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In this work, the role of the �∗ resonances in the process of pp → nK+�+ are systematically investigated with
the effective Lagrangian approach and the isobar model. We find that a P31 state, either �∗(1750) or �∗(1910) is
favored by the data while the P33 state, namely �∗(1920), has small contribution. Besides, either the subthreshold
S31 �∗(1620) resonance or strong n� final state interaction or both have a possible contribution at near threshold
region, depending on the measured cross sections. We demonstrate the invariant mass distributions and the Dalitz
plots in order to investigate whether it is possible to distinguish the controversial K� production mechanism in
these observables.
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I. INTRODUCTION

The baryon spectrum has attracted a lot of theoretical and
experimental interest for a long time because it is expected
to reveal important information on the internal structure
of baryons and the mechanism of quark confinement. The
phenomenological models [1–4] predict the excited states
of N∗ and �∗, and recently lattice QCD has been used
to calculated the spectrum in finite volume [5,6]. However,
although some of the predicted states have been identified
from the πN and γN scattering data, many of them have not
yet been observed in any experiments [7–10]. These states, so
called as the missing resonances, are for what we are searching
[11]. Therefore, it is necessary and meaningful to search for
these states and study their properties in other reactions.

The pp → nK+�+ reaction is a very ideal channel for
studying the �∗ resonances with isospin 3/2 since the
contributions of the N∗ with isospin 1/2 are filtered out in this
channel. Some results have been obtained on the experimental
and theoretical aspects, however, they are far from being
sufficient to reveal the contribution of the �∗ on the basis
of these results.

At present, there are only a few experimental data on the
total cross section of the pp → nK+�+ reaction [12–17].
What is worse, it is known that the close-to-threshold data
are inconsistent between the COSY-11, HIRES, and COSY-
ANKE groups. The total cross section data from COSY-11
shows strong close-threshold enhancement [13], however, not
confirmed by the measurement of other two groups. The
COSY-ANKE data follow the behavior of three-body phase-
space [14,15] and the values are about one order smaller than
that of the COSY-11 at the same energy range [13]. Moreover,
the HIRES data [16] at beam energy Tp = 2.08 GeV make
the situation more complex and its value is around three times
bigger than the COSY-ANKE data at Tp = 2.16 GeV [14].
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Valdau and Wilkin argued that the HIRES data determined
from the inclusive K+-meson production in pp collisions
should be considered as an upper bound so it does not conflict
with the result of COSY-ANKE [17].

On the theoretical side, most of the previous studies
focus on the contribution of the �∗(1920) and �∗(1620)
resonances in the pp → nK+�+ reaction. Tsushima et al.
introduced the effective intermediate �∗(1920) resonance
to account for the contribution of several �∗ state around
1900 MeV [18–22] and their calculations reproduced the
experiment data at high energies very well. However, the
coupling of �∗(1920) to the K� in relative P wave is
suppressed at close-to-threshold energies. In order to explain
the large near-threshold data of COSY-11, Xie et al. [23]
suggested the �∗(1620) resonance below the K� threshold
as the possible source of the very strong near-threshold
enhancement. Later, Cao et al. [24] further pointed out that an
unusually strong n� final state interaction was needed to fully
interpret the COSY-11 data. In these calculations, the coupling
constant of the �∗(1620) to K� determined by the relation
g�∗(1620)�K = g�∗(1620)πN from the SU(3) symmetry has a big
uncertainty because the mass of �∗(1620) is below the K�
threshold.

