Q2)] form factors, which read

GC(Q2) = F1(Q2) + 2
3η GQ(Q2), (15)
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FIG. 3. (Color online) Feynman diagrams representing the elec-
tromagnetic current for a meson in our NJL model.

GM (Q2) = F3(Q2), (16)

GQ(Q2) = F1(Q2) + (1 + η) F2(Q2) − F3(Q2), (17)

where η = Q2

4 m2
ρ

and all form factors are dimensionless.

In our NJL model the ρ electromagnetic current is depicted
in Fig. 3 and expressed by

j
μ,αβ
ρ,ij (p′,p)

= i

∫
d4k

(2π )4
Tr

[
�

β,j

ρ S(p′ + k) 
μ(p′,p) S(p + k) �α,i
ρ S(k)

]

+ i

∫
d4k

(2π )4
Tr

[
�α,i

ρ S(k−p) 
μ(p′,p) S(k−p′)�
β,j

ρ S(k)
]
,

(18)

where the Bethe-Salpeter vertices for the ρ are given in
Eq. (11), 
μ(p,p′) is the dressed quark-photon vertex, and
the trace is over Dirac, color, and isospin indices. Following
the calculations in Refs. [27,30], we consider three versions
of the quark-photon vertex, each of increasing sophistication:
a pointlike quark-photon vertex, a vertex given by the solution
of the inhomogeneous Bethe-Salpeter equation (illustrated in
Fig. 4), and finally a quark-photon vertex which includes the
pion cloud at the quark level (see Fig. 5).

The pointlike quark photon is simply given by


(PL)μ(p,p′) =
[

1

6
+ τ3

2

]
γ μ, (19)

where 1
6 + τ3

2 is the quark charge operator. Projecting onto
flavor sectors the vertex is separated into two components:


(PL)μ(p,p′) =
[
eu

1 + τ3

2
+ ed

1 − τ3

2

]
γ μ, (20)

where eu and ed are the charges of the u and d quarks,
respectively.

=

p

+

p

p

p p

p

FIG. 4. (Color online) Inhomogeneous BSE whose solution
gives the quark-photon vertex, represented as the large shaded oval.
The small circle depicts the pointlike quark-photon driving term of
Eq. (19), whereas the shaded circles with the double line represents
the vector meson t matrices.
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FIG. 5. (Color online) Pion cloud contribution to the quark-
photon vertex. The quark-photon interaction in the first two diagrams,
represented by the shaded ovals, is given by the solution of the
inhomogeneous BSE. The last diagram also includes the pion form
factor determined without the pion cloud on the associated dressed
quarks.

In general the quark-photon vertex is dressed by q̄q
interactions in the vector channel, and in the NJL model this
dressing is described by the corresponding inhomogeneous
Bethe-Salpeter equation (see Fig. 4). From the NJL Lagrangian
of Eq. (1) the contributions to this vertex come from the neutral
vector mesons (ρ0 and ω). In the on-shell approximation
for the external quarks, the solution of the inhomogeneous
Bethe-Salpeter equation of Fig. 4 is


(BSE)μ(p,p′) =
[

1

6
F1ω(q2) + τ3

2
F1ρ(q2)

]
γ μ, (21)

where the dressed quark form factors are

F1ω(ρ)(q
2) = 1

1 + 2 Gω(ρ) �V V (q2)
. (22)

Note, with the Lagrangian of Eq. (1) the inhomogeneous
Bethe-Salpeter equation does not generate a Pauli form factor
for the dressed quarks. Again projecting into flavor sectors
gives


(BSE)μ(p,p′) =
[
F BSE

1U (q2)
1 + τ3

2
+ F BSE

1D (q2)
1 − τ3

2

]
γ μ,

(23)

where the dressed quark form factors are given by [27]

F BSE
1U (Q2) = 1

6F1ω(Q2) + 1
2F1ρ(Q2), (24)

F BSE
1D (Q2) = 1

6F1ω(Q2) − 1
2F1ρ(Q2). (25)

Finally we include pion loop corrections to the quark-
photon vertex, as illustrated in Fig. 5, which give a vertex
of the form


μ(p,p′) = 

μ
U (p,p′)

1 + τ3

2
+ 


μ
D(p,p′)

1 − τ3

2
, (26)

where the flavor sector vertices (Q = U,D) read



μ
Q(p,p′) = γ μ F1Q(q2) + iσμμqν

2 M
F2Q(Q2). (27)

Note that the pion cloud generates a Pauli form factor for the
dressed quarks and that in obtaining Eq. (27) we have assumed
the external quark lines are on-shell. The dressed quark form
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factors now read [27]

F1U = Z
[

1
6F1ω + 1

2F1ρ

] + [F1ω − F1ρ]f q
1 + F1ρf

π
1 , (28)

