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The quantum statistics (QS) correlations of identical bosons are well known to be sensitive to the space-time
extent and dynamics of the particle emitting source in high-energy collisions. While two-pion correlations are
most often experimentally measured, the QS correlations of three pions and higher are rarely explored. A set of
techniques to isolate and analyze three- and four-pion QS correlations is presented. In particular, the technique
of built correlation functions allows one to more easily study the effects of quantum coherence at finite relative
momenta instead of at the unmeasured intercept of correlation functions.
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I. INTRODUCTION

In high-energy collisions, the quantum statistics (QS)
correlations of identical particles provide the most sensitive
probe of the space-time structure of the particle-emitting
source [1–3]. Most often, two-pion Bose-Einstein correlations
are experimentally measured for which the techniques are
well established. However, the statistical precision of modern
experiments has opened the door to measurements of higher
order QS correlations.

Higher order QS correlations contain additional infor-
mation about the source which cannot be learned from
two-particle correlations alone. In particular, the suppression
expected from quantum coherence of identical pions in the
final state increases substantially for higher orders. The
possibility of quantum coherence in high energy collisions
has been considered several times before [4–9].

One such mechanism is the disoriented chiral condensate
(DCC) [7,8,10]. The chiral condensate can be characterized
with four scalar fields (σ,�π ) and is nonzero at low temperatures
where chiral symmetry is spontaneously broken. In the core
of the collision, the chiral condensate is expected to vanish
and the symmetry is restored. A hot expanding shell of
particles essentially shields the core from the true vacuum
outside the shell. As the core energy density drops, the chiral
condensate forms and may be temporarily disoriented in one
of the �π directions instead of the true vacuum σ direction. The
disoriented vacuum eventually reorients in the σ direction and
is accompanied by coherent pion radiation. The DCC is very
different from a Bose-Einstein condensate; the latter develops
from critically large pion densities.

A quantum coherent or pure state of matter can be a rather
delicate state of matter. Before the collision of two heavy ions,
each ion is in a separate pure quantum state. After the collision,
the detected particles may be in a mixed state or even remain
in a pure state depending on the number of particles detected
(quantum entanglement) [11]. During intermediate times when
the particle density is high, scatterings may also play a
role of quantum decoherence. The hot and dense medium
created is often modeled with hydrodynamics which assumes
local thermal equilibrium and quantum decoherence above
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the thermal length scale. Given the success of hydrodynamic
modeling of high-energy collisions, it is conceptually difficult
to imagine the survival of coherence in the final state.

The effect of coherence manifests itself most directly in the
suppression of Bose-Einstein correlations [1–4,9]. However,
even for a coherent fraction as large as 50%, the intercept
(vanishing relative momentum) of two-pion correlations is
decreased only by 25%. Furthermore, Coulomb repulsion and
the dilution from long-lived resonance decays also suppress
Bose-Einstein correlations. Given the various sources of
suppression and the unknown functional form of Bose-Einstein
correlations, it is practically impossible to determine the
coherent fraction from two-pion correlations alone.

In this article, a set of techniques for the measurement of
three- and four-pion QS correlations is presented. In particular,
it is shown how the comparison of two-, three-, and four-pion
QS correlations can allow for a less ambiguous determination
of the coherent fraction. To that purpose, the method of
constructed or built correlation functions is introduced. The
techniques are presented for charged pions up to fourth order
but can be easily generalized beyond this.

This article is organized into ten sections. In Sec. II, the
correlation functions and projection variables are defined. In
Sec. III, the concept of symmetrization and pair exchange am-
plitudes is introduced. The main technique of built correlation
functions is introduced in Sec. IV. A short discussion of radii
measurements using multipion correlations is given in Sec.
V. Final-state interactions are discussed in Sec. VI. Dilution
effects from long-lived emitters are discussed in Sec. VII.
In Sec. VIII, the cumulant and partial cumulant correlation
functions are defined. A variety of model calculations are
shown in Sec. IX. In Sec. X, the effect of multiboson distortions
on the comparison of built and measured correlation functions
is calculated. Finally, the main findings of this analysis are
presented in Sec. XI.

II. DISTRIBUTIONS AND CORRELATION FUNCTIONS

The n-particle inclusive momentum spectrum is given
by Nn(p1,p2, . . . ,pn) where pi denotes the momentum of
particle i. The product of n single-particle inclusive spectra,
N1(p1)N1(p2) · · · N1(pn), forms a combinatorial reference
sample of the full n-particle spectrum. Correlation functions
of order n can then be constructed in the usual manner as the

0556-2813/2015/92(1)/014902(18) 014902-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.92.014902


DHEVAN GANGADHARAN PHYSICAL REVIEW C 92, 014902 (2015)

ratio of the two distributions,

Cn(p1,p2, . . . ,pn) = Nn(p1,p2, . . . ,pn)

N1(p1)N1(p2) · · · N1(pn)
. (1)

Experimentally, the two distributions can be measured by
taking all n particles from the same collision event or by taking
all n from different but similar events. In quantum optics, the
maximum of Cn for identical pions is n! in the dilute gas
limit [12–16] and neglecting isospin [9].

A. Projection variables

Two-particle correlations are projected onto relative mo-
mentum in the pair rest frame (PRF) or in the longitu-
dinally comoving system (LCMS) where the z component
of the pair momentum vanishes. In the PRF, the one-
dimensional (1D) Lorentz invariant relative momentum, q =√−(p1 − p2)μ(p1 − p2)μ, is used. In the LCMS frame, the
relative momentum vector is projected onto three dimensions.
The projection onto the pair momentum vector forms qout. The
projection onto the longitudinal direction (beam axis) forms
qlong. The direction perpendicular to both “out” and “long”
forms the qside projection.

For three- and four-particle correlations, the Lorentz invari-
ant relative momentum is used and defined by the quadrature
sum of pair invariant relative momenta

Q3 =
√

q2
12 + q2

13 + q2
23, (2)

Q4 =
√

q2
12 + q2

13 + q2
14 + q2

23 + q2
24 + q2

34, (3)

for three- and four-particle correlations, respectively. The
transverse momentum dependence can be studied by also
projecting onto the average transverse momenta

kT = | �pT,1 + �pT,2|
2

, (4)

KT,3 = | �pT,1 + �pT,2 + �pT,3|
3

, (5)

KT,4 = | �pT,1 + �pT,2 + �pT,3 + �pT,4|
4

, (6)

for two-, three-, and four-particle correlations, respectively.

III. SYMMETRIZATION

For identical pions, the effect of quantum statistics is
represented as a symmetrization of pion creation points.
The symmetrization is only valid for independently produced
pions [1,2]. As pions in a coherent state are collectively
produced, the symmetrization is absent for pairs of coherent
pions. It is, however, present for mixed-pairs with one pion
from the coherent pool and the other from chaotic pool of
particles.

In the Wigner function formalism and neglecting particle
interactions, the correlation functions are written in terms
of the Fourier transformed single-particle emission function,
S(x,p), which describes the phase-space distribution of par-
ticle production [17]. For the case of chaotic plus coherent
emission, the emission function is split into the sum of a chaotic
and coherent parts [4,9,18],

S(x,p) = [1 − G(p)]Sch(x,p) + G(p)Scoh(x,p). (7)

The fraction of pions from the coherent pool is given by G(p)
and is momentum dependent in general, although it is treated
as momentum independent for the rest of this article. The
normalized pair exchange amplitudes, dij , are introduced in
order to write the correlation functions compactly in terms of
the emission functions

dij =
∫

d4xS(x,Kij )eiqij x[ ∫
d4xS(x,pi)

∫
d4yS(y,pj )

]1/2

=
∫

d4x[(1 − G)Sch(x,Kij ) + GScoh(x,Kij )]eiqij x[ ∫
d4xS(x,pi)

∫
d4yS(y,pj )

]1/2

= (1 − G)Tij e
i�ij + Gtij e

iφij . (8)

The magnitudes of the Fourier transform (FT), Tij and tij , are
referred to as the pair exchange magnitudes for the chaotic
and coherent parts of the source, respectively. The phases of
the FT for the chaotic and coherent parts are given by �ij and
φij , respectively. The average and relative pair momentum are
given by Kij = (pi + pj )/2 and qij = pi − pj , respectively.
The two-pion correlation function can then be written as in
Ref. [4]:

C2(p1,p2) = 1 (9)

+
∣∣ ∫ d4x S(x,K12)eiq12x

∣∣2 − G2
∣∣ ∫ d4x Scoh(x,K12)eiq12x

∣∣2

∫
d4x S(x,p1)

∫
d4y S(y,p2)

(10)

= 1 + (1 − G)2T 2
12 + 2G(1 − G)T12t12 cos(�12 − φ12) (11)

From Eq. (11), one notices that while the FT phases (�,φ)
disappear in the case of fully chaotic emission (G = 0), they
are present in the case of partial coherence. Each term in
Eq. (11) can be represented in a symmetrization diagram
similar to Ref. [19] and is shown in Fig. 1. Pions from the
chaotic pool are represented with a solid circle while those
from the coherent pool are given by a hollow circle. Chaotic

pions yield a multiplicative factor of 1 − G while coherent
pions yield a factor of G. Solid and dotted lines yield a
multiplicative factor from the pair exchange amplitude for
the chaotic (Tij e

i�ij ) and coherent (tij eiφij ) part of the source,
respectively. Lines running from pion j to pion i are the
complex conjugate of those in the opposite direction. The
sum of all graphs yield the full QS correlation function.
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FIG. 1. Two-pion symmetrization diagrams. Derived from simi-
lar figures in Ref. [19].