The above situation indicates that the production mecha-
nism of the pp → nK+�+ reaction is still an open question.
As a matter of fact, there is a long discrepancy of various
coupled-channel studies of the π+p → K+�+ reaction,
where only the �∗ resonances are allowed, the same as the
pp → nK+�+ channel. The Juelich model [25–28] finds that
the �∗(1620) is dominant in the low energies of this reaction,
while the Bonn-Gatchina partial wave analysis identifies
the �∗(1920) as the most essential contribution [29,30]. The
Giessen model with the K-matrix approximation claims the
vital role of the �∗(1750) at close-threshold range [31–34].
The confusion is not relieved [29,32,34] in the π−p → K�
and γN → K� reactions where the N∗ resonances are
also contributing, though more data are available there. The
situation at high energies is even more complicated and several
partial waves are important.
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In this work, we systematically study the role of �∗++
resonances in the pp → nK+�+ channel in order to properly
clarify the present confusion and shed light on the future
measurements. This paper is organized as follows. After
the Introduction, we illustrate our investigative method and
formalism. In Sec. III, the numerical results are presented
and discussed. We propose two possible schemes to interpret
the contribution of �∗++ resonances in the pp → nK+�+
reaction. Finally, a short summary is given in Sec. IV.

II. METHOD AND FORMALISM

In the present work, we use the effective Lagrangian
approach and the isobar model in terms of hadrons to study
the process of pp → nK+�+ and π+p → K+�+, where
the K+�+ are produced through the intermediate �∗(1620),
�∗(1750), �∗(1910), and �∗(1920) resonances. Besides,
the π -meson exchange in the pp collisions is considered
in the proton-proton collisions. Another meson, e.g., the
ρ-meson exchange, is not included and this is not unanimous
in the modeling of the pp → nK+�+ reaction within a
meson-exchange picture. Fortunately, the estimation of the
pp → nK+�+ cross section in our model is sensitive to the
couplings of different �∗ resonances to the K� channel, which
are determined from the π+p → K+�+ reaction. Hence, the
single-pion exchange is enough for this purpose. By neglecting
the ρ-meson exchange, we can give a unified picture of pion-
and proton-induced reactions, though our theoretical results
are more general than this would suggest.

At present it is still under debate which P31 state, the
�∗(1750) or �∗(1910) resonance, has a strong coupling to
K�, as discussed in Sec. I. Based on the limited data of the
pp → nK+�+ reaction, it is impossible to unambiguously pin
down the relevant masses at this stage. So herein we include
these two P31 states separately, leading to two solutions with
different amplitudes,

MI = M�∗(1620) + M�∗(1910) + M�∗(1920), (1)

MII = M�∗(1620) + M�∗(1750) + M�∗(1920) (2)

as summarized in Table I. This is also in line with the
study of the π+p → K+�+ reaction in different models
[25–34], which usually include only one of the P31 states.
Correspondingly we will consider these two solutions in the
π+p → K+�+ reaction in the following calculation.

A. Feynman diagrams and effective Lagrangian

The basic tree-level Feynman diagrams for the pp →
nK+�+ reaction are presented in Fig. 1, and the s-channel

TABLE I. The considered �∗ resonances in the model.

Resonances Width (MeV) J P Solution I Solution II

�∗(1620)S31 140 1/2− √ √
�∗(1750)P31 300 1/2+ —

√
�∗(1910)P31 250 1/2+ √

—
�∗(1920)P33 220 3/2+ √ √

p

n

p

n

p p

1p 2p
1p 2p

a b

FIG. 1. Feynman diagram for the pp → nK+�+ reaction.

diagram for the π+p → K+�+ reaction is depicted in Fig. 2.
The t-channel diagram for the π+p → K+�+ reaction is
calculated as being small [34]. This is reasonable because
the exchanged K and K∗ mesons in the t-channel have a
small coupling to the relevant N� and πK channels. The
interference of the u and t channels with s-channel resonances
contribution are important for describing the differential and
polarization observables [34], but it is safe to ignore them in
the determination of the coupling constants of the dominant
resonances in the s channel.