F1D = Z
[

1
6F1ω − 1

2F1ρ

] + [F1ω + F1ρ]f q
1 − F1ρf

π
1 , (29)

F2U = [F1ω − F1ρ]f q
2 + F1ρf

π
2 , (30)

F2D = [F1ω + F1ρ]f q
2 − F1ρf

π
2 , (31)

where for clarity we have dropped the explicit Q2 dependence.
The renormalization factor Z is given by

Z = 1 + ∂�(p)

∂/p

∣∣∣∣
/p=M

, (32)

where �(p) is the self-energy from the pion cloud on a dressed
quark:

�(p) = −
∫

d4k

(2π )4
γ5 τi S(p − k) γ5 τi τπ (k). (33)

Here the pion propagator is approximated by its pole form

τπ (k) → i Zπ

p2 − m2
π + iε

. (34)

The contributions of the pion cloud to the quark-photon vertex
are contained in the functions f

q
i (Q2) and f π

i (Q2)(i = 1, 2)
of Eqs. (28)–(31). These body form factors are associated with
the second and third diagrams in Fig. 5, which are respectively
expressed as



(q)μ
Q (p′,p) = γ μ f

q
1 (q2) + iσμνqν

2 M
f

q
2 (q2), (35)



(π)μ
Q (p′,p) = γ μ f π

1 (q2) + iσμνqν

2 M
f π

2 (q2). (36)

The analytic expressions read



(q)μ
Q (p′,p) =∫

d4k
(2π)4 γ5 iS(p′−k)γ μ iS(p−k)γ5 τπ (k), (37)



(π)μ
Q (p′,p) = Z−1

π (p′ + p)μ F (PL)
π (q2)

×
∫

d4k

(2π )4
γ5 τπ (p′ − k) τπ (p − k) γ5 iS(k),

(38)

where F (PL)
π (q2) is the pion form factor determined with a

pointlike quark-photon vertex.
For the full calculation of the ρ meson form factors we use

Eq. (18) and the quark-photon vertex given in Eq. (26). For
the ρ+ form factors this gives

Fiρ+(Q2) = [F1U (Q2) − F1D(Q2)]f V
i (Q2)

+[F2U (Q2) − F2D(Q2)]f T
i (Q2), (39)

where i = 1,2,3 indicates each of the three form factors of
Eq. (14). The body form factors f V

i are associated with
the vector part (γ μ) of the quark-photon vertex in Eq. (27),
while f T

i are the body form factors associated with the
tensor coupling ( iσμνqν

2 M
) in Eq. (27). To obtain the ρ meson

form factors that result only from the inhomogeneous BSE
quark-photon vertex we then simply set Z = 1 and the pion
cloud contributions [f q

1 (Q2), f π
1 (Q2), etc.] to zero. Finally,

the ρ form factors for a pointlike quark-photon vertex are then
obtained by setting F1ω = F1ρ = 1. Note, all loop integrals
are regularized using the proper-time scheme, with both an
infrared and ultraviolet cutoff, except those of Eqs. (33), (37),
and (38), where we take the infrared cutoff (
IR) to zero
because the pion should not be confined.

IV. RESULTS

The parameters of our model are the dressed quark mass M;
the regularization cutoffs 
UV and 
IR; and the Lagrangian
couplings Gπ , Gρ , and Gω. For consistency with previous
work we set M = 0.4 GeV (in the physical limit: mπ =
140 MeV) and 
IR = 0.24 GeV [27,30,42]. The ultraviolet
cutoff 
UV is fit to the physical value of the pion decay constant
and the couplings Gπ , Gρ , and Gω are fit to the physical masses
of the π , ρ, and ω mesons using Eqs. (8)–(10). The values of
these parameters, together with the quark-meson couplings of
Eqs. (12) and (13), are given in Table I.

Our purpose here is to compare results within this NJL
model with other calculations, for example, constituent quark
models [6–14], QCD sum rules [15–18], Dyson-Schwinger
equations [19–22], and the recent lattice QCD studies [25,26].
We first focus on static electromagnetic quantities for the ρ+
meson and consider the magnetic moment (μρ), quadrupole
moment (Qρ), and rms charge radius (〈r2

C〉). These observables
are defined by the Sachs form factors given in Eqs. (15)–
(17), where the magnetic moment in nuclear magnetons (μN )
is given by μρ = GM (0)MN

mρ
, with MN the physical nucleon

mass and (for comparison with lattice data) mρ is the ρ mass
evaluated at a particular pion mass; the quadrupole moment
is given by Qρ = GQ(0)/m2

ρ ; and finally the charge radius is
defined by

〈
r2
C

〉 = −6
∂ GC(Q2)

∂Q2

∣∣∣∣
Q2=0

. (40)

In Table II we summarize results for the 〈r2
C〉, μρ , and Qρ

of the ρ+ from various theoretical approaches, together with
our calculations using the most sophisticated quark-photon
vertex of Eq. (26) (BSE + pion cloud). In general including
the dressing of the quark-photon vertex by the BSE and the
pion cloud increases the magnitude of μρ by 24%,Qρ by 22%,
and 〈r2

C〉 by 16% [27].
In comparing our results with lattice QCD we focus on

the lattice simulation from Ref. [25], as they extend to the
lightest pion mass, namely, mπ = 161 MeV. Our computations

TABLE I. Parameters of the model together with the effective
couplings computed from Eqs. (12) and (13). The masses are in units
of GeV, the Lagrangian couplings in units of GeV−2, and the effective
couplings are dimensionless.