Also, from Eq. (8) one has the equality, �ij = −�ji and
φij = −φji .

The symmetrization diagrams for three- and four-pion
correlations are shown in Figs. 2 and 3, respectively.

The number of permutations in the n-pion set is n!. From
the diagrams in Fig. 2, the three-pion correlation function can
then be written as in Ref. [4]:

C3(p1,p2,p3)

= 1 + (1 − G)2
(
T 2

12 + T 2
23 + T 2

31

)
+ 2G(1 − G)[T12t12 cos(�12 − φ12)

+ T23t23 cos(�23 − φ23) + T31t31 cos(�31 − φ31)]

+ 2G(1 − G)2[T12T23t31 cos(�12 + �23 + φ31)

+ T12t23T31 cos(�12 + φ23 + �31)

+ t12T23T31 cos(φ12 + �23 + �31)]

+ 2(1 − G)3T12T23T31 cos(�12 + �23 + �31). (12)

A. r3 and r4

In the absence of pion coherence (G = 0), the three-pion
FT phase factor in Eq. (12) [cos(�12 + �23 + �31)] may be
isolated by comparing three-pion cumulant to two-pion QS
correlations. The three-pion QS cumulant correlation has, by
definition, all three-pion symmetrization terms removed from
Eq. (12) and is therefore given by

c3(1,2,3) = 1 + 2T12T23T31 cos(�12 + �23 + �31), (13)

where the simplified notation (i) stands for pi . One
may isolate the three-pion phase factor by normalizing c3

with the appropriate two-pion correlation factors given in

FIG. 2. Three-pion symmetrization diagrams. Derived from sim-
ilar figures in Ref. [19].

FIG. 3. Four-pion symmetrization diagrams. Derived from simi-
lar figures in Ref. [19].

Eq. (11) [18,20]:

r3(1,2,3) = c3(1,2,3) − 1√
[C2(1,2) − 1][C2(2,3) − 1][C2(3,1) − 1]

= 2 cos(�12 + �23 + �31). (14)

In Ref. [18] it was shown that to leading order, the relative
momentum dependence of r3 is quartic. In the absence of
the three-pion phase, r3 is equal to 2.0 for all triplet relative
momenta. The r3 function was recently measured at the Large
Hadron Collider (LHC) [21] in Pb-Pb collisions. Although
the systematic uncertainties were quite large for high Q3, no
significant Q3 dependence was observed for both low and high
transverse momentum.

Similarly, the four-pion FT phase factor [cos(�12 + �23 +
�34 + �41)] may be isolated by comparing four-pion cumulant
to two-pion QS correlations. The four-pion QS cumulant
correlation has all two-pion, two-pair, and three-pion sym-
metrization terms explicitly removed and is therefore given
by

c4(1,2,3,4)

= 1 + 2T12T23T34T41 cos(�12 + �23 + �34 + �41)

+ 2T12T24T43T31 cos(�12 + �24 + �43 + �31)

+ 2T13T32T24T41 cos(�13 + �32 + �24 + �41)

→ 1 + 6T12T23T34T41 cos(�12 + �23 + �34 + �41), (15)

where the last equality is naturally obtained after averaging
over many pion quadruplets. The four-pion FT phase can then
be isolated with r4 defined as

r4(1,2,3,4)

= c4(1,2,3,4) − 1√
(C2(1,2) − 1)(C2(2,3) − 1)(C2(3,4) − 1)(C2(4,1) − 1)

= 6 cos(�12 + �23 + �34 + �41). (16)

IV. BUILDING MULTI-PION QS
CORRELATION FUNCTIONS

In the absence of multi-pion FT phases and coherence,
higher order correlation functions (n > 2) do not contain any
additional information beyond that which is already present
in 2-pion correlation functions. The absence/presence of both
phenomena may then be tested by comparing the measured
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multi-pion QS correlations to the expectations from measured
2-pion correlations. For the rest of this section the FT phases
(�ij = 0,φij = 0) are neglected as one expects a rather weak
relative momentum dependence [18] and since the recent
ALICE r3 results show no substantial Q3 dependence [21].

With this simplification the building blocks of higher order
correlation functions are the pair exchange magnitudes, Tij ,tij ,
and the coherent fraction, G.

From Figs. 1–3, two-, three-, and four-pion QS correlations
can be written as in Ref. [4]:

C2(1,2) = 1 + (1 − G)2T 2
12 + 2G(1 − G)T12t12 (17)

C3(1,2,3) = 1 + (1 − G)2
(
T 2

12 + T 2
23 + T 2

31

) + 2G(1 − G)[T12t12 + T23t23 + T31t31]

+ 2G(1 − G)2[T12T23t31 + T12t23T31 + t12T23T31] + 2(1 − G)3T12T23T31 (18)

C4(1,2,3,4) = 1 + (1 − G)2
(
T 2

12 + T 2
23 + T 2

31 + T 2
14 + T 2

24 + T 2
34

) + 2G(1 − G)[T12t12 + T23t23 + T31t31 + ‘14’ + ‘24’ + ‘34’]

+ (1 − G)4
[
T 2

12T
2

34 + T 2
31T

2
24 + T 2

14T
2

23

] + G(1 − G)3
[
T 2

12T34t34 + T 2
34T12t12 + ‘13,24’ + ‘14,23’

]
+ 2(1 − G)3[T12T23T31 + T12T24T14 + T31T34T41 + T23T34T42]

+ 2G(1 − G)2[T12T23t31 + T12t23T31 + t12T23T31 + ‘124’ + ‘134’ + ‘234’]

+ 2(1 − G)4[T12T23T34T41 + T12T24T43T31 + T13T32T24T41]

+ 2G(1 − G)3[T12T23T34t14 + T12T23t34T14 + T12t23T34T14 + t12T23T34T14

+ ‘4321’ + ‘1243’ + ‘3421’ + ‘1324’ + ‘4231’], (19)

where ‘ij ’, ‘ij,kl’, ‘ijk’, and ‘ijkl’ represent permutations
within the same symmetrization sequence. In the case of fully
chaotic emission, Tij can be extracted directly from two-pion
correlations. As Tij is a 6D function, experimental two-pion
correlations should be binned as differentially as possible. One
may exploit longitudinal boost invariance and bin in the LCMS
in 4D (kT,qout,qside,qlong) as done in Ref. [21].

In the case of partial coherence one has three quantities
which cannot be extracted from two-pion correlations alone:
G,Tij ,tij . One can, however, consider two extreme scenarios of
coherent emission. In one case it is assumed that the space-time
structure of coherent emission is identical to chaotic emission
(tij = Tij ). In another case one assumes that coherent emission
is point-like at the center of the collision which might be
expected for Bose-Einstein condensate (tij = 1). One may also
consider additional scenarios with a suitable parametrization
of tij (e.g., Gaussian structure with an assumed radius). The
chaotic pair exchange magnitude, Tij , can then be extracted
from Eq. (17) with various assumptions of G. For the purpose
of studying partial coherence, built multi-pion correlation
functions are defined with Eqs. (18) and (19) but with Tij

taken from lower order measurements. A minimization of the
χ2 between built and measured correlations for each Qn bin
can be used to estimate G for different assumptions of the
coherent source profile.