For the interaction vertex of πNN , we use the effective
pseudoscalar coupling [18–20]

LπNN = −igπNNN̄γ5 �τ · �πN. (3)

The Lagrangians of �∗Nπ and �∗K� vertices are used by
many models, such as the Jülich model, Giessen model, and
Bonn-Gatchina model [27,29,31]. But the elementary Lorentz
structure which depends on the relative orbital momentum and
spin are the same. Therefore, the general effective Lagrangian
for the vertices of �∗Nπ and �∗�K read as follows:

L
�∗ (1620)Nπ

= g�∗(1620)Nπ

mπ

�̄∗γ μ�τ · ∂μ �πN + H.c., (4)

L
�∗ (1620)�K

= g�∗(1620)�K

mK

�̄∗γ μ�τ · ∂μ
�K� + H.c., (5)

L
�∗ (1750)Nπ

= −g�∗(1750)Nπ

m�∗(1750)
�̄∗γ5γμ�τ · ∂μ �πN + H.c., (6)

π+

p

Δ++

K+

Σ+

k1

k2

k3

k4

q

FIG. 2. Feynman diagram for the π+p → K+�+ reaction.
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L
�∗ (1750)�K

= −g�∗(1750)�K

m�∗(1750)
�̄∗γ5γμ�τ · ∂μ �K� + H.c., (7)

L
�∗ (1910)Nπ

= −g�∗(1910)Nπ

m�∗(1910)
�̄∗γ5γμ�τ · ∂μ �πN + H.c., (8)

L
�∗ (1910)�K

= −g�∗(1910)�K

m�∗(1910)
�̄∗γ5γμ�τ · ∂μ �K� + H.c., (9)

L
�∗ (1920)Nπ

= −g�∗(1920)Nπ

m�∗(1920)
�̄∗

μ�τ · ∂μ �πN + H.c., (10)

L
�∗ (1920)�K

= −g�∗(1920)�K

m�∗(1920)
�̄∗

μ�τ · ∂μ �K� + H.c., (11)

where �τ is the Pauli matrix, and �∗ and �∗
μ stand for the fields

of the corresponding baryon resonances.

B. Propagator and form factor

The propagator of the π meson is

Gπ (qπ ) = −i

q2
π − m2

π

. (12)

The propagators for the resonance �∗ can be constructed
through the projection operator and Breit-Wigner factor [35].
For the �∗(1620), �∗(1750), and �∗(1910) with spin-1/2, the
propagator can be written as

G
1
2
�∗ (q�∗ ) = −i

�q�∗ + m�∗

q2
�∗ − m2

�∗ + im�∗	�∗
. (13)

For �∗(1920) with spin-3/2, we have

G
3/2
�∗ (q�∗ ) = G

1/2
�∗ (q�∗ )Gμν(q�∗ ), (14)

G
μν
�∗ (q�∗ ) = −i

�q�∗ + m�∗

q2
�∗ − m2

�∗ + im�∗	�∗

×
[
gμν − 1

3
γ μγ ν −

(
γ μqν

�∗ − γ νq
μ
�∗

)
3m�∗

− 2q
μ
�∗qν

�∗

3m2
�∗

]
. (15)

At each vertex a relevant off-shell form factor is used to
suppress the contributions from high exchanged momenta. In
our computation, we take the same form factors as those used in
the well-known Bonn model for the πNN and �∗Nπ vertices
[36]

FNN
π

(
q2

π

) = �2
π − m2

π

�2
π − q2

π

(16)

F�∗N
π

(
q2

π

) = �∗2
π − m2

π

�∗2
π − q2

π

, (17)

where qπ and �(∗)
π are the four-momentum and cut-off

parameters for the exchange π meson, respectively. We take
�π = 0.8 GeV for all resonances and �∗

π = 0.8 GeV, 1.0 GeV,
1.2 GeV, and 1.2 GeV for the �∗(1620), �∗(1750), �∗(1910),
and �∗(1920) resonances, respectively. They are determined
by the data of pp → nK+�+. The �∗

π of �∗(1620) can be
determined in the close-to-threshold region while those of
the �∗(1750) and �∗(1910) can be pinned down at higher

energies. The uncertainty of the �∗
π for �∗(1920) is relatively

bigger because its contribution is small. For consistency, we
set it to be the same as that of �∗(1910).

