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Measurement of the EMC effect in the deuteron
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We determined the structure function ratio Rd
EMC = F d

2 /(F n
2 + F

p
2 ) from recently published F n

2 /F d
2 data

taken by the BONuS experiment using CLAS at Jefferson Lab. This ratio deviates from unity, with a slope
dRd

EMC/dx = −0.10 ± 0.05 in the range of Bjorken x from 0.35 to 0.7, for invariant mass W > 1.4 GeV and
Q2 > 1 GeV2. The observed EMC effect for these kinematics is consistent with conventional nuclear physics
models that include off-shell corrections, as well as with empirical analyses that find the EMC effect proportional
to the probability of short-range nucleon-nucleon correlations.
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I. INTRODUCTION

In the early 1980s the European Muon Collaboration
(EMC) discovered that deep-inelastic scattering from atomic
nuclei is not simply the incoherent sum of scattering from
the constituent nucleons [1]. Their data suggested that quarks
with longitudinal momentum fraction x in the range 0.35 to
0.7 were suppressed in bound nucleons, and their observations
were quickly confirmed at SLAC [2,3]. The deep-inelastic
structure function FA

2 (x) for a nucleus with A nucleons was
compared to the equivalent quantity Fd

2 (x) for the deuteron,
such that RA

EMC = (FA
2 /A)/(Fd

2 /2). At intermediate x, RA
EMC

is less than unity, and this deviation grows with A. Over the
following three decades, subsequent dedicated measurements
[4–8] confirmed the EMC effect with ever-increasing precision
for a wide range of nuclei. Drell-Yan data from Fermilab [9],
however, which were largely sensitive to sea quarks, showed no
modifications of the antiquark sea for 0.1 < x < 0.3, contrary
to models predicting antiquark enhancement. Despite many
theoretical papers on the EMC effect, no universally accepted
explanation has emerged. For reviews, see Refs. [10–12].

The precise, new measurements from Jefferson Lab on light
nuclei [8] have generated a renewed interest in understanding
the EMC effect. The slopes |dRA

EMC/dx| for 0.35 < x < 0.7
increase with A; however, the 9Be slope is anomalously large,
suggesting perhaps that the EMC effect is dependent on local
density and that 9Be might be acting like two tightly bound
α particles and a neutron. A recent analysis [13] suggests
that dRA

EMC/dx is proportional to the probability of finding
short-range correlations in nuclei [14–19]. Recent work on this
subject [20–25] concludes that although binding and Fermi
motion effects contribute, some modification of the bound
nucleon’s structure appears to be required to explain the EMC
effect. Whether this is caused by the nuclear mean field, short-
range correlations, or both is still open to debate.

EMC ratios are usually taken with respect to the deuteron,
which is the best proxy for an isoscalar nucleon (neutron plus

proton), but the deuteron too may exhibit an EMC effect.
Several data-driven, model-dependent attempts [7,13,26] have
been made to determine Rd

EMC = Fd
2 /(Fn

2 + F
p
2 ), in which

F
n(p)
2 is the free neutron (proton) structure function. However,

the lack of knowledge about the free neutron’s structure has
clouded these efforts. Theoretical estimates of the deuteron
EMC ratio have also been made [27–39], often with the goal
of isolating Fn

2 /F
p
2 .

A clean measurement of Rd
EMC is greatly needed. The

deuteron is weakly bound (by 2.2 MeV), and the nucleons
are governed only by the pn interaction. Therefore, a precise
measurement of Rd

EMC can shed light on the cause of the
EMC effect. Because the deuteron has a weak mean field
(1 MeV/nucleon binding versus 8 MeV/nucleon for heavier
nuclei), but a substantial contribution from high-momentum
pn pairs, it is a good test case.