A. Extraction of Ti j from c3

In high-multiplicity collision events, femtoscopy lies in
a clean region of phase space where background correla-
tions unrelated to QS and final-state interactions (FSIs) are
negligible. However, in low-multiplicity events, background
correlations such as minjets [22,23] are non-negligible and
not exactly known. The extraction of Tij from two-pion
correlations can then be unreliable. Instead, one may exploit

three-pion cumulants as was done in Ref. [24] for which
two-pion background correlations are explicitly removed. The
three-pion cumulant can be binned in 3D pair invariant relative
momenta (q12,q23,q31). The pair exchange magnitude can be
parametrized with an Edgeworth or Laguerre expansion [25]

Tij = sEw(R qij ) e−R2 q2
ij /2, (20)

Ew(R,qij ) = 1 +
∞∑

n=3

κn

n!(
√

2)n
Hn(R qij ), (21)

Tij = sLg(R qij ) e−R qij /2, (22)

Lg(R qij ) = 1 +
∞∑

n=1

ln

n!
Ln(R qij ). (23)

For the Edgeworth expansion, Ew(Rqij ) characterizes devia-
tions from Gaussian behavior, Hn are the Hermite polynomials,
and κn are the Edgeworth coefficients. For the Laguerre
expansion, Lg(Rqij ) characterizes deviations from exponential
behavior, Ln are the Laguerre polynomials, and ln are the
Laguerre coefficients. In both expansions, s is an additional
scale parameter and R is the second cumulant of the correlation
function. For the case when Ew = 1, R is the standard
deviation of a Gaussian source profile. For the case when Lg =
1, R is the FWHM of a Cauchy (Lorentzian) source profile.

The three-pion cumulant correlation can then be fit ac-
cording to Eq. (13) to extract the coefficients of the Tij

parametrization. The resulting Tij can be used to build
correlation functions. However, since c3(q12,q23,q31) is only
a 3D projection of a 9D correlation function, there are
somewhat more limitations to the accuracy of Tij extracted
from three-pion cumulants than two-pion correlations. An
estimate for the bias on built correlation functions caused by
limited dimensionality and binning will be discussed in Sec. X.
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V. RADII MEASUREMENTS

Most often in experimental analyses, two-pion QS cor-
relations are used to extract information on the freeze-out
space-time structure of the particle emitting source (e.g., radii).
Less explored are the multipion QS correlations which may
also be used to extract freeze-out radii [24,26–28]. For such
measurements, one typically assumes fully chaotic emission
and parametrizes Tij in Eqs. (18) and (19) with the usual
Gaussian or exponential forms.

Concerning the dimensionality of multipion projections,
often the correlations are projected and fit with 1D Lorentz
invariant relative momentum, Qn. However, a 1D fit to the full
correlation function is incorrect due to the summation of terms
with different powers of Tij in Eqs. (18) and (19). Instead, one
may isolate and fit only the three-pion cumulant, c3, for which
the two-pion symmetrization terms are explicitly removed.
The cumulant may be fit in 1D with a Gaussian function
only since the definition of Q3 coincides with the Gaussian
relative momentum dependence of T12T23T31. For a spherically
symmetric Gaussian source of radius R, Tij = e−R2q2

ij /2 and
therefore T12T23T31 = e−R2Q2

3/2. For all other fit functions, it
is more appropriate to fit in 3D [c3(q12,q23,q31)]. In the case
of four-pion correlations, even a Gaussian fit to the cumulant
correlation function is not correct since Q4 does not coincide
with the relative momentum dependence of TijTjkTklTli . The
source radius may be measured from c4 through the 6D pair
q information by performing a fit according to Eq. (15) with
the appropriate parametrization of the T factors. To avoid such
high dimensional histograms, one may also compute Eq. (15)
for each quadruplet (online) for a variety of R choices and
project against Q4. One may then perform a χ2 minimization
offline to determine the best fit R value.

A. Effect of partial coherence on extracted radii

The extraction of femtoscopic radii in high-energy collision
data is universally done with a fully chaotic assumption of
particle emission. It is well known, however, that the presence
of partial coherence does not only suppress the intercept
of QS correlations but may also modify its width [3,4,9].
With partial coherence in Eq. (11), one may expect the
same extracted radius only when Tij = tij and �ij = φij (i.e.,
identical space-time structure of both chaotic and coherent
components). Furthermore, the coherent fraction must be
momentum independent. In the more probable cases where
these conditions are not satisfied, partial coherence will modify
the usual mapping of the correlation function width to the
freeze-out radius. To illustrate this effect, two-pion correlation
functions are compared without coherence to two cases with
partial coherence in Fig. 4. One observes that even with
a substantial coherent fraction of 20%, the suppression at
the intercept (q = 0) is very small. Moreover, above q =
0.15 MeV/c there is actually an enhancement as compared to
the fully chaotic case due to the quantum interference between
the chaotic and the smaller coherent source (wider correlation).
Thus, in the presence of a smaller coherent component, the
traditional fitting procedure will underestimate the chaotic
source radius. A single Gaussian fit to the red dash-dotted

)c (GeV/q
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

2
C

1

1.2

1.4

1.6

1.8

2  = 8 fmchR,G = 0

 = 1 fmcohR = 8 fm, chR,G = 0.2

 = 1 fmcohR = 8 fm, chR,G = 0.5

FIG. 4. (Color online) Modification of two-pion QS correlation
functions in the presence of partial coherence. The correlation
function for a fully chaotic spherically symmetric Gaussian source
with Rch = 8 fm is shown with a solid black line. Dashed blue and
dash-dotted red lines include an additional spherically symmetric
coherent component with Rcoh = 1 fm for G = 0.2 and G = 0.5,
respectively.

curve in Fig. 4 yields a radius 25% smaller than the chaotic
source radius.

VI. TREATMENT OF FINAL-STATE INTERACTIONS

The measurement of pure QS correlations is complicated
by the presence of FSIs (e.g., Coulomb repulsion). Fortunately,
the Coulomb + strong wave functions for two-pion correlations
are well known to high accuracy [29,30]:

ψ−k∗ (r∗) = eiδc

√
Ac(η)

[
e−ik∗r∗

F (−iη,1,iξ )

+ fc(k∗)
G̃(ρ,η)

r∗

]
, (24)

where k∗ and r∗ are the momentum and relative separation
evaluated in the PRF, δc is the Coulomb s-wave phase shift,
η = (k∗a)−1, ξ = k∗r∗ + k∗r∗, ρ = k∗r∗, Ac = 2πη[e2πη −
1]−1 is the Gamov factor, F is the confluent hypergeometric
function, fc is the strong scattering amplitude renormalized
by the long-range Coulomb forces, G̃ is an s-wave Coulomb
function, and a is the Bohr radius taking into account the
sign of the interaction. The two-pion FSI correlation can be
computed by averaging the modulus square of the symmetrized
wave-function over an assumed freeze-out source profile and
dividing by the same average done with pure plane waves:

K2(q) = 〈|ψ−k∗ (r∗) + ψk∗ (r∗)|2〉
〈|e−ik∗r∗ + eik∗r∗ |2〉 . (25)
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Note that in the PRF, q = 2k∗. Often, the averaging is done
with a spherical Gaussian source profile. A more accurate
averaging would be one which includes the larger r∗ tails
created by pions originating from resonance decays. However,
due to the relatively large value of the pion Bohr radius
(±388 fm for like/unlike sign pairs) as compared to the typical
value of r∗ ∼ 20 fm in high-energy heavy-ion collisions, the
short-range structure of the source only mildly alters the
functional form of K2(q). The averaging of K2(q) is usually
confined to the core of particle production where r∗ < 100 fm.

A. Multibody FSI

The exact wave function of the n-body (n > 2) Coulomb
scattering is unknown. However, solutions do exist in all
asymptotic regions of phase space [31]. In particular, the
region of phase space where all inter-particle spacings are
sufficiently large is known as 0. In the 0 asymptotic limit,
the n-body Coulomb system is a sum of n!