Besides, the form factor for the off-shell resonances is
taken as

F�∗
(
q2

�∗
) = �4

�∗

�4
�∗ + (

q2 − m2
�∗

)2 , (18)

which is used to depict the resonances in the π+p → K+�+
and pp → nK+�+ reactions. The revelent cut-off parameters
��∗ = 1.7 GeV are taken to be around the mass of resonances
in both reactions and the calculated results are not very
sensitive to this value.

C. Coupling constants

The coupling constant of the πNN interaction was given
in many theoretical works, and we take g2

πNN/4π = 12.96
[37,38]. According to the above Lagrangians, the partial decay
widths which are related to the coupling constants can be
written as follows:

	�∗(1620)→Nπ = g2
�∗(1620)Nπ (EN + mN )

∣∣ �pc.m.
N

∣∣
4πm�∗(1620)m2

π

× (m�∗(1620) − mN )2, (19)

	�∗(1750)→Nπ = g2
�∗(1750)Nπ (EN − mN )

∣∣ �pc.m.
N

∣∣
4πm3

�∗(1750)

× (m�∗(1750) + mN )2, (20)

	�∗(1910)→Nπ = g2
�∗(1910)Nπ (EN − mN )

∣∣ �pc.m.
N

∣∣
4πm3

�∗(1910)

× (m�∗(1910) + mN )2, (21)

	�∗(1920)→Nπ = g2
�∗(1920)Nπ (EN + mN )

12πm3
�∗(1920)

∣∣ �pc.m.
N

∣∣3
, (22)

where the EN , Eπ , and �pc.m.
N are defined in the center of mass

(c.m.) system:

EN = M2
�∗ + m2

N − m2
π

2M�∗
,

∣∣ �pc.m.
N

∣∣ =
√

E2
N − m2

N .

For the �∗ → K� decays, the formulas are basically
identical to those for �∗ → πN with the replacement of π and
N to K and �, respectively. With the experimental masses,
total decay widths, and branching ratios [39], we can obtain
all relevant �∗ resonance parameters from above formulas as
summarized in Table II. In this table, all the known branching
ratios of the �∗(1620), �∗(1750), �∗(1910), and �∗(1920)
resonances are taken from the Particle Data Group (PDG)
[39].

Since the mass of the �∗(1620) is below the threshold
of the K�, the coupling of the �∗(1620) to K� cannot
be determined by the corresponding decay width. Also,
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TABLE II. Relevant parameters for �∗ resonances. The values
labeled with a dagger “†” are extracted from the data of π+p →
K+�+ reaction and others are from the compilation of PDG
[39].

Resonances mass width channel Branching g2/4π

(MeV) (MeV) ratio (%)

�∗(1620) 1615 140 πN 25.0 0.002
K� − 0.053†

�∗(1750) 1750 300 πN 10.0 0.20
K� 7.1 2.96†

�∗(1910) 1875 250 πN 22.5 0.288
K� 14.0 0.953

�∗(1920) 1910 220 πN 12.5 0.730
K� 2.14 0.510

there is no so much information on the coupling strength
of the �∗(1750)K� vertex. In our calculation, they are
treated as free parameters and fitted to the data of the
π+p → K+�+ reaction. Following the Feynman rules and
using the above Lagrangian, the theoretical invariant am-
plitude A of π+p → K+�+ reaction in Fig. 2 could be
calculated as

AI = g�∗(1620)Nπg�∗(1620)�KF�∗(1620)
(
q2

�∗
)

mKmπ

× ū(k4) � k3G�∗(1750)
(
q2

�∗
) � k1u(k2)

+ g�∗(1750)Nπg�∗(1750)�KF�∗(1750)
(
q2

�∗
)

m2
�∗(1750)

× ū(k4)γ5 � k3G�∗(1750)
(
q2

�∗
) � k1γ5u(k2)

+ g�∗(1920)Nπg�∗(1920)�KF�∗(1920)
(
q2

�∗
)

m2
�∗(1920)

× ū(k4)k3μG
μν
�∗(1920)