II. DATA ANALYSIS

A new extraction of Rd
EMC with smaller uncertainties on

Fn
2 is now possible thanks to the high-quality data from

the BONuS experiment [40–42] using CLAS at Jefferson
Lab with electron beams up to 5.26 GeV. BONuS was
designed to measure the high-x structure function ratio Fn

2 /F
p
2

using a model-independent extraction of Fn
2 that relies on

the spectator tagging technique. The experiment used a
7-atm gaseous deuterium target surrounded by a radial time
projection chamber capable of detecting recoil protons in
the range 70–200 MeV/c [40]. By selecting backward-going
and low-momentum spectators, final-state pn interactions and
off-shell effects were minimized, respectively [42]. Detection
of the spectator proton ensured that the electron scattered
from the neutron. The initial-state kinematics of the neutron
were then calculated from the spectator momentum. This
technique enabled the extraction of Fn

2 /F d
2 over a wide range

of x for 4-momentum transfer squared Q2 between 0.7 and
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4.5 GeV2, which covers the resonance region and part of
the deep-inelastic region. For the present analysis we have
used the published data from the 4.22- and 5.26-GeV beam
energies with Q2 � 1 GeV2 and invariant final-state mass
W > 1.4 GeV to determine Rd

EMC.
The primary data from BONuS are the ratios Fn

2 /F d
2

obtained from measuring tagged neutron event rates in CLAS
and dividing them by the untagged deuteron rates recorded
simultaneously at the same kinematics [42]. Consequently,
detector acceptance and other systematic effects largely cancel,
and the accuracy of this ratio is far better than that of Fn

2 alone.
The overall normalization of the BONuS data, which takes

into account the spectator proton detection efficiency, was
initially chosen [41] to make Fn

2 /F
p
2 at x = 0.3 agree with the

CTEQ–Jefferson Lab (CJ) [43] global fit for this point. There
is a 3% normalization uncertainty associated with this choice.
For the final BONuS results [42], which include the resonance
region, the normalization minimized the χ2 of the full data
set with respect to the most recent update [44] of the Christy
and Bosted (CB) fits [45,46]. In this case, the convolution
model of Refs. [25,36] allowed for a self-consistent extraction
of Fn

2 from F
p
2 and Fd

2 and better control over the relative
normalization of Fn

2 and Fd
2 . The new model produced no

change in the 5-GeV normalization, but a 10% increase in the
magnitude of the 4-GeV data.

Figure 1 shows the BONuS Fn
2 /F d

2 data set taken with a
5.26-GeV beam. The red points correspond to values of the
struck neutron’s invariant mass W above 1.4 GeV, whereas the
black points (W < 1.4 GeV) are excluded from this analysis
to eliminate the � resonance.

With the new normalization, both the 5.26- and 4.22-GeV
data sets yield consistent results within the statistical un-
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FIG. 1. (Color online) BONuS data for F n
2 /F d

2 vs Bjorken x

taken with a 5.26-GeV beam. Only data for Q2 � 1 GeV2 are shown.
The red points (W > 1.4 GeV) are used in this analysis. Error bars
are statistical only. Each spectrum is shifted upward by 1.0 from the
set below it.

certainties. To explore the region x > 0.45 we pushed our
analysis into the resonance region (1.4 < W < 2.0 GeV).
Available data, albeit at slightly higher Q2, suggest that RA

EMC
in the resonance region is similar to that in the deep-inelastic
scattering region at the same x [47]. Therefore, we expect
that an average over many different Q2 values washes out any
resonance structure and that duality ensures Rd

EMC at fixed x,
averaged over W , approaches the deep-inelastic limit. These
assumptions were tested and confirmed within statistical and
systematic uncertainties by looking for a Q2 dependence of
Rd

EMC within each x bin and by considering variations in Rd
EMC

among four kinematic cases:

(1) W > 1.4 GeV and Q2 > 1 GeV2,
(2) W > 1.8 GeV and Q2 > 1 GeV2,
(3) W > 2.0 GeV and Q2 > 1 GeV2, and
(4) W > 2.0 GeV and Q2 > 2 GeV2.

The Fn
2 /F d

2 data were sorted into 20-MeV-wide W bins
and into logarithmic Q2 bins (13 per decade) with edges at
0.92, 1.10, 1.31, 1.56, 1.87, 2.23, 2,66, 3.17, 3.79, 4.52, and
5.40 GeV2.

