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The asymptotic normalization coefficient (ANC) is an important quantity in the calculation of radiative width
amplitudes, providing limits on the radiative width. Here we present some examples showing the connection
between the ANC and radiative width. In particular, the radiative width of the E1 transition 17F(1/2−, Ex =
3.104 MeV) to 17F(1/2+,Ex = 0.495 MeV) reported by Rolfs [Nucl. Phys. A 217, 29 (1973)] is (1.2 ± 0.2) ×
10−2 eV. Meanwhile the ANC for the first excited state in 17F puts a lower limit on the radiative width, which is
(3.4 ± 0.50) × 10−2 eV. Such a strong disagreement between the measured radiative width and the lower limit
imposed by the ANC calls for a new measurement of this radiative width. Other examples are also considered.
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I. INTRODUCTION

The asymptotic normalization coefficient (ANC) plays an
important role in nuclear reaction and structure theory and
in nuclear astrophysics [1–4]. By definition, the ANC is the
amplitude of the tail of the overlap function. The matrix ele-
ments determining the amplitudes of the transfer reactions and
radiative capture amplitudes contain the overlap functions. For
peripheral processes the overlap functions can be replaced by
their asymptotic terms. Hence the amplitudes of the peripheral
processes are proportional to the corresponding ANCs. That
is why the ANC determines the overall normalization of the
peripheral process amplitude [2,5]. It is evident that the ANC
plays a crucial role in the determination of other nuclear
characteristics; to calculate them we need to know the tail
of the overlap function. One of these quantities is the radiative
width of a resonance decaying to a bound state. In this paper
we reveal a role of the ANC in determination of the resonance
radiative widths. In particular, we show that the ANC can put
a limitation on the value of the radiative width.

For the analysis we use the R-matrix method in which
the radiative width amplitude is expressed in terms of the
difference of the internal and external (channel) parts. The in-
ternal radiative width amplitude is strongly model dependent,
and usually in the R-matrix is used as a fitting parameter.
In contrast, the channel radiative width amplitude can be
expressed in terms of the two observable quantities: the partial
resonance width and the ANC of the final bound state to
which the resonance decays. It depends only on one model
parameter: the R-matrix channel radius. Hence the channel
radiative width amplitude can be calculated quite accurately
with the well identified uncertainty due to the uncertainties
of the partial resonance width, the ANC, and ambiguity in
the choice of the channel radius. The calculated channel
radiative width amplitude can provide limitations on the total
radiative width. It is the goal of this paper to demonstrate this.
We provide all the necessary equations and present five
examples. Throughout the paper we use the system of units in
which � = c = 1.

II. RESONANCE RADIATIVE CAPTURE IN THE
R-MATRIX APPROACH

To obtain the expression for the radiative width for the
resonance decay to a bound state we consider the radiative
capture amplitude of the process a + A → F ∗ → F + γ
proceeding through the intermediate resonance F ∗ to the final
bound state F = (a A). The reaction amplitude describing this
process is given by

Mrad =
√

8 π (L + 1)

L

k
L+1/2
γ

(2 L + 1)!!

1√
2 Jf + 1

〈ϕF |ÂL|�(+)
i 〉.

(1)

Here �
(+)
i is the scattering wave function of the system a +

A in the channel where the resonance F ∗ occurs, ϕF is the
bound state wave function of the state F = (a A) to which
the resonance F ∗ decays, ÂL is the electromagnetic transition
operator of the multipolarity L, kγ is the momentum of the
emitted photon, and Jf is the spin of the final bound state F =
(a A). At very low energies we can use the long-wavelength
approximation 1/k � R, where R is the size of the resonance
system a + A, and k is the a − A relative momentum in the
initial state. Hence, at this stage we can neglect the internal
degrees of freedom of the individual nuclei a and A and can
treat them as constituent structureless particles. Then

�
(+)
i = ϕa ϕA �(+). (2)

Here, ϕi is the bound-state wave function of nucleus i, and �(+)

is the scattering wave function of the structureless particles a
and A. Then the reaction amplitude for the radiative capture to
the bound state in the long-wavelength approximation reduces
to

Mrad =
√

8 π (L + 1)

L

k
L+1/2
γ

(2 L + 1)!!