(
q2

�∗
)
k1νu(k2) , (23)

if assuming the intermediate P31 excitation is the �∗(1750)
resonance. Here the propagator G�∗ and the form factor
F�∗ of the �∗ resonance can be found in the following
subsection. By integrating the amplitude in the two-body phase
space, we can easily obtain the total cross sections of the
π+p → K+�+ reaction as function of the momentum of
beam particle π+ meson. By fitting the coupling constants
of �∗(1620)K� and �∗(1750)K�, we achieve a good agree-
ment (χ2 = 3.6) between the model and the experimental data,
as shown in Fig. 3(a) and Table II. The extracted parameter
g2

�∗(1750)�K/4π = 2.96 gives a reasonable branch ratio 7.1% of
�∗(1750) → K�, which is around one order larger than that
in the refined Giessen model (0.9%) [34]. However, it should
be noted that the mass and total width of �∗(1750) are different
in two approaches. Our g2

�∗(1620)�K/4π = 0.053 is about one
order smaller than the value from SU(3) symmetry in Ref. [23],
but in the same level with the value of the Giessen model [34].
In an alternative explanation of the π+p → K+�+ data, the
�∗(1750) would be replaced by the �∗(1910) in Eq. (23),
corresponding to the amplitudes AII in solution II (χ2 = 4.6).
The calculated total cross section of π+p → K+�+ with

FIG. 3. Total cross section including the contributions of
�∗(1750) resonance versus the beam momentum Plab for π+p →
K+�+ reaction. The experimental data are taken from Ref. [12].

the parameters in Table II are shown in Fig. 3(b). As can
be seen, the two solutions both give a fair reproduction
of the data, reflecting the validity and consistency of our
parameters.

D. Amplitude

According to above effective Lagrangian and the Feynman
rules, the invariant amplitudes of the �∗(1620), �∗(1750),
�∗(1910), and �∗(1920) resonances contribution in the pp →
nK+�+ reaction could be read as

M�∗(1620) =
√

2gπNNg�∗(1620)�Kg�∗(1620)Nπ

mKmπ

×FNN
π

(
q2

π

)
F�∗N

π

(
q2

π

)
F�∗

(
q2

�∗
)

× ū�(p�) �pKG
1
2
�∗ (q�∗ ) �pπ

× uN (p1)Gπ (qπ )ūN (pn)γ5uN (p2), (24)

M�∗(1750) =
√

2gπNNg�∗(1750)Nπg�∗(1750)�K

m2
�∗(1750)

×FNN
π

(
q2

π

)
F�∗N

π

(
q2

π

)
F�∗

(
q2

�∗
)

× ū�(p�)γ5 �pKG
1
2
�∗ (q�∗ ) �pπγ5

× uN (p1)Gπ (qπ )ūN (pn)γ5uN (p2), (25)
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M�∗(1910) =
√

2gπNNg�∗(1910)Nπg�∗(1910)�K

m2
�∗(1910)

×FNN
π

(
q2

π

)
F�∗N

π

(
q2

π

)
F�∗

(
q2

�∗
)

× ū�(p�)γ5 �pKG
1
2
�∗ (q�∗ ) �pπγ5

× uN (p1)Gπ (qπ )ūN (pn)γ5uN (p2), (26)

M�∗(1920) =
√

2gπNNg�∗(1910)Nπg�∗(1910)�K

m2
�∗(1920)

×FNN
π

(
q2

π

)
F�∗N

π

(
q2

π

)
F�∗

(
q2

�∗
)

× ū�(p�)(pK )μG
μν
�∗ (q�∗ )(pπ )ν

× uN (p1)Gπ (qπ )ūN (pn)γ5uN (p2), (27)

where u� and uN are the dirac wave functions of the � baryon
and the nucleon, respectively. The p1 and p2 denote the four-
momentum of the initial protons. The above amplitudes are
for the diagrams depicted in Fig. 1(a). For Fig. 1(b), we only
need to exchange p1 with p2 in the above formula.