The analysis consisted of forming the quantity

r(W,Q2) = Fn
2

Fd
2

+ F
p
2

Fd
2

, (1)

in which the first term is the measured BONuS ratio and the
second term is the parametrization of world data [44–46]. All
data falling within one of the 20 x bins of width 0.05 were
combined using

〈x〉 =
∑

i

xi

σ 2
i

/ ∑
i

1

σ 2
i

, (2)

〈r〉 =
∑

i

ri

σ 2
i

/∑
i

1

σ 2
i

, (3)

�rstat =
√

1

/ ∑
i

1

σ 2
i

, (4)

�rsys =
∑

i

�rsys,i

σ 2
i

/∑
i

1

σ 2
i

, (5)

in which σi are the statistical uncertainties and �rsys,i are
the corresponding systematic uncertainties for the ith Fn

2 /F d
2

datum.
The final values for Rd

EMC were then calculated as

Rd
EMC = 1/〈r〉, (6)

�Rstat
EMC = �rstat/〈r〉2, (7)

�R
sys
EMC = �rsys/〈r〉2. (8)

III. UNCERTAINTIES

Several checks on our results were made. First, the analysis
was performed by directly calculating Rd

EMC = 〈1/r〉 using
the same 20 x bins. The final answers were nearly identical
to those in which inversion was the last step. The statistical
spread in the ratio r in each x bin was used to calculate a

015211-2



MEASUREMENT OF THE EMC EFFECT IN THE DEUTERON PHYSICAL REVIEW C 92, 015211 (2015)

standard error. This error agreed very well with �rstat, which
supports the hypothesis that variations in r within a bin are
purely statistical. Systematic bias was also studied using a cut
for Q2 > 2 GeV2, which in the region of comparison showed
no significant deviation from the data that include lower Q2

values.
Overall systematic uncertainties were estimated by varying

the models for F
p
2 /F d

2 and the kinematic cuts. The model
dependence was explored using the published CB fits and
two later improvements applied to kinematic case 1 using the
5-GeV data. The kinematic dependence was explored using
kinematic cases 1–4 for the 5-GeV data and case 1 for the
4-GeV data. In order to separate the overall normalization
uncertainty from other systematic uncertainties, we fit the
EMC slope in the range 0.35 < x < 0.7 and rescaled the
data such that the linear fit intersected unity at x = 0.31. This
value was obtained from a global analysis of the EMC effect
in all nuclei [13]. The scaling factors ranged from 0.99 to
1.01 for the different cases. The average variation in Rd

EMC(x)
at fixed x for the different cases, the 1% scale uncertainty,
and the BONuS systematic uncertainty �R

sys
EMC were added

in quadrature to yield �R
sys
tot , which is listed in Table I and

shown as the blue band in Fig. 2. The systematic uncertainties
of the BONuS data themselves dominate at large x, whereas
the model uncertainties of the global fits dominate at low x
(high W ). The mid-x region is dominated by the normalization
uncertainty. For case 2 with x > 0.4, Rd

EMC tends to be higher
than for case 1. This arises in a region of significantly lower
statistics on account of the higher-W cut and fewer kinematic
points available for resonance averaging. Although the slope
dRd

EMC/dx in this case is consistent with zero, we find this
result unstable to small changes in kinematics. Case 2 at high
x figures into the systematic errors on our quoted Rd

EMC values,
however.

Since the data span a large and relatively low Q2 range
starting at 1 GeV2, one needs to worry about whether Rd

EMC is

TABLE I. EMC results for the deuteron. The columns correspond
to the number of kinematic points, average x and Q2, the EMC ratio,
the statistical and systematic errors from the BONuS data, and the
total systematic error including modeling of F

p
2 /F d

2 .