(n−2)!2! noninteracting
two-body systems [32,33]. It has been shown to be highly
successful in describing ionization by electron impact (e,2e)
in atomic physics [34]. The relevant triplet kinetic energy for
the applicability of the 0 ansatz was estimated in Ref. [33]:

Etot � 0.2
�c

R (fm)
, (26)

where R is the estimated source radius. The characteristic
Gaussian 1D radii measured in pp/p-Pb and central Pb-Pb
collisions at the LHC are about 1.5 and 9 fm, respectively [24].
The resulting threshold triplet energies are therefore 26 and
4 MeV for pp/p-Pb and Pb-Pb, respectively. For a symmetric
triangular configuration of momenta in the triplet rest frame,
the corresponding threshold for Q3 is identical to the Etot

value. Above the threshold, particles rapidly separate from
each other such that the shorter range three-body Coulomb
forces (not treated in the 0 ansatz) become negligible. At
the four-pion level, the 0 ansatz should remain a good
approximation provided that each triplet Q3 in the quadruplet
is above the threshold. The three-pion symmetrized Coulomb
wave function in 0 is given as in Ref. [31–33] by

ψp1,p2,p3 (x1,x2,x3)

= 1√
6

[ei(q ′
12x12+q ′

13x13+q ′
23x23)/3�12(x12)�13(x13)�23(x23)

+ ei(q ′
12x21+q ′

13x23+q ′
23x13)/3�12(x21)�13(x23)�23(x13)

+ ei(q ′
12x32+q ′

13x31+q ′
23x21)/3�12(x32)�13(x31)�23(x21)

+ ei(q ′
12x13+q ′

13x12+q ′
23x32)/3�12(x13)�13(x12)�23(x32)

+ ei(q ′
12x23+q ′

13x21+q ′
23x31)/3�12(x23)�13(x21)�23(x31)

+ ei(q ′
12x31+q ′

13x32+q ′
23x12)/3�12(x31)�13(x32)�23(x12)], (27)

where q ′
ij = pi − pj , xij = xi − xj , and �ij (xkl) =√

Ac(ηij )F [−iηij ,1,i(k∗
ijr

∗
kl + k∗

ij r
∗
kl)] is the Coulomb

modulation factor and is evaluated in the ij PRF. The
three-pion Coulomb correlation is then defined similar to

K2 as

K3(q12,q13,q23) = 〈|ψp1,p2,p3 (x1,x2,x3)|2〉
〈|ψp1,p2,p3 (x1,x2,x3; � = 1)|2〉 . (28)

In practice, the calculation of n-body 0 wave functions
is quite involved. Moreover, its application to experimental
data requires a multidimensional calculation in terms of the
pair invariant relative momenta. For Coulomb correlations of
fourth order, a 6D calculation is required. As such a calculation
is not very practical, a simplified approach is desirable.

Another approach is the so-called generalized Riverside
(GRS) method which treats the n-body FSI correlation as a
product of two-body FSI factors:

K3(q12,q13,q23) = K2(q12)K2(q13)K2(q23), (29)
K4(q12,q13,q14,q23,q24,q34)

= K2(q12)K2(q13)K2(q14)K2(q23)K2(q24)K2(q34). (30)

The GRS approach easily allows a multidimensional estimate
of multibody FSI since only pair calculations are required.
Calculations of both approaches are presented in Sec. IX.

VII. TREATMENT OF DILUTION FROM
NONFEMTOSCOPIC SEPARATIONS

The isolation of pure QS correlations is further complicated
by the contribution of pions from long-lived emitters. Such
pions are typically separated from other pions by many
tens to hundreds of femtometers at freeze-out for which the
expected quantum interference peak is only at extremely
low q (<5 MeV/c) [35]. In the moderate q region, pions
from long-lived emitters effectively dilute the correlation
function. Long-lived emitters include weak-decays (secondary
contamination) as well as long-lived resonance decays such as
the η.

The treatment of the dilution for two-pion correlations
is usually done with the following formula connecting the
measured and QS distributions/correlation functions [29]:

N2(p1,p2) = (
1 − f 2

c

)
N1(p1)N1(p2) + f 2

c K2(q)NQS
2 (p1,p2),

(31)

C2(q) = (
1 − f 2

c

) + f 2
c K2(q)CQS

2 (q). (32)

The distribution, N2(p1,p2), can be experimentally formed
by sampling both pions from the same event whereas
N1(p1)N1(p2) is sampled from separate events. The correlated
fraction of pairs for which an observable femtoscopic corre-
lation (QS+FSI) exists is denoted by f 2

c . In the “core/halo”
picture of particle production [17], particles may originate
from one of two sources with very different characteristic
radii [35]. Those originating from short-lived emitters are from
the core of particle production and contain an observable QS
correlation with other core particles. Those from long-lived
emitters are from the halo and do not observably interact with
any other particle. In such a picture, the fraction of particles
from the core is denoted by fc.

The treatment of dilutions in the core/halo picture can be
easily extended to three-pion correlations. For the same-event
three-pion distribution, N3(p1,p2,p3), there are four possible
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configurations. In one case, all three pions originated from
the core for which the probability is f 3

c . In the second case,
two pions originated from the core for which the probability
is 3f 2

c (1 − fc). In the third case, only one pion originated
from the core with a probability of 3(1 − fc)2fc. In the final
case, zero pions originated from the core with a probability
of (1 − fc)3. The measured three-pion same-event distribution
can then be decomposed into its constituent parts while also
utilizing Eq. (31) for the decomposition of N2(p1,p2) into its
two parts [21]. The same-event three-pion distribution can be
written as

N3(p1,p2,p3) = f31N1(p1)N1(p2)N1(p3)

+ f32[N2(p1,p2)N1(p3) + N2(p2,p3)N1(p1)

+N2(p3,p1)N1(p2)]

+ f33K3N
QS
3 (p1,p2,p3), (33)

where N
QS
3 is the quantity of interest to be extracted from the

measured distributions (no QS superscript) and K3 is the three-
body FSI factor. The additional distribution, N2(pi,pj )N1(pk),
provides information from two-pion symmetrizations alone
in the dilute gas limit. It may be experimentally measured
by taking two pions from a single-event while taking the
third from a mixed event. In the core/halo picture, f31 =
(1 − fc)3 + 3fc(1 − fc)2 − 3(1 − fc)(1 − f 2

c ), f32 = 1 − fc,
and f33 = f 3

c .
Four-pion correlations have four sequences of symmetriza-

tions as illustrated in Fig. 3. Isolation of each sequence can be
accomplished with the following additional distributions:

N1(p1)N1(p2)N1(p3)N1(p4), (34)

N2(p1,p2)N1(p3)N1(p4), (35)

N2(p1,p2)N2(p3,p4), (36)

N3(p1,p2,p3)N1(p4) (37)

N4(p1,p2,p3,p4), (38)

which can be experimentally measured by taking the appropri-
ate number of particles from the same event and the rest from
mixed events. For Eq. (36), one takes two particles from one
event and the other two from a separate event. Extending the
treatment of dilutions to the four-pion case, one obtains

N4(p1,p2,p3,p4) = f41N1(p1)N1(p2)N1(p3)N1(p4)

+f42[N2(p1,p2)N1(p3)N1(p4)

+‘13’ + ‘14’ + ‘23’ + ‘24’ + ‘34’]

+f43[N3(p1,p2,p3)N1(p4)

+‘124’ + ‘134’ + ‘234’]

+f44K4N
QS
4 (p1,p2,p3,p4), (39)

where N
QS
4 is again the quantity of interest to be ex-

tracted from the measured distributions and the four-
body FSI correlation, K4. Permutations indicated by ‘ij ’
represent N2(pi,pj )N1(pk)N1(pl). Permutations indicated
by ‘ijk’ represent N3(pi,pj ,pk)N1(pl). In the core/halo
picture, f41 = −3(1 − fc)4 − 8fc(1 − fc)3 + 6(1 − f 2

c )(1 −
fc)2, f42 = −(1 − fc)2, f43 = (1 − fc), f44 = f 4

c . Another

possibility not represented in Eq. (39) is given by two pairs
of interacting pions, N2(p1,p2)N2(p3,p4). This possibility is
absent in the core/halo picture and will be shown to be quite
small in a more realistic model in Sec. IX.

A. λ parameter

Most often in experimental analyses, the parameter f 2
c

in Eq. (32) is replaced with the so-called λ parameter and
C

QS
2 is parametrized without coherence as C

QS
2 = 1 + e−(qR)α

[36–38]. Such a parametrization can be flawed in regards to
FSI corrections (λK2) in two noteworthy ways. First, when the
true functional form of C

QS
2 is not known, a mismatch between

the true and assumed function form can cause a large bias on
the extracted λ parameter [21]. As the FSI correction is the
product of λ and K2, a biased value of λ also biases the FSI
correction. Second, coherent emission leads to the suppression
of C

QS
2 but not of FSI correlations. In both cases, a single

suppression parameter (λ) is not appropriate. The problem can
be circumvented by parametrizing the QS correlations instead
by C

QS
2 = 1 + λ′e−(qR)α , where in addition to f 2

c in Eq. (32),
a second suppression parameter is used.