M 
IR 
UV Gπ Gρ Gω Zπ Zρ Zω

0.4 0.24 0.645 19.04 11.04 10.41 17.85 6.96 6.63
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TABLE II. Comparison of the ρ+ charge radii, magnetic moments
in units of nuclear magnetons, and quadrupole moments for various
theoretical approaches: phenomenological models [6], constituent
quark models [8,9,11–14], QCD sum rules [16,18], Dyson-Schwinger
equations [19–22], and lattice QCD [25,26]. The lightest pion mass
used in the lattice calculation in Ref. [25] is m2

π = 0.026 GeV2,
whereas for Ref. [26] it is m2

π = 0.49 GeV2.

Reference 〈r2
C〉(fm2) μρ (μN ) Qρ (fm2)

This work 0.67 3.14 −0.070
Garcia Gudiño [6] 2.6(6)
Cardarelli [8] 0.35 2.76 −0.024
De Melo [9] 0.37 2.61 −0.052
Melikhov [11] 0.33 2.87 −0.031
Jaus [12] 2.23 −0.022
Choi [13] 2.34 −0.028
Biernat [14] 2.68 −0.027
Samsonov [16] 2.4(4)
Aliev [18] 2.8(6)
Hawes [19] 0.37 3.28 −0.055
Bhagwat [20] 0.54 2.54 −0.026
Roberts [21] 0.31 2.14 −0.037
Pitschmann [22] 2.13
Owen [25] 0.670(68) 2.613(97) −0.0452(61)
Shultz [26] 0.30(6) 2.00(9) −0.020(4)

as functions of m2
π are performed by keeping the regularization

parameters (
IR and 
UV) and the couplings (Gπ , Gρ , and
Gω) fixed, and varying the current quark mass that enters
the gap equation. Results for the ρ mass as a function of
m2

π (or equivalently the current quark mass) are presented in
Fig. 6, where we find remarkable agreement between our NJL
calculation and the lattice results of Ref. [25].

At the physical pion mass, our values for 〈r2
C〉 (see Table II)

differ significantly from the constituent quark models, one of
the Dyson-Schwinger calculations, and the result quoted in the
lattice QCD computation of Ref. [26]. Better agreement is seen

0.7
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0.8

0.85

0.9

0.95

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

m
ρ

(G
eV

)

m2
π (GeV2)

NJL

lattice QCD

FIG. 6. (Color online) NJL model results for the ρ-meson mass
vs m2

π . Comparison is made with lattice results from Ref. [25].

0
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〈r2 C
〉(

fm
2 )

m2
π (GeV2)
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BSE

BSE+Pion Cloud

lattice QCD

FIG. 7. (Color online) Squared charge radius 〈r2
C〉 for the ρ+

meson computed using the three levels of sophistication for the
quark-photon vertex: pointlike (PL), using the inhomogeneous BSE
(BSE), and including the pion cloud (BSE + pion cloud). Comparison
is made with lattice results from Ref. [25].

with the Dyson-Schwinger equation calculation of Ref. [20].
Our result for 〈r2

C〉 is, however, very similar to the lattice QCD
value obtained in Ref. [25] for a pion mass of around 161 MeV.
We see that in Fig. 7 their 〈r2

C〉 lies around 0.67 fm2, possibly
reaching 0.7 fm2 in the physical limit. On the other hand the
lattice QCD simulation of Ref. [26] uses a very large pion mass
of 700 MeV, which explains its lower value for 〈r2

C〉, evident
from the m2

π dependence of the lattice points in Fig. 7. The
dependence of 〈r2

C〉 on m2
π in our NJL calculation, once the

inhomogeneous BSE and pion cloud contributions have been
included, shows remarkable agreement with the lattice results
of Ref. [25]. One sees that the pion cloud contributions have
become negligible for m2

π � 0.4, GeV2.
For the ρ+ magnetic moment (μρ) the values (in units of

nuclear magnetons) obtained by the constituent quark models
are consistently smaller than our result of μρ = 3.14 μN ,
the closest being μρ = 2.87 μN from Ref. [11]. The earlier
Dyson-Schwinger equation study in Ref. [19] shows good
agreement with our work. For the lattice simulation of Ref. [25]
the discrepancy with our result is sizable near the physical
limit. However, the evolution of our result with m2

π shown in
Fig. 8 is in good agreement with the lattice QCD calculations
except at their lightest pion mass. The larger discrepancy
between the model and the lattice data at that lowest value
of m2

π is most likely a finite volume effect, since mπL < 4
[44]. Again, as in the case of 〈r2

C〉, the effect of the large mπ

in Ref. [26] is to produce a small value of μρ , as evident from
Fig. 8.