〈Q2〉
N 〈x〉 (GeV2) Rd

EMC �Rstat
EMC �R

sys
EMC �R

sys
tot

28 0.177 1.09 0.995 0.003 0.002 0.015
55 0.224 1.24 0.991 0.003 0.003 0.010
65 0.273 1.39 0.997 0.003 0.003 0.007
71 0.323 1.50 0.994 0.003 0.004 0.007
70 0.373 1.63 1.000 0.003 0.005 0.007
70 0.422 1.71 0.992 0.003 0.007 0.009
71 0.472 1.85 0.983 0.004 0.009 0.009
56 0.523 2.01 0.967 0.004 0.011 0.012
47 0.572 2.30 0.994 0.006 0.013 0.014
41 0.619 2.54 0.974 0.007 0.017 0.017
26 0.670 2.97 0.984 0.011 0.020 0.021
21 0.719 3.39 1.019 0.019 0.023 0.025
11 0.767 4.03 1.075 0.041 0.024 0.029
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FIG. 2. (Color online) The deuteron EMC ratio Rd
EMC = F d

2 /

(F n
2 + F

p
2 ) as extracted from the BONuS data. Total systematic

uncertainties are shown as a band arbitrarily positioned at 0.91 (blue).
The yellow band shows the CJ12 [49] limits expected from their
nuclear models. The black points are the combined 4- and 5-GeV
data, whereas the red points are the 4-GeV data alone. The dashed
blue line shows the calculations of Ref. [36]. The solid line (black) is
the fit to the black points for 0.35 < x < 0.7.

simply an artifact of structure function evolution. To study this
we looked at the contents of each x bin separately. Figure 1
shows that each x bin covers a wide enough Q2 range to study
Q2 variations within that bin. For this study each data point
was converted into Rd

EMC as described above, and instead of
averaging, all values were fit to a straight line versus Q2.
Fitting to a constant slope yields dRd

EMC/dQ2 = 0.0037(45),
which is consistent with no observable Q2 variation.

Although the BONuS F2 data were extracted assuming that
the longitudinal-to-transverse cross section ratio R cancels in
the neutron-to-deuteron ratios, the associated uncertainty is
included in the published results. Some nuclear dependence to
R could, however, slightly modify our EMC results [48].

IV. RESULTS

Our final result uses the new self-consistent convolution
model [44] for F

p
2 /F d

2 , which was used to determine the
absolute normalization of the final published BONuS Fn

2 /F d
2

data [42]. It provides an excellent representation of F2 for our
kinematics. Our result uses the combined 5.26- and 4.22-GeV
data with cuts Q2 > 1 GeV2 and W > 1.4 GeV. A linear fit for
0.35 < x < 0.7 yields dRd

EMC/dx = −0.10 ± 0.05 where the
uncertainty comes from the χ2 fit. Figure 2 shows these results
together with comparisons to various models. For x < 0.5
the EMC ratios Rd

EMC agree within uncertainties with those
obtained using more stringent cuts in W . The ratio for x > 0.5
continues the trend of the lower-x data, with a hint of the
expected rise above x = 0.7 as seen in RA

EMC for heavier nuclei,
but these high-x values are more uncertain because there are
fewer data points for resonance averaging. The black circles
are the combined results for 4 and 5 GeV, which are clearly
dominated by the 5-GeV data. The 4-GeV data by themselves
(red triangles) are consistent with the combined data set. The
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two points between x = 0.5 and 0.6 seem to be off the trend,
one being high and the other low. Because this is consistent
for the two beam energies, we suspect that there is a slight
mismatch between the model form factors and the data in this
region.

Table I gives our numerical results, in which N is the
number of Fn

2 /F d
2 points contributing to a bin with average

kinematic values 〈x〉 and 〈Q2〉. Here �Rstat
EMC and �R

sys
EMC

are the statistical and systematic uncertainties that come
from the BONuS data themselves, and �R

sys
tot is the total

systematic uncertainty that includes �R
sys
EMC plus the modeling

and normalization uncertainties in F
p
2 /F d

2 .
The current results can be compared to the SLAC model-

dependent extraction from Ref. [7]. Here Rd
EMC was esti-

mated assuming the hypothesis of Ref. [50] that 1 + REMC

is proportional to the nucleon density. The SLAC slope
dRd

EMC/dx = −0.098 ± 0.005 is similar to our own, but its
quoted uncertainty takes no account of the model dependence.
The assumption of density dependence gives consistent results
with our measurements for the deuteron. Semi-empirical
models like that of Ref. [36] (blue dashed curve in Fig. 2),
which include Fermi motion, binding, and off-shell effects,
are able to describe the shape of Rd

EMC quite well. Our data are
also consistent with the CJ12 [49] band in yellow.