As in Ref. [21], f 2
c may be determined less ambiguously

from a fit to π+π− correlation functions for which only FSI
correlations contribute. Assuming the equivalence of f +

c with
f −

c as expected at high energies [9], π+π− correlations can
be fit according to C+−

2 = (1 − f 2
c ) + f 2

c K2(q,R). Owing to
the large value of the pion Bohr radius (388 fm) as compared
to the typical relative separation at freeze-out in high-energy
heavy-ion collisions (∼20 fm), π+π− FSI correlations are
much less sensitive to the short-range structure of the source. A
fit to π+π− correlations is then simpler in practice as K2(q,R)
changes less rapidly for different source profiles with the same
characteristic radius.

The chaotic upper limit to the conventional λ parameter
is unity. However, experiments overwhelmingly report values
less than unity–sometimes as low as 0.3 [37]. There can be
several sources of suppression for the conventional λ parameter
which are listed below in approximate order of magnitude:

(i) dilution from pions of long-lived emitters,
(ii) Gaussian fits to non-Gaussian correlations,

(iii) detector momentum smearing,
(iv) pion misidentification,
(v) f q bin width.

An additional more interesting source of suppression, not
listed above, is the possibility of pion coherence. However,
the suppression is expected to be rather small for two-pion
correlations and was estimated to be ∼0.05 at the LHC [21].
The exact order of the above contributions depends on the
experimental conditions of the analysis. One of the main
reasons for low values of λ is often due to the use of
Gaussian fits to correlation functions which are intrinsically
non-Gaussian. In Ref. [21], an estimate can be made for the
top three sources of suppression. A Gaussian fit to C++

2 (q)
yielded λ ∼ 0.4. However, a fit to C+−

2 (q) gave λ ∼ 0.7, which
indicates a suppression of about 0.3 from long-lived emitters
in ALICE. The separate analysis of r3 revealed a possible
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coherent fraction of about 23% for which the suppression to the
intercept of two-pion correlations is 0.232 = 0.05. This leaves
a remaining suppression of about 0.25 due to non-Gaussian
features in the correlation function.

Note that the non-Gaussian features for a 1D analysis are
expected to differ from 3D analyses (qout,qside,qlong) even if the
source is Gaussian in all three dimensions but with different
radii in each dimension. The STAR Collaboration reported
values between 0.3 and 0.4 for 3D Gaussian fits [37] which
likely indicates substantial non-Gaussian features even in 3D
heavy-ion analyses.

VIII. CUMULANT AND PARTIAL CUMULANT
CORRELATION FUNCTIONS

The full n-pion correlation function contains the full set
of symmetrizations as previously illustrated. One may isolate
different levels of symmetrization by subtracting different
types of n-pion spectra. The three-pion cumulant correlation
function can be defined as

c3 = [
N

QS
3 (p1,p2,p3) − δ1N

QS
2 (p1,p2)N1(p3) + δ2N

3
1

]/
N3

1 .

(40)

where N3
1 denotes N1(p1)N1(p2)N1(p3) for brevity. For the

case of same-charge triplets, δ1 = δ2 = 3. For the mixed-
charge case, δ1 = δ2 = 1. The cumulant correlation function
removes the two-pion symmetrizations.

With four-pion correlations, two types of partial cumulants
as well as the full cumulant correlation function are defined:

a4 = [
N

QS
4 (p1,p2,p3,p4) − ε1N

QS
2 (p1,p2)N1(p3)N1(p4)

+ε1N
4
1

]/
N4

1 , (41)

b4 = [
N

QS
4 (p1,p2,p3,p4) − 3N

QS
2 (p1,p2)NQS

2 (p3,p4)

+ 3N4
1

]/
N4

1 , (42)

c4 = [
N

QS
4 (p1,p2,p3,p4) − ε2N

QS
3 (p1,p2,p3)N1(p4)

− ε3N
QS
2 (p1,p2)NQS

2 (p3,p4)

+ ε4N
QS
2 (p1,p2)N1(p3)N1(p4)

+ (ε2 + ε3 − ε4)N4
1

]/
N4

1 . (43)

The cumulant and partial cumulants isolate different sequences
of symmetrization. When a mixture of identical and noniden-
tical pions is used (e.g., π+ and π− mixtures), one need
only subtract the symmetrizations from identical pion pairs
and triplets. For same-charge quadruplets the coefficients are
ε1 = 6, ε2 = 4, ε3 = 3, ε4 = 12. For mixed-charge quadruplets
of type 1 (∓ ± ±±) the coefficients are ε1 = 3, ε2 = 1, ε3 = 0,
ε4 = 0. For mixed-charge quadruplets of type 2 (∓ ∓ ±±) the
coefficients are ε1 = 2, ε2 = 0, ε3 = 1, ε4 = 0.

In the case of same-charge quadruplets, the first partial
cumulant, a4, is defined such that all six terms of two-pion
symmetrization are removed. The second partial cumulant,
b4, further removes the three two-pair symmetrization terms.
Note that N2

2 contains two terms of two-pion symmetrization
as well as one term of two-pair symmetrization. Finally,
the cumulant further removes the eight terms of three-pion

symmetrization and is thus a measure of the genuine four-
pion symmetrization alone, Note that N3 contains six terms
of two-pion symmetrization and two terms of three-pion
symmetrization. The above equations for the cumulant and
partial cumulants are valid for identical pions. When a mixture
of identical and nonidentical pions is used (e.g., π+ and π−
mixtures), one need only subtract the symmetrizations from
identical pion pairs and triplets.

The cumulant and partial cumulant correlation functions
have an advantage over the full correlation functions [Eq. (1)]
in low multiplicity collision events as pointed out in Ref. [24].
In such events, the contributions from non-Bose-Einstein cor-
relations (e.g., minijets) have a non-negligible effect. Two-pion
background correlations are explicitly removed with the cumu-
lant and partial cumulants. The remaining higher order back-
ground correlations were shown to be very small in Ref. [24].
Also note that the choice of the Q3 projection variable may
also influence the flatness of the baseline. QS correlations are
localized at low Q3 while three-pion minijet correlations may
be less well localized with such a variable (smeared).

1. Practicality: Nested loops

In high multiplicity events such as those produced in
heavy-ion collisions, the analysis of multiparticle correlations
directly with nested loops is prohibitively expensive in terms of
CPU time. One can circumvent this problem by only retaining
pion-pairs in a specific region of q. A system of switches using
2D arrays of Boolean variables can be formed for each type
of pion pair (e.g., pion 1 from event A and pion 2 from event
B). Two classes of switch-arrays should be formed: one for the
femtoscopic analysis region at low q and one for the normal-
ization region at high q. The cutoff for the low q region should
be chosen to include the dominant region of QS correlations.
The width of the normalization region should be chosen to
contain sufficient statistics while still minimizing CPU time.
Nested loops are still utilized for the full analysis except that
at the start of second and higher loops one checks each pair
with the switch-array. If any pair is turned “off”, one skips the
entire n-tuple. In this manner, undesired n-tuples are skipped
before any time consuming calculations are performed. The
algorithm is depicted with the following pseudo-code:

Stage one: Set pair Boolean switch
for all i = 0 to N do
for all j = i + 1 to Ndo
if qmin � q < qmax then
SWITCH [i][j ] = 1
else
SWITCH [i][j ] = 0

Stage two: Perform four-pion correlation analysis
for all i = 0 to Ndo
for all j = i + 1 to Ndo
if SWITCH [i][j ] == 0 then
skip
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(Continued.)

for all k = j + 1 to N do
if SWITCH [i][k] == 0 then
skip
if SWITCH [j ][k] == 0 then
skip
for all l = k + 1 to N do
if SWITCH [i][l] == 0 then
skip
if SWITCH [j ][l] == 0 then
skip
if SWITCH [k][l] == 0 then
skip
Store quadruplet

IX. THERMINATOR CALCULATIONS

In this section several calculations of three- and four-
pion correlations in the heavy-ion generator THERMINATOR

2 [39,40] are provided. THERMINATOR 2 is a Monte Carlo event
generator based on the statistical hadronization of partons at ki-
netic freeze-out. A small number of physical input parameters
are used such as the temperature, chemical potentials, initial
size, and the velocity of collective flow which has been shown
to describe a great deal of the Relativistic Heavy Ion Collider
(RHIC) and LHC observables. An important feature of THER-
MINATOR is the inclusion of the full set of hadronic resonances.