Finally we find a large quadrupole moment comparable to
the Dyson-Schwinger equation results of Roberts et al. [21]
and Hawes and Pichowsky [19]. The lattice QCD result of
Ref. [25] is ∼30% smaller than our result near the physics
point, as illustrated in Fig. 9. However, to determine the reason
for the difference, we suggest that it may be worthwhile to
investigate the effect of the lack of spherical symmetry on the
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FIG. 8. (Color online) ρ+ magnetic moment (μρ) in units of
nuclear magnetons vs m2

π . The curves have the same conventions
as Fig. 7.

lattice simulation, considering that the quadrupole moment
reflects the shape of the ρ.

Comparison with the lattice simulation of Ref. [25] for the
evolution of the ρ+ Sachs form factors with m2

π , at a fixed
Q2 = 0.16, GeV2, is made in Figs. 10. The charge form factor
GC is in good agreement with the lattice QCD points, when
both the inhomogeneous BSE and pion cloud dressing are
included. On the other hand, for the magnetic form factor
GM , the BSE results alone have better agreement with lattice,
and the pion cloud causes an overestimate. The deviations
are still small, however, considering the simplicity of the
calculation. The deviation from the lattice simulation data
for GQ is possibly explained by the same reason behind the
disagreement with Qρ , that is, the lack of spherical symmetry
in the lattice simulation.

A final comparison is made in Fig. 11 for the Sachs form
factors as a function of Q2 for a pion mass of m2

π = 0.49 GeV2,
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FIG. 10. (Color online) ρ+ Sachs form factors as functions of
m2

π at Q2 = 0.16 GeV2. The curves have the same conventions as
Fig. 7.

where the lattice results are from Ref. [26]. We find that our
model qualitatively describes the ρ+ form factors obtained
from the lattice computation. Once again the addition of
the pion cloud causes an overestimate of GM (Q2) and the
magnitude of GQ(Q2) also appears too large.
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V. CONCLUSIONS

We computed the electromagnetic form factors of the
ρ+ meson using an NJL model that simulates aspects of
quark confinement. The quark-photon vertex is studied in
three levels of sophistication: pointlike dressed quark, via the
inhomogeneous BSE, and also including corrections from a
pion cloud. The results are qualitatively in good agreement
with the recent lattice QCD computations.

The main level of disagreement comes from the quadrupole
moment and the corresponding form factor. We suggest that

lattice QCD studies of this type should look at the possible
effects of the lack of spherical symmetry of a cubic lattice in
the quadrupole moments and form factors. It would certainly
be helpful to have further lattice studies over a range of pion
masses and momentum transfers. Experimental measurements
would also be extremely valuable.

Therefore, the present work on the ρ meson structure and
the progress in the computation of the electromagnetic form
factors of the π and K , including the pion cloud, reported
in Ref. [30], support the importance of the model as a tool
to describe hadronic structure. In addition, the NJL model
is a quantum field theory where calculations are relatively
straightforward and it gives good results when compared to
more sophisticated methods that require much more resources,
such as lattice QCD. These advantages are useful in order to
perform larger calculations in problems such as the description
of hadrons in the nuclear medium, as required, for example, to
explore the properties of neutron stars. In such cases the NJL
model serves as a very useful tool to guide possible future
computations of lattice QCD and other more sophisticated
approaches.
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CARRILLO-SERRANO, BENTZ, CLOËT, AND THOMAS PHYSICAL REVIEW C 92, 015212 (2015)

[29] Y. Nambu and G. Jona-Lasinio, Phys. Rev. 124, 246 (1961).
[30] Y. Ninomiya, W. Bentz, and I. C. Cloët, Phys. Rev. C 91, 025202

(2015).
[31] S. Klevansky, Rev. Mod. Phys. 64, 649 (1992).
[32] D. Ebert, T. Feldmann, and H. Reinhardt, Phys. Lett. B 388, 154

(1996).
[33] G. Hellstern, R. Alkofer, and H. Reinhardt, Nucl. Phys. A 625,

697 (1997).
[34] W. Bentz and A. W. Thomas, Nucl. Phys. A 696, 138 (2001).
[35] T. Hatsuda and T. Kunihiro, Phys. Rep. 247, 221 (1994).
[36] U. Vogl and W. Weise, Prog. Part. Nucl. Phys. 27, 195 (1991).
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