1√
2 Jf + 1

〈
IF
aA

∣∣ÂL|�(+)〉.

(3)
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Here IF
aA = N 〈ϕa ϕA|ϕF 〉 is the overlap function of the bound-

state wave functions of nuclei F , A, and a. Here we recovered
the antisymmetrization between the nucleons of a and A what
leads to the appearance of the antisymmetrization factor N .
In the isospin formalism N = (a+A)!

a! A! . The integration in the
matrix element determining the overlap function is carried
over the internal coordinates of nuclei a and A.

The wave function �(+) can be written as the sum of the
internal and external components:

�(+) = �+
(int) + �

(+)
(ext). (4)

This splitting of the scattering wave function into the internal
and external components can be done naturally in the R-matrix
approach, which we are going to use in what follows. The
internal radial scattering wave function (r � r0, r is the
distance between the particles a and A, r0 is the channel
radius) in the single-channel R-matrix approach in the case
of an isolated narrow resonance takes the form [3,6]

�
(+)
(int)(k,r) = i

1

k r
e
−i δhs

li

[
�Ji

]1/2

ER − E − i �Ji
/2

Xint(r)

∣∣∣∣
r�r0

,

(5)

where Xint is the real eigenstate of the level closest to the
resonance, �Ji

is the partial width of the resonance with the
spin Ji for the decay to the channel a + A, ER is the real part of
the complex resonance energy ER − i �Ji

/2, E is the a − A
relative kinetic energy, and δhs

li
is the hard-sphere scattering

phase shift in the partial wave li . At the moment we do not
show all the quantum numbers characterizing the resonance
and the bound state but we will recover them later. Note that in
the case of the resonance scattering the resonance behavior (5)
of the internal wave function can be obtained in the potential
model from quite general considerations (see Chap. VII of
[7]).

In the external region �(+) is

�
(+)
(ext)(k,r) =

√
1

v

1

k r

[
Ili (k,r) − S Oli (k,r)

]∣∣∣∣
r>r0

. (6)

Here, Ili (k,r) and Oli (k,r) are the incoming and outgoing
spherical waves, v = k/μ is the a − A relative velocity, and
μ is their reduced mass. S is the elastic scattering S-matrix
element, which in the vicinity of an isolated resonance takes
the form

S = e
−2 i δhs

li

(
1 + i �Ji

ER − E − i
�Ji

2

)
. (7)

The nonresonant scattering phase δhs in the R-matrix approach
is the hard-sphere scattering phase shift determined as

e
−i 2 δhs

li = Ili (k,r0)

Oli (k, r0)
. (8)

Equating the internal and external wave functions at r = r0

and E = ER we get

Xint(r0) = −
√

2 μ r0 γJi
(9)

with the dimension fm−1/2. Here, γJi
is the reduced width

amplitude of the resonance level, which is related to the partial
resonance width as

�Ji
= 2 Pli (k,r0) γ 2

Ji
. (10)

Pli (k,r0) is the barrier penetrability at the orbital angular
momentum li at which the resonance occurs:

Pli (k, r0) = k r0√
F 2

li
(k,r0) + G2

li
(k, r0)

. (11)

Fli and Gli are the regular and singular Coulomb solutions.
Following the split of the initial scattering wave function

into the internal and external parts, we can rewrite the radiative
capture amplitude as the sum of the internal and external parts:

Mrad = Mrad(int) + Mrad(ext), (12)

where the internal and external radiative capture amplitudes
are given by

Mrad(int) =
√

8 π (L + 1)

L

k
L+1/2
γ

(2 L + 1)!!

× 1√
2 Jf + 1

〈
IF
aA

∣∣ÂL

∣∣�(+)
(int)

〉 ∣∣∣∣
r�r0

= i e
−i δhs

li

[
�Ji

]1/2
γ

Ji

γ Jf
(int)

ER − E − i �Ji
/2

(13)

and

Mrad(ext) =
√

8 π (L + 1)

L

k
L+1/2
γ

(2 L + 1)!!