The influence of the n�+ final state interaction (FSI) on
the near-threshold behavior is possibly weaker than the N�
interaction as suggested in the literature [14,15,17]. This FSI
effect, instead of the subthreshold �∗(1620), would give the
near threshold enhancement in the total cross section. This
gives rise to alternative solutions of solutions I and II. For the
moment we do not have detailed information on this n�+ FSI,
so we do not know the magnitude of the impact of this FSI on
the total cross section. For these reasons we simply factor the
amplitudes as [40]

M′
I = (M�∗(1620) + M�∗(1910) + M�∗(1920))Tn�, (28)

M′
II = (M�∗(1620) + M�∗(1750) + M�∗(1920))Tn�. (29)

The Tn� is the Jost function describing the n�+ final state
interaction and goes to unity if no FSI. In analogy to the p�
FSI in pp → pK+� reaction [41], we take the same formula
to depict the Tn� as used in Ref. [23]:

Tn� = q + iβ

q − iα
,

where q is the internal momentum of the n-�+ subsystem.
Adjusting our numerical calculations to the experiment data
and also referring the p� interaction in the pp → pK+�
reaction [41], the values of the α and β are chose to be

α = −70 MeV, β = 280 MeV.

The scattering length and effective range can be calculated by
α and β,

a = α + β

αβ
, r = 2

α + β
.

The above values of α and β correspond to the scattering length
a = 2.1 fm and effective range r = 1.9 fm, which is close to
the a = 1.6 fm and r = 3.2 fm in Ref. [23].

In our model, the initial state interaction (ISI) is not
considered because it is difficult to treat the ISI unambiguously
due to the lack of the accurate NN interaction model at such
high incident beam energies. Hanhart and Nakayama [42]
claim that the ISI has practically little influence on the energy

dependence of the meson production cross section of nucleon-
nucleon collisions close to threshold, and the reduction factor
to the cross section can be roughly estimated by the NN phase
shifts and inelasticities. In our paper, we do not consider this
reduction factor because this estimation is rough so it would
cause uncertainty in the model. In fact, the cut-off values in
form factors partly play the role of this reduction factor, as
prescribed in previous studies of nucleon-nucleon collisions
[18–26]. This is possibly the reason that the used cut-off values
are smaller than the usual ones.

The total cross section of the pp → nK+�+ reaction could
integrate the invariant amplitudes in the three-body phase
space,

dσ (pp → nK+�+) = m2
p√

(p1 · p2) − m4
p

(
1

4

∑
spins

|M|2
)

× (2π )4d�3(p1 + p2; pn,pK,p�), (30)

where the three-body phase space is defined as [39]

d�3 = 4mnm�δ4

(
p1 + p2 −

3∑
i=1

pi

)
3∏

i=1

d3pi

(2π )32Ei

. (31)

III. NUMERICAL RESULTS AND DISCUSSION

With the FOWL code in the CERN program library, the pro-
ton beam energy (Tp) dependence of the total cross sections for
the pp → nK+�+ reaction are calculated. As we have men-
tioned in Sec. II, we proposed two solutions to interpret the role
and contribution of �∗++ resonances in pp → nK+�+ reac-
tion. In this section, Figs. 4 and 5 present the numerical results
of solution I and Fig. 6 and 7 are the calculations for solution II.

In solution I as shown in Fig. 4, it is found that the �∗(1910)
resonance is dominant at high energy. The contributions of the

FIG. 4. The calculated total cross section versus Tp for the
pp → nK+�+ reaction in solution I compared to the data from
old measurement (solid squares) [12], COSY-11 (solid circles)
[13], COSY-ANKE (hollow diamonds and solid ball) [14,15,17],
and HIRES (solid triangles) [16]. The dashed, dotted, and dash-
dotted curves are contributions from the �∗(1620), �∗(1910), and
�∗(1920), respectively. The dash-dot-dotted curve is the contribution
of �∗(1910) with the n�+ FSI. The solid and bold curves are the
total contribution without and with the n�+ FSI, respectively.
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FIG. 5. The Dalitz plot (a) and invariant mass spectrum (b) for the pp → nK+�+ reaction at beam energy Tp = 2.8 GeV in solution
I without FSI. The solid line is the total contribution of the �∗(1620), �∗(1910), and �∗(1920) resonances and the dotted line is that with
�∗(1620) turned off. The dashed curve denote the pure phase space distribution.