We have explored whether the Nachtmann variable
ξ = 2x/(1 +

√
1 + 4M2x2/Q2) (with M the nucleon mass)

would be better suited than x to represent Rd
EMC, since our data

are at relatively low Q2. The authors of Refs. [8,47] too have
addressed this question. They and we prefer x, which has been
the common variable of discourse and calculation. Our EMC
ratios are determined using data and model at precisely the
same values of W and Q2. Therefore, plotting versus ξ merely
redistributes the EMC points along the x axis. Generally, ξ is
smaller than x. Consequently, more of the high-x resonances
in the data set now contribute to the EMC slope. Thus, using
ξ to reduce the effect of resonances actually increases their
influence. A fit over the rescaled interval [0.35,0.65] yields
dRd

EMC/dξ = −0.08 ± 0.06. The slope is slightly smaller and
the uncertainty slightly larger than when we plot versus x.
Resonance states above x = 0.7 drive the slope to slightly
smaller values than the fit versus x.

The analysis of Ref. [13] finds a linear relationship
of the EMC slopes dRA

EMC/dx versus the relative short-
range correlation probability R2N (A/d) in a nucleus A with
respect to the deuteron. From that analysis the authors
conclude that the deuteron EMC slope should be dRd

EMC/dx =
−0.079 ± 0.006. This value is somewhat smaller than our
result of −0.10 ± 0.05 but is consistent within 1σ . A more
recent analysis along these same lines brackets the slope
between −0.079 and −0.106 [19], and suggests that the
uncertainties of Ref. [13] are underestimated.

V. Rd
EMC AND SHORT-RANGE CORRELATIONS

We are able to use our results to estimate the in-medium
correction RA

IMC = 2FA
2 /A(Fn

2 + F
p
2 ) with slope dRA

IMC/dx,
for which the normalizing factor is the isoscalar free nucleon.
We write RA

EMC = 1 + (dRA
EMC/dx)(x0 − x) assuming that all

nuclei have ratios of unity at x0 = 0.31 ± 0.04, as found
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FIG. 3. (Color online) EMC slopes per isoscalar nucleon,
−dRA

IMC/dx, vs the relative probability with respect to the
deuteron of short-range correlations, R2N (A/d). Fits assume that
(dRA

IMC/dx)/(R2N (A/d)) is constant. The red points are from
Ref. [13]. The blue points are from Ref. [20] and are corrected
for isospin and for x normalized to a maximum of x = A. Their
uncertainties are the same as for the red points.

in Ref. [13]. The nuclear EMC ratio RA
EMC can be multiplied

by the deuteron EMC ratio Rd
EMC to obtain RA

IMC. Hence, to
good approximation, dRA

IMC/dx = dRA
EMC/dx + dRd

EMC/dx.
Figure 3 shows the results. The data are consistent with the
ansatz that dRA

IMC/dx is directly proportional to R2N (A/d),
the short-range correlation probability, with a proportionality
constant 0.105 ± 0.004 (χ2/DOF = 1.22). This effect persists
for the isospin and nuclear-x-corrected data from Ref. [20]
(blue points), which have the same uncertainties as the red
points. The linear relationship between short-range correla-
tions and EMC slopes, with the shift for the deuteron EMC
effect, is now consistent with an intercept of zero, and the
relationship becomes a straight proportion described by a
single free parameter.

VI. SYNOPSIS

In summary, we find an EMC-like slope in the ratio of
deuteron to free nucleon structure functions, using the BONuS
data (which are partially in the nucleon resonance region above
the � resonance). This slope is consistent with conventional
nuclear physics models that include off-shell corrections,
as well as with short-range-correlation models of the EMC
effect. This first, direct measurement of the magnitude of the
EMC effect in deuterium demonstrates that the new BONuS
experiment at 11 GeV using CLAS12, with its better precision,
larger average Q2, and deep-inelastic kinematics, will be able
to determine Rd

EMC with good accuracy.
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