× 1√
2 Jf + 1

〈
IF
aA

∣∣ÂL

∣∣�(+)
(ext)

〉 ∣∣∣∣
r>r0

= −i e
−i δhs

li

[
�Ji

]1/2
γ

Ji

γ Jf
(ch)

ER − E − i �Ji
/2

+ Mrad(nr), (14)

correspondingly.
Here, Mrad(nr) is the external part of the nonresonant

(direct) radiative capture amplitude. Note that in the R-matrix
approach the internal nonresonant radiative capture amplitude
is absorbed into the internal resonant radiative capture ampli-
tude Mrad(int). The internal radiative width amplitude for the
decay of the resonance with spin Ji to the bound state with
spin Jf is

γ
Ji

γ Jf
(int) =

√
8 π (L + 1)

L

k
L+1/2
γ

(2 L + 1)!!
√

2JF + 1

× 〈
IF
aA(r)

∣∣ÂL(r)
∣∣Xint(r)

〉∣∣∣∣
r�r0

. (15)

Note that the internal radiative width γ
Ji

γ Jf
(int) is real because

Xint is a real eigenfunction.

014625-2



ASYMPTOTIC NORMALIZATION COEFFICIENTS AND . . . PHYSICAL REVIEW C 92, 014625 (2015)

The external (channel) radiative width amplitude is given
by [6]

γ
Ji

γ Jf
(ch) =

√
8 π (L + 1)

Lv

k
L+1/2
γ

(2 L + 1)!!
√

2 Jf + 1

× e
−i δhs

li

[
�Ji

]1/2〈
IF
aA(r)

∣∣ÂL(r)
∣∣Oli (r)

〉∣∣
r>r0

.

(16)

The channel radiative width amplitude γ
Ji

γ Jf
(ch), in contrast

to the internal radiative width, is complex because it contains

the product of the complex functions e
−i δhs

li Oli .
The total radiative width amplitude can be expressed

in terms of the internal, γ
Ji

γ Jf
(int), and external (channel),

γ
Ji

γ Jf
(ch), radiative width amplitudes:

γ
Ji

γ Jf
= γ

Ji

γ Jf
(int) − γ

Ji

γ Jf
(ch). (17)

Then the total radiative width for the resonance decay to the
bound state is related to the radiative width amplitude as

�
Ji

γ Jf
= ∣∣γ Ji

γ Jf

∣∣2 = ∣∣γ Ji

γ Jf
(int) − γ

Ji

γ Jf
(ch)

∣∣2
. (18)

In the external region the radial overlap function is given
by (we recover here all the quantum numbers characteriz-
ing it)

IaA lf σJf
(r) = Clf σJf

W−ηbs
f , lf +1/2(2 κ r), (19)

where Clf σJf
is the ANC of the virtual decay F → a + A,

W−ηbs
f , lf +1/2(2 κ r) is the Whittaker function, κ = √

2 με, ηbs
f

and ε are the wave number, Coulomb parameter, and binding
energy of the bound state F = (a A), correspondingly, lf is the
a − A relative orbital angular momentum in the bound state,
and σ is the channel spin. Hence the channel radiative width
amplitude is proportional to the ANC of the final bound state.

In the R-matrix approach the channel radiative width
amplitude (in MeV1/2) reduces to [8]

γ
Ji

γ Jf
(ch) =

√
λN mu

137 E
(μ)L+1/2

(
Za e

mL
a

+ (−1)L
ZA e

mL
A

)√
(L + 1)(2L + 1)

L

1

(2L + 1)!!