�∗(1920) resonance are presented to be negligible, which is
consistent with the results in Refs. [23,24]. In the very close-
to-threshold energies, the contribution mainly comes from the
�∗(1620) resonance. It is noted that the contribution from the
�∗(1620) is not as large as the calculations in Refs. [23,24]
and nearly one order smaller than that of the �∗(1910) at the
beam energy Tp > 2.5 GeV, because we use smaller coupling
constants of �∗(1620)K� and cut-off in the form factors.
The total contribution from these three resonances [see the
amplitude in Eq. (1)] are in good agreement with the COSY-
ANKE data [12,14,15]. However, the role of the �∗(1620)
could be replaced by the strong n�+ FSI, see the dash-dot-
dotted curve in Fig. 4. If the �∗(1620) and strong n�+ FSI are
both included in the model [see Eq. (28)], the HIRES data [16]
could be fitted, as can bee seen by the bold curve in Fig. 4.

At the near threshold region, the Dalitz plot and invariant
mass spectra are close to the distributions of pure phase

FIG. 6. The calculated total cross section versus Tp for the pp →
nK+�+ reaction in solution II. The data are the same as those in
Fig. 4. The dotted and dash-dotted curves are the contribution from the
�∗(1750) with �∗

π = 1.0 and 1.5, respectively. The dash-dot-dotted
and solid curves are the total contribution with and without the n�+

FSI, respectively.

space so they give us little information. The measurements
at higher energies can give us more clues of contributing
resonances. Since the kinetic energy of the proton beam Tp

can reach up to about 2.8 GeV at COSY, we calculate the
Dalitz plot and invariant mass spectra at Tp = 2.8 GeV.
Figure 5 depicts our model prediction of the Dalitz plot
and invariant mass spectra in solution I of the amplitude
without n�+ FSI in Eq. (1). In Fig. 5(b), we notice that
there is a bump for invariant mass spectra in the range of
2.8 GeV 2 < M2(K+�+) < 3.2 GeV 2, which comes from
the contribution of the �∗(1620) resonance. So if invariant
mass spectra could be measured with good precision, the role
of the �∗(1620) resonance in the K� production would be
clarified.

In Fig. 6, we present the total cross sections for the
pp → nK+�+ reaction in our solution II. We find that the
calculations with the amplitude in Eq. (2) can reproduce the
COSY-ANKE data [12,14,15] quite well in the whole energy
range. Here we use the same parameters for the �∗(1620)
and �∗(1920) resonances as those in solution I. Similar to
solution I, the �∗(1620) resonance is important in the very
close-to-threshold energies and the contribution of �∗(1920)
is small. The �∗(1750) takes the place in the �∗(1910) and
dominates at high energies. As a result, it is seemed that either
�∗(1910) or �∗(1750) can describe the data well and the total
cross sections cannot resolve the mystery of mass position
of the P31 resonance. Meanwhile, the total contribution with
strong n�+ FSI [see Eq. (29)] describe the HIRES data
with good quality [16]. Moreover, it is worth noting that the
contribution of �∗(1750) resonances alone with appropriate
�∗

π = 1.5 GeV can describe the COSY-ANKE or HIRES data
with or without strong n�+ FSI, respectively, as shown in
Fig. 6. This reflects the fact that the the role of subthreshold
�∗(1620) resonance is very uncertain considering the present
total cross section data if the dominant P31 state is �∗(1750).
Fortunately, it would be studied in the invariant mass spectra,
as pointed out above. Anyway, the HIRES data indicate strong
n�+ FSI in both solutions.
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FIG. 7. The Dalitz plot (a) and the solid curve in invariant mass spectrum (b) for the pp → nK+�+ reaction at beam energy Tp = 2.8 GeV
with the contributions from the �∗(1750) resonance with FSI. The dotted curve is the �∗(1750) resonance without FSI, and the dashed curve
denotes the pure phase space distributions.