A 3 + 1D viscous hydrodynamic hypersurface is input into
the statistical hadronization process. Events were generated
with the following settings: Pb-Pb collisions at

√
sNN =

2.76 TeV, b = 2.3 fm (impact parameter), Ti = 512 MeV
(initial central temperature), t0 = 0.6 fm (starting time of hy-
drodynamics), Tf = 140 MeV (freeze-out temperature). Ap-
proximately 270 × 103 events were generated. Only charged
pions were retained with the following criteria: 0.16 < pT <
1.0 GeV/c, |η| < 0.8. To simulate the typical experimental
resolution of a track’s distance of closest approach (DCA) to
the primary vertex, pions which freeze-out greater than 1 cm
from the collision center are rejected. For the correlation part
of this analysis, only the dominant region of QS correlations
are analyzed by requiring a cut on the pair relative separation
in the PRF: 0.1 < r∗ < 100 fm.

A. f coefficients

The f coefficients in Eqs. (33) and (39) characterize the
probabilities of short- and long-range interactions for triplets
and quadruplets. A pair is deemed interacting in THERMINATOR

if its value of r∗ is less than a certain cutoff, which was taken
to be 80 fm (well above the dominant QS region). With this
cutoff, the fraction of interacting pairs is f 2

c = 0.803. The
triplet fractions are shown in Fig. 5. The blue, red, and black
lines correspond to the core/halo values of f33, 3f32, and f31,
respectively. Note that the case of two interacting pairs is
absent in the core/halo picture but nonzero in general. One
example of such a case would be a linear configuration of
three pions where the middle pion is separated from both end
pions by an amount less than the cutoff while the end pions
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FIG. 5. (Color online) Triplet fractions in THERMINATOR. Blue
triangles (3 interacting pairs), red squares (1 pair), green triangles
(2 pairs), and black circles (0 pairs) are shown. The core/halo values
(given f 2

c = 0.803) are shown with blue (3 pairs), red (1 pair), and
black (0 pairs) lines.

themselves are separated by a greater distance. The quadruplet
fractions are shown in Fig. 6. The black, blue, red, and green
lines correspond to the core/halo values of f44, 4f43, 6f42,
and f41 respectively. Note that the cases of five, four, and two
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FIG. 6. (Color online) Quadruplet fractions in THERMINATOR.
From top to bottom, the markers indicate 6, 3, 1, 5, 4, 2, and
0 interacting pair(s). The core/halo values (given f 2

c = 0.803) are
shown with black (6 interacting pairs), blue (3 pairs), red (1 pair),
and green (0 pairs) lines.
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TABLE I. Triplet f factors in the core/halo picture and the
THERMINATOR modification percentage in parentheses. Note that 3f32

is shown in Fig. 5.

Triplets f33 f32 f31

r∗ < 60 0.675(+9%) 0.094(−17%) 0.041(−25%)
r∗ < 80 0.720(+6%) 0.083(−15%) 0.030(−24%)
r∗ < 100 0.738(+6%) 0.079(−15%) 0.026(−24%)

interacting pairs are absent in the core/halo picture but nonzero
in general. The case of five interacting pairs can occur for a
parallelogram configuration of the four pions where the longest
axis represents the length above the r∗ cut. An example of a
case with four interacting pairs can occur with an equilateral
triangle of three pions and the fourth pion being located outside
of the triangle but near one of the vertices. The case of two
interacting pions can a be a linear configuration of three pions
and the fourth being far away from the rest. For both triplet
and quadruplet fractions there is no significant Q3 and Q4

dependence. Thus, the f coefficients are largely independent
of relative momentum.

In experiment, one cannot isolate each of the possibilities
with mixed-event techniques. For instance, the case of two
interacting pairs in the triplet cannot be isolated using the
three available distributions: N3(p1,p2,p3), N2(p1,p2)N1(p3),
and N1(p1)N1(p2)N1(p3). The modification to the core/halo f
coefficients in Eqs. (33) and (39) are estimated by combining
the appropriate THERMINATOR fraction types. For triplets,
the modification to f33 is given by the sum of two and
three interacting pair fractions in Fig. 5. For quadruplets, the
modification to f44 is given by the sum of four, five, and
six interacting pair fractions in Fig. 6. The modification to
f43 is given by the sum of two and three interacting pair
fractions. Table I shows the core/halo values of f33, f32, f31 and
their percentage modification in THERMINATOR in parentheses.
The calculation is done for three different choices of the r∗
cutoff. Table II shows the core/halo values of f44, f43, f42,
f41 and their percentage modifications in THERMINATOR in
parentheses.

B. Measured and built correlation functions

The two-, three-, and four-pion QS correlation functions in
THERMINATOR are now presented. The correlation functions
are calculated via the fully symmetrized two-, three-, and
four-pion plane-wave functions. The symmetrized two-pion
plane-wave function is given by �2 = 1√

2
[e−ik∗r∗ + eik∗r∗

].
The symmetrized three-pion plane-wave function was given
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FIG. 7. (Color online) C2 versus q calculated in THERMINATOR.
A Gaussian as well as Edgeworth fit is shown. The fit range is that
which is shown in the figure. 0.2 < kT < 0.3 GeV/c.

in Eq. (27) with � = 1. In the Appendix the symmetrized
four-pion plane-wave function is given. The modulus square of
the plane-wave functions is applied as a pair/triplet/quadruplet
weight and is averaged over the freeze-out space-time coordi-
nates in each event. The weight is then averaged over all events.
The two-pion correlation function is shown in Fig. 7. It is fit
with a Gaussian and Edgeworth parametrization: C2(q) = 1 +
s2E2

w(R q) e−R2q2
. The Gaussian case corresponds to Ew = 1.

Note, that only femtoscopically separated particles are retained
(r∗ < 100 fm) and FSIs were not included in the weighting
procedure. In my calculation, due to the full symmetrization,
pion production is fully chaotic and thus the s parameter of
the fit is just a scale factor unrelated to coherence.

The three-pion correlation function projected against Q3 is
shown in Fig. 8. A Gaussian and Edgeworth fit to the cumulant
correlation is performed in 3D according to

c3(q12,q23,q31) = 1 + s3e−R2(q2
12+q2

23+q2
31)/2

×Ew,12Ew,23Ew,31, (44)

which can be obtained by substituting Edgeworth exchange
amplitudes from Eq. (20) into Eq. (13) (neglecting the three-
pion phase). Two types of built correlation functions are shown
in Fig. 8. Dashed blue lines correspond to C3 built from Tij

TABLE II. Quadruplet f factors in the core/halo picture and the THERMINATOR modification percentage in parentheses. Note that 4f43 and
6f42 are shown in Fig. 6.

Quadruplets f44 f43 f42 f41

r∗ < 60 0.593(+10%) 0.083(−12%) 0.012(−26%) 0.007(−18%)
r∗ < 80 0.645(+6%) 0.075(−9%) 0.009(−19%) 0.004(−11%)
r∗ < 100 0.667(+5%) 0.071(−8%) 0.008(−18%) 0.003(−7%)
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FIG. 8. (Color online) Three-pion correlations versus Q3 calcu-
lated in THERMINATOR. A Gaussian as well as Edgeworth fit to the
cumulant correlation function is shown. The fits are performed in 3D
(q12,q23,q31). The built correlation functions are also shown as block
histograms. 0.16 < KT,3 < 0.3 GeV/c.

extracted directly from C2(kT,qout,qside,qlong). Solid blue lines
correspond to C3 built from Tij extracted from c3(q12,q23,q31)
fits. The building of correlation functions is done according
to Eq. (18) with G = 0. The ratio of measured to built C3 is
shown in Fig. 9. Built correlations are found to reproduce
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FIG. 9. (Color online) Ratio of measured to built three-pion
correlation functions.
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FIG. 10. (Color online) Four-pion correlations versus Q4 calcu-
lated in THERMINATOR. The built correlation functions are also shown
as a block histogram. 0.16 < KT,4 < 0.3 GeV/c.

the measured ones to within a few percent while those
from C2(kT,qout,qside,qlong) are found to be somewhat more
accurate. This is partly expected since two-pion correlations
are binned much more differentially.

The four-pion correlation function projected against Q4 is
shown in Fig. 10. The partial cumulants, a4 and b4 represent the
removal of two-pion and two-pion+two-pair symmetrizations,
respectively. The full cumulant, c4, represents the isolation of
genuine four-pion symmetrizations. Built correlation functions
are shown with the colored box histograms. The building
of correlation functions is done according to Eq. (19) with
G = 0. The ratio of measured to built C4 is shown in
Fig. 11. Similar to built three-pion correlations, built four-pion
correlations generally under predict the measured ones by a
few percent. The reason for the slight bias is investigated
further in Sec. IX C with r3 and is related to the finite
binning of multidimensional correlation functions. For the
built correlations in this subsection, two-pion correlations are
binned as follows: four kT bins dividing the full kT range, 5
MeV/c bin widths for qout, qside, qlong. Linear interpolation
is used in the kT dimension while cubic is used in the other
dimensions. Three-pion cumulants are binned with 5 MeV/c
widths in each pair qij .