× (kγ r0)L+1/2 Clf σJf

√
�liσJi

√
Pli (E, r0)

([
Fli (k,r0)

]2 + [
Gli (k,r0)

]2)
×W−ηbs

f ,lf +1/2(2 κ r0) 〈li0 L0|lf 0〉U (L lf Ji σ ; li Jf )

×
(

J
(1)
L (li ,lf ) + i J

(2)
L (li ,lf )

Fli (k,r0) Gli (k,r0)[
Fli (k,r0)

]2 + [
Gli (k,r0)

]2

)
, (20)

J
(1)
L (li lf ) =

[
Fli (k,r0)

]2

k r0
Pli (E, r0)

1

rL+1
0

∫ ∞

r0

dr rL
W−ηbs

f ,lf +1/2(2 κ r)

W−ηbs
f ,lf +1/2(2 κ r0)

Fli (k,r)

Fli (k,r0)

+
[
Gli (k,r0)

]2

k r0
Pli (E, r0)

1

rL+1
0

∫ ∞

r0

dr rL
W−ηbs

f ,lf +1/2(2 κ r)

W−ηbs
f ,lf +1/2(2 κ r0)

Gli (k,r)

Gli (k,r0)
, (21)

J
(2)
L (li lf ) = 1

rL+1
0

∫ ∞

r0

dr rL
W−ηbs

f ,lf +1/2(2 κ r)

W−ηbs
f ,lf +1/2(2 κ r0)

[
Fli (k,r)

Fli (k,r0)
− Gli (k,r)

Gli (k,r0)

]
. (22)

Here, 〈li0 L0|lf 0〉 is the Clebsch-Gordan coefficient,
U (L lf Ji σ ; li Jf ) is the Racah coefficient, Fli (k,r) and
Gli (k,r) are the regular and singular (at the origin) solutions of
the radial Schrödinger equation with pure Coulomb potentials,
E and k are the relative kinetic energy (in MeV) and the
relative momentum (in fm−1) of the particles a and A in
the continuum, and mi and Zi e are the mass and charge of
particle i, mu = 931.5 MeV. From now on we show all the
necessary quantum numbers which should be assigned to the
partial resonance width.

Note that the dependence of the channel reduced width
amplitude on the channel radius is its only model de-
pendence, while to calculate the internal radiative width
amplitude a microscopic approach is required. In the R-matrix
method the internal radiative width amplitude is a fitting
parameter.

We can rewrite the total radiative width amplitude as

γ
Ji

γ Jf
= γ

Ji

γ Jf
(int) − γ

Ji

γ Jf
(ch)

= (
γ

Ji

γ Jf
(int) − Re

[
γ

Ji

γ Jf
(ch)

]) − i Im
[
γ

Ji

γ Jf
(ch)

]
. (23)

Then

�
Ji

γ Jf
= ∣∣γ Ji

γ Jf
(int) − γ

Ji

γ Jf
(ch)

∣∣2

= (
γ

Ji

γ Jf
(int)−Re

[
γ

Ji

γ Jf
(ch)

])2+(
Im

[
γ

Ji

γ Jf
(ch)

])2
. (24)

Note that the relative phase of γ
Ji

γ Jf
(int) and the real part of

the channel radiative width amplitude Re[γ Ji

γ Jf
(ch)] is, a priori,

unknown, so these real parts may interfere either constructively
or destructively. Hence, (Im[γ Ji

γ Jf
(ch)])2 always provides a
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lower limit for the radiative width:

�
Ji

γ Jf
�

(
Im

[
γ

Ji

γ Jf
(ch)

])2
. (25)

Additional stronger limits may be obtained if assumptions are
made about the interference between the two real contribu-
tions. For the constructive interference of the real parts (the
signs of γ

Ji

γ Jf
(int) and Re[γ Ji

γ Jf
(ch)] are opposite) the channel

contribution gives a stronger lower limit because in this case

�
Ji

γ Jf
� �

Ji

γ Jf
(ch). (26)

In the case of the destructive interference of the real parts and
|Re[γ Ji

γ Jf
(ch)]| > |γ Ji

γ Jf
(int)|, the channel contribution gives an

upper limit for the radiative width:

�
Ji

γ Jf
� �

Ji

γ Jf
(ch). (27)

Assuming that the experimental radiative width, the ANC of
the bound state, and the resonance width are known, we can
determine the internal radiative width amplitude