In Fig. 7, we give the Dalitz plot and invariant mass spectra
for the pp → nK+�+ reaction at Tp = 2.8 GeV with the
contribution of only the �∗(1750) resonance with �∗

π = 1.5.
The influence of �∗

π on these observables is minor. Comparing
with Fig. 5, we can see that the two schemes, the dominance
of �∗(1910) or �∗(1750), are obviously distinguishable. So
we expect that the new measurement of the invariant mass
spectrum of the pp → nK+�+ reaction at high energies
could clarify the controversial spectrum of the �∗ resonances.
Meanwhile, the influence of the n�+ FSI is mainly on the
invariant mass spectra M2(n�+) but the �∗(1620) resonance is
more obvious in the M2(K+�+), so they can be discriminated
in the Dalitz plot and invariant mass spectra as well.

IV. SUMMARY

The mass of the P31 state with isospin 3/2 is highly
questionable at present. Though the �∗(1910) resonance is
a four-star state in PDG [39] but it is missing in the dynamical
coupled-channels analyses of the Excited Baryon Analysis
Center (EBAC) at JLab [43], together with another four-star
P33 state �∗(1920). In their updated analyses which include
more channels, the �∗(1910) resonance appears [44,45]. The
only P31 �∗ state in the Giessen model [31–34] is the
�∗(1750), and it is also seen in the old KSU analysis [46] and
Pitt-ANL model [47]. The GWU analysis finds one P31 pole
at M = 1771 MeV but assigned it as the �∗(1910) resonance
due to its Breit-Wigner mass located at above 2.0 GeV [48].
The Jülich model finds a dynamical generated P31 state around
1750 MeV besides the genuine �∗(1910) resonance [25–28].
However, the �∗(1750) is only a one-star state in PDG [39].
The above situation shows that we still do not have enough
knowledge of these �∗ resonances. Our calculations in this
paper would be helpful for understanding them better.

In this work, we have calculated the contributions from the
�∗(1620), �∗(1750), �∗(1910), and �∗(1920) in the pp →
nK+�+ reaction and given two solutions to interpret the role
and contribution of the �∗++ resonances in this reaction based
on the present data of total cross sections. In solution I, the

contribution from the P31 �∗(1910) resonance is dominant at
high energies. In solution II, we find that another P31 state
�∗(1750) above threshold is most important, by combining
with the experimental data of the π+p → K+�+ reaction.
The present close-to-threshold data of total cross sections
cannot pin down that the P31 state is �∗(1750) or �∗(1910).
Only after the mass of the main resonance is determined, will
the remaining free parameters, namely the decay ratios of
resonances and cut-off in the form factors, be well determined
by the measured data. Then the mechanism of K� production
would be explained with more confidence. At present, it is
difficult to give a detailed error analysis of our model.

More seriously, the inconsistent close-to-threshold data
from several groups result in the rather inconclusive status
of the contribution at low energies. Either the subthreshold
P31 �∗(1620) resonance or strong n�+ FSI or both are
possibly significant at the close-to-threshold region. If the
HIRES data are only an upper bound of the total cross
section as argued by Valdau and Wilkin [17], we can conclude
that the �∗(1620) would be strongly coupled to the K� if
the �∗(1910) is responsible for the K� production at high
energies. However, if the strong coupling of the �∗(1750)
to the K� is confirmed, it is probable that the strong n�+
interaction is excluded to some confidential level and the
coupling of the �∗(1620) to the K� has to be checked by
the low range of M2(K+�+) in invariant mass spectra.

Fortunately, it is hoped that the invariant mass distributions
and the Dalitz plot could discriminate these solutions because
various contributions are evidently distinguishable as we
have presented. Though the experiment would be challenging
because of the neutron in the final states, it is encouraging to
measure these observables in the future considering the very
controversial location of the �∗ resonance and their coupling
to the K� channel.
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