1. Including partial coherence

To demonstrate the building of QS correlations with
partial coherence, a coherent source of pions is inserted in
THERMINATOR. Pions are randomly reassigned such that 35%
of the pions in an event originate from a spherical Gaussian
coherent source with Rcoh = 1 fm. That is, G = 0.35 and
tij = e−R2

cohq
2
ij /2. The momentum distribution of the coherent

pions is identical to that of the chaotic pions. The expected
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FIG. 11. (Color online) Ratio of measured to built four-pion
correlation functions.

suppression from coherence is incorporated by setting the
appropriate plane-wave contributions to zero. In the fully
symmetrized plane-wave function, individual plane waves
corresponding to an n-pion symmetrization are set to zero
if more than n − 1 of the pions are from the coherent source.

The two-pion correlation function with the parametrized
coherent source is shown in Fig. 12. The three-pion correlation
function with the parametrized coherent source is shown in
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FIG. 12. (Color online) C2 versus q calculated in THERMINATOR

with G = 0.35 and tij = e
−R2

cohq2
ij /2. A Gaussian as well as Edgeworth

fit is shown. Further details are the same as in Fig. 7.
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FIG. 13. (Color online) Three-pion correlations versus Q3 cal-

culated in THERMINATOR with G = 0.35 and tij = e
−R2

cohq2
ij /2. An

Edgeworth fit is shown. Further details are the same as in Fig. 8.

Fig. 13. An Edgeworth fit to the cumulant correlation is shown
with a dashed blue line. The fit well describes the cumulant
for Q3 > 0.015 GeV/c. Below that value, the fit is below the
data and is part of the reason why the built correlation from c3

underestimates the measured C3 in the same region. The built
correlation function from C2 is also beneath the measured C3

for reasons described in Sec. IX C. The ratio of measured to
built C3 is shown in Fig. 14. The four-pion correlation function
with the parametrized coherent source is shown in Fig. 15. The
ratio of measured to built C4 is shown in Fig. 16. The built
correlations incorporate the known G and tij values and thus
illustrate how built correlations can be used to estimate the
coherent fraction.

C. r3 and r4 measurements

The three- and four-pion phase factors in THERMINATOR

are measured with r3 and r4 in Eqs. (14) and (16). In the
computation of both denominators, the pair exchange magni-
tudes appear. As this quantity must be evaluated numerically
by averaging over the sources produced in many events, it is
tabulated discretely in the first pass over the data. In the second
pass one interpolates between the bins linearly or cubically.
Finite bin width is found to cause a bias on r3 and r4 in the same
manner as it occurred for the built correlation functions. The
bias is largest for linear interpolation between widely spaced
bins of qout, qside, and qlong and depends on the concavity
of the correlation function. For instance, negative concavity
with linear interpolation generally leads to an underestimation.
The concavity of a Gaussian correlation function is negative
for q <

√
1/2R2 and positive for larger q. The bias may be

reduced somewhat with a cubic interpolator.
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FIG. 14. (Color online) Ratio of measured to built three-pion

correlation functions with G = 0.35 and tij = e
−R2

cohq2
ij /2.

The two-pion Tij factors are computed in three different
ways depending on the number of q bins and on the
interpolation scheme between q bins (linear or cubic). The kT

dependence of Tij was found to be fairly linear and thus linear
interpolation is always used between kT bins. Three different
q bin widths (1, 2, or 5 MeV/c) are tried while dividing the
full kT interval into four bins. In Figs. 17 and 18, r3 and r4

calculations in THERMINATOR are shown. Similar to Ref. [21],
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FIG. 15. (Color online) Four-pion correlations versus Q4 calcu-

lated in THERMINATOR with G = 0.35 and tij = e
−R2
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ij /2. Further

details are the same as in Fig. 10.
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FIG. 16. (Color online) Ratio of measured to built four-pion

correlation functions with G = 0.35 and tij = e
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ij /2.

quartic [rn(Qn) = I (1 − aQ4
n)] fits are shown for both r3 and

r4 for �q = 5 MeV/c, cubic. The quartic intercept parameter
to r3 is I = 2.08 ± 0.01 while a is consistent with zero.
For r4 they are I = 6.6 ± 0.1, a = (6 ± 2) × 103. The near
independence of r3 and r4 with Q3 and Q4 indicate a negligible
effect of three- and four-pion phases in THERMINATOR. This
feature is expected for the case where the space-time point of
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FIG. 17. (Color online) r3 calculated in THERMINATOR with vari-
ous types of Tij tabulations/interpolations. The quartic fit is applied to
the solid points. Statistical errors are only drawn for the solid points
and are the same for the others. The chaotic upper limit is shown with
the red dotted line.

014902-13



DHEVAN GANGADHARAN PHYSICAL REVIEW C 92, 014902 (2015)

)c (GeV/
4

Q
0 0.02 0.04 0.06

4r

4

4.5

5

5.5

6

6.5

7

7.5

8

, cubicc q=5 MeV/Δ

Quartic fit

G = 0

FIG. 18. (Color online) r4 calculated in THERMINATOR with vari-
ous types of Tij tabulations/interpolations. The chaotic upper limit is
shown with the red dotted line.

maximum pion emission is momentum independent [18]. In
Fig. 17 one also observes that the chaotic upper limit (2.0) is
exceeded to varying degrees. The bias is caused by the limited
dimensionality and finite bin widths of Tij , especially in the
case of linear interpolation. Cubic interpolation is observed to
reduce the bias.

)c (GeV/
3

Q
0 0.01 0.02 0.03 0.04

3r

1.65

1.7

1.75

1.8

1.85

1.9

G = 35%

FIG. 19. (Color online) r3 calculated in THERMINATOR with G =
0.35 and tij = e

−R2
cohq2

ij /2. Bin widths are 5 MeV/c with cubic
interpolation. A quartic fit is shown. Statistical errors are only drawn
for the solid points and are the same for the others.

With a coherent component inserted as in Sec. IX B 1,
the expected suppression of r3 is observed as seen in Fig. 19.
The quartic fit parameters in Fig. 19 are I = 1.77 ± 0.01 and
a = (1.6 ± 0.5) × 104. The intercept parameter is related to
the coherent fraction as

I = 2
√

1 − G
1 + 2G

(1 + G)3/2
, (45)

which yields G = 0.33 ± 0.01. Note that in the recent ALICE
r3 measurement [21], linear interpolation was used with four
kT bins and 5 MeV/c q bin widths. Correction for the finite
binning effect may lower r3 and increase the extracted coherent
fraction. Concerning the a parameter, it was shown in Ref. [18]
that quartic behavior is expected when the space-time point of
maximum pion emission is momentum dependent. As the a
parameter for the chaotic part of the THERMINATOR source is
zero in Fig. 17, and since the momentum spectrum of the
coherent and chaotic components are identical, one expects
a to vanish also with the inserted coherent component. The
non-vanishing value of a also characterizes the same bias as
attributed to I .

D. Three-pion FSI calculations

In Ref. [21] and Fig. 20, a comparison between 0 and
GRS 3-pion FSI correlation is made. One observes a striking
similarity between the two methods, especially for same-
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FIG. 20. (Color online) Comparison of same and mixed-charge
three-pion FSI correlations. 0 and generalized Riverside (GRS)
methods are shown. The calculation was performed in THERMINATOR.
The bottom panel shows the difference between the two methods,
�K3 = K3(0) − K3(GRS), divided by K3(GRS) − 1.
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charge triplets. Less similar is the mixed-charge calculation for
which the cumulants differ by as much as 30%. In Ref. [21],
the mixed-charge calculations were more similar and is due
to the inclusion of strong FSI in the factorization ansatz. The
calculation in Fig. 20 excludes strong FSI. The similarity of
the GRS and 0 method is related to the factorizability of
separate F factors as well as that between F and plane-wave
factors. As one decreases the source size in the calculation,
both methods converge as the F factors approach unity.