γ
Ji

γ Jf
(int) = ±

√
�

Ji

γ Jf
− (

Im
[
γ

Ji

γ Jf
(ch)

])2

+ Re
[
γ

Ji

γ Jf
(ch)

]
. (28)

Then the internal radiative width takes the form

�
Ji

γ Jf
(int) = (

γ
Ji

γ Jf
(int)

)2

= (±√
�

Ji

γ Jf
− (

Im
[
γ

Ji

γ Jf
(ch)

])2

+ Re
[
γ

Ji

γ Jf
(ch)

])2
. (29)

III. EXAMPLES

In this section we consider five different examples. The
analysis is done within the framework of the R-matrix
method in which the channel radius is a model parameter.
If experimental data are available the channel radius can be
determined from the fitting of the calculated quantity to the
experimental one. Otherwise there are no specific prescriptions
how to choose the channel radius, which brings additional
uncertainty into quantities calculated using the R-matrix
approach. One of the possible recipes is to take the channel
radius as the minimal distance between the interacting nuclei
at which the polarizing force acting on each nucleus from
the other one can be neglected [9]. Often the channel radius
is determined as r0 = 1.4(a1/3 + A1/3). In what follows we
also use this prescription for four cases, except for the last
one for which the experimental data are available and the
channel radius is determined from the fitting of the calculated
astrophysical factor to the experimental one.

1. Transition 17F(1/2−,Ex = 3.104 MeV) →
17F(1/2+,Ex = 0.495 MeV). As the first example we
consider the decay of the first resonance 1/2− in 17F to the
first excited state 1/2+. The first example is chosen because
it presents the most striking example when the measured
radiative width is significantly lower then the lower limit of
the radiative width given by Eq. (25).

The proton resonance width is 19 ± 1 keV [10]. The square
of the proton ANC of the first excited state measured in [11]

is 6490 ± 680 fm−1. The radiative resonance width for this
transition is �

1/2
γ 1/2 = (1.2 ± 0.2) × 10−2 eV [12]. Meanwhile,

using Eq. (20) we get that at r0 = 4.9 fm γ
1/2
γ 1/2(ch) =

−0.2 − i0.177 eV1/2. Then it appears that the minimum of
the radiative width, which is based on the measured proton
resonance width and ANC, significantly exceeds the radia-
tive width measured in [12]: min�

1/2
γ 1/2 = (Im[γ 1/2

γ 1/2(ch)])2 =
(3.1 ± 0.5) × 10−2 eV > �

1/2
γ 1/2 = (1.2 ± 0.2) × 10−2 eV. To

get the uncertainty of the calculated (Im[γ 1/2
γ 1/2(ch)])2 we

took into account 10% uncertainty of the experimental ANC,
5% uncertainty in the proton resonance width, and 10%
uncertainty due to the dependence of (Im[γ 1/2

γ 1/2(ch)])2 on
the channel radius, which gives 15% of the total uncertainty
in the determined (Im[γ 1/2

γ 1/2(ch)])2. Thus we question the

experimental result for �
1/2
γ 1/2 = (1.2 ± 0.2) × 10−2 eV−1 [12]

and we think that it should be remeasured.
2. Transition 17F(5/2−,Ex = 3.857 MeV) →

17F(5/2+,Ex = 0.0 MeV). As the second example we
consider the decay of the second resonance 17F(5/2−) to
the ground state 17F(5/2+). This example is chosen to
demonstrate the case in which the measured radiative width
exceeds, as it supposed to be, the lower limit given by
Eq. (25). The proton resonance width is <1.5 keV [13].
The square of the proton ANC of the ground 17F state
measured in [11] is 1.08 ± 0.1 fm−1. The radiative resonance
width for this transition is �

5/2
γ 5/2 = (0.11 ± 0.02) eV [13].