X. MULTIBOSON DISTORTIONS

The standard framework of Bose-Einstein interferometry
neglects the effect of higher-order symmetrizations and is
only valid in the limit of low phase-space densities at freeze-
out [12–16]. In such a dilute pion gas, n-pion correlation func-
tions are calculable purely in terms of n-pion symmetrizations.
At higher densities, the higher-order symmetrizations become
significant and distort the correlation functions. Previous
calculations revealed a widened two-pion correlation function
as well as a suppressed intercept, both of which are unrelated
to quantum coherence. Here, the effect of the distortions on
the comparison of built and measured three- and four-pion
correlation functions is analyzed.

The computation of all higher orders of symmetrizations
is greatly simplified when the n-pion emission function
is assumed to factorize into a product of single particle
emission functions S(x,p). A remaining complication is the
computation of the n! plane-wave functions which can be
alleviated with the help of the Pratt ring integrals [13,14]

G1(p1,p2) =
∫

d4x S
( 1

2 (p1 + p2),x
)
ei(p1−p2)x, (46)

Gn(p1,p2) =
∫

d3k2 · · · d3knG1(p1,k2) · · · G1(kn,p2).

(47)

With a Gaussian ansatz for the single particle emission
function, the ring integrals are given analytically in Ref. [15]
and are used here to estimate the distortion to three- and four-
pion correlation functions. The single and two-pion spectrum
at a fixed multiplicity n are given in Ref. [15]:

N (1)
n (p) =

n−1∑
j=0

ωn−1−j /(n − 1 − j )!

ωn/n!
G(j+1)(p,p) (48)

N (2)
n (p1,p2) =

n−2∑
j=0

ωn−2−j /(n − 2 − j )!

ωn/n!

×
j∑

l=0

Gl+1(p1,p1)Gj−l+1(p2,p2)

+Gl+1(p1,p2)Gj−l+1(p2,p1), (49)

where ωn is the Bose-Einstein weight of an event with n
identical bosons. Extending the techniques in Ref. [15], the
order i spectra are obtained by the appropriate symmetrization

of i G factors. The three-pion spectrum is given by

N (3)
n (p1,p2,p3) =

n−3∑
j=0

ωn−3−j /(n − 3 − j )!

ωn/n!

×
j∑

l=0

j−l∑
m=0

∑
α(3)

Gl+1
(
p1,pα1

)

×Gm+1(p2,pα2 )Gj−l−m+1
(
p3,pα3

)
, (50)

where the set of all permutations of the 3 pions is given by
α(3) and α1,2,3 represent the permuted indices. The four-pion
spectrum is given by

N (4)
n (p1,p2,p3,p4)

=
n−4∑
j=0

ωn−4−j /(n − 4 − j )!

ωn/n!

×
j∑

l=0

j−l∑
m=0

j−l−m∑
s=0

∑
α(4)

Gl+1(p1,pα1 )Gm+1(p2,pα2 )

×Gs+1(p3,pα3 )Gj−l−m−s+1(p4,pα4 ), (51)

where the set of all permutations of the four pions is
given by α(4) and α1,2,3,4 represent the permuted indices.
The normalization constant for the correlation functions are
obtained by the term with the lowest order ring integrals (G1).
The three- and four-pion normalizations are

n2ω3
n−1

(n − 1)(n − 2)ω2
nωn−3

(52)

n3ω4
n−1

(n − 1)(n − 2)(n − 3)ω3
nωn−4

(53)

In the Gaussian model of Ref. [15], three parameters charac-
terize the pion spectra: �, r0, and n. � characterizes the width
of the momentum spectrum unaffected by the Bose-Einstein
enhancement. The isotropic spatial width of the emission
function in the PRF is given by r0. To quantify the multiboson
distortions in the recent LHC central 0–5 % Pb-Pb data [21,24],
� = 0.25 GeV/c, r0 = 8.5 fm, n = 700,1400, and 〈p〉 = 0.2
GeV/c. The choice of r0 is based on the extracted radii from
1D Gaussian fits to the measured correlation functions [24].

In Figs. 21–23 the distorted and undistorted two-, three-,
and four-pion correlation functions are compared.

It is clear that the multiboson distortions widen all corre-
lation functions while there is no significant suppression of
the intercept, which occurs for much higher pion densities.
An important feature is the similarity of built and distorted
correlation functions. This is due to the fact that the two-
pion correlation, which is used in the building procedure, is
distorted as well. The ratio of distorted to built three- and
four-pion correlation functions stays within 0.01 below unity.
The calculations were also performed with r0 = 7 fm and
n = 700 which result in larger pion densities. The increased
widening of the two-pion correlation function leads to a 10%
underestimation of r0, when extracted with a Gaussian fit
function. The ratio of distorted to built three- and four-pion
correlation functions remained very similar. The proximity
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FIG. 21. (Color online) Multiboson distorted two-pion correla-
tion function compared to the undistorted case. The setting with
n = 700 roughly correspond to 0–5 % Pb-Pb collisions at the LHC.

of the ratio with unity demonstrates the robustness of the
built approach to multipion distortions at moderate pion
densities.
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FIG. 22. (Color online) The multiboson distorted three-pion cor-
relation function compared to the undistorted case. Also shown is
the built correlation function constructed from the distorted two-pion
correlation function in Fig. 21. The setting with n = 700 roughly
correspond to 0–5 % Pb-Pb collisions at the LHC.
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FIG. 23. (Color online) The multi-boson distorted four-pion cor-
relation function compared to the undistorted case. Also shown is
the built correlation function constructed from the distorted two-pion
correlation function in Fig. 21. The setting with n = 700 roughly
correspond to 0–5 % Pb-Pb collisions at the LHC.

XI. SUMMARY

Techniques to isolate and analyze multipion QS correlations
have been presented. The concept of constructed or built
correlation functions may be used to estimate the coherent
fraction at measured values of relative momentum instead of
at the unmeasured intercept of correlation functions.

The distortions from multipion symmetrizations at large
phase-space densities widens all orders of correlation func-
tions calculated. The distorted built correlation function is
also widened to a very similar extent. The similarity of the
distortions makes the comparison of built and measured cor-
relation functions robust to the multipion effects at moderate
densities.

The early searches for the DCC have not provided any
clear indication for its existence [41,42]. In those studies, the
main experimental observable considered was event-by-event
fluctuations of neutral to charged pion production. However,
the experimental reconstruction efficiency for π0 at low pT as
compared to charged pions is often far too low to allow for
precision measurements of such fluctuations. As the DCC is
expected to radiate at low pT, one also expects an excess in the
single-pion spectra at low pT. Measurements of low pT pion
production in heavy-ion collisions have not revealed a dramatic
enhancement [43,44] but do not rule out enhancements at the
20% level.

A more promising channel of search for the DCC is one
which exploits the expected feature of coherent pion radiation.
Pion coherence suppresses QS correlations and increases
substantially for higher order correlation functions, making
multipion QS correlations a sensitive measure of the DCC.
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An additional possible signature of the DCC may lie in the
event-by-event second order flow vector magnitude, q2, as
defined in Refs. [45,46]. As the DCC is expected to radiate
near the final state where the initial spatial anisotropy in
noncentral heavy-ion collisions has greatly diminished, one
may expect a different azimuthal distribution of coherent
pions as compared to chaotic pions. In particular, one may
expect vcoh

2 ≈ 0. In such a case one expects an anticorrelation
between the charged pion q2 and G (coherent fraction). For
events where the DCC radiates into charged pions, q2 will be
diluted, whereas for events of neutral pion radiation q2 will be
unchanged.
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APPENDIX: 4-PION PLANE-WAVE FUNCTION

The fully symmetrized 4-pion plane-wave function is given
by

�4 =
√

1

24
[ei(q ′

12x12+q ′
13x13+q ′

23x23+q ′
41x41+q ′

42x42+q ′
43x43)/4

+ ei(q ′
12x21+q ′

13x23+q ′
23x13+q ′

41x42+q ′
42x41+q ′

43x43)/4

+ 5 permutations

+ ei(q ′
12x21+q ′

13x24+q ′
23x14+q ′

41x32+q ′
42x31+q ′

43x34)/4

+ 2 permutations

+ ei(q ′
12x23+q ′

13x21+q ′
23x31+q ′

41x42+q ′
42x43+q ′

43x41)/4

+ 7 permutations

+ ei(q ′
12x41+q ′

13x42+q ′
23x12+q ′

41x34+q ′
42x31+q ′

43x32)/4

+ 5 permutations], (A1)

where the second (two-pion), third (two-pair), fourth (three-
pion), and fifth (four-pion) plane waves represent the different
symmetrization sequences.
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