Calculated at r0 = 4.9 fm, our channel radiative width
amplitude is γ

5/2
γ 5/2(ch) = −0.049 − i0.0062 eV1/2. Note

that 10% variation of the channel radius leads to only
2% of the Im[γ 5/2

γ 5/2(ch)]. The calculated lower limit of

�
5/2
γ 5/2 is (Im[γ 5/2

γ 5/2(ch)])2 = (3.8 ± 0.4) × 10−5 eV, which is

significantly smaller than the measured �
5/2
γ 5/2. From Eq. (28)

we get for the internal radiative width amplitude two values:
γ

5/2
γ 5/2(int) = −0.38 eV1/2 and 0.28 eV1/2. In the case under

consideration the ANC is very small compared to the previous
example. That is why the modulus of the channel radiative
width is much smaller than that of the internal width and we
cannot establish any stronger limits on the radiative width.

3. Transition 12N(2−,Ex = 1.191 MeV) → 12N(1+,Ex =
0.0 MeV). As the third example we consider the decay
of the second resonance of 12N at 0.576 MeV, li = 0 and
the spin of the resonance Ji = 2 to the ground state of
12N with the binding energy 0.6 MeV, lf = 1, and Jf = 1.
This case is selected because the reaction 11C(p, γ ) 12N is
an important branching point in the alternative path from
the slow 3α process to produce CNO seed nuclei [14,15].
This reaction is contributed by the direct and two resonant
captures (through the first and second resonances in 12N
[15]). The radiative width of the second resonance was a
controversial subject theoretically. The proton resonance width
of the second resonance is 51 ± 20 keV [16]. The square of
the proton ANC of the ground 12N state measured in [15]
is 1.73 ± 0.25 fm−1. The latest measured radiative resonance
width for this transition is �2

γ 1 = 13 ± 0.5 meV [17]. The

previous GANIL measurement �2
γ 1 = 6+7

3.5 meV had a too-
large uncertainty [18].
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The calculated channel radiative width amplitude at
the channel radius r0 = 4.5 fm is γ 2

γ 1(ch) = 0.176 +
i 0.028 eV1/2. Hence the calculated lower limit of the radiative
width �2

γ 1 is (Im[γ 2
γ 1(ch)])2 = 0.80 ± 0.30 meV, which is

significantly smaller than the measured �2
γ 1. The calculated

channel radiative width is �2
γ 1(ch) = 31.7 ± 7.5 meV, which

is significantly higher than the measured radiative width.
Here the uncertainty is contributed by the uncertainties of
the experimental ANC, partial proton resonance width and
ambiguity in the channel radius.

Hence the measured radiative width can be obtained only as
the result of the destructive interference between the real part
of the channel radiative width and the internal radiative width
amplitude. The calculated internal radiative width amplitudes
are γ 2

γ 1(int) = 0.29 eV1/2 and 0.065 eV1/2. Correspondingly,
the internal radiative widths are �2

γ 1(int) = 82 meV and
4.3 meV.

Because the interference between γ 2
γ 1(int) and Re[γ 2

γ 1(ch)]
in both cases is destructive, we cannot impose a stronger lower
limit than the one given by Eq. (25). But, if we select the
lower value of the internal width, then we can impose an
upper limit on the total radiative width: �2

γ 1 < �2
γ 1(ch) =

32.0 ± 8.0 meV.
4. Transition 13O(1/2+,Ex = 2.69 MeV) →

13O(3/2−,Ex = 0.0 MeV). This is an another example where
the lower limit of the radiative width given by Eq. (25) can raise
questions about some of the previous radiative width estimates
for the decay of the first resonance 13O(1/2+,Ex = 2.69 MeV)
at the resonance energy ER = 1.17 MeV to the ground state
13O(3/2−,Ex = 0.0 MeV). The proton partial resonance
width determined in [19] is 0.45 ± 0.10 MeV. The radiative
width of that resonance was suggested in [14] to have a value of
�

1/2
γ 3/2 = 24 meV with one order of magnitude uncertainty,

coming from a Weisskopf estimate of the transition strength.
The square of the proton ANC for the ground state of 13O
measured in [20] is 2.53 ± 0.30 fm−1. The lower limit of
the resonance radiative width calculated using Eq.(20) at
r0 = 4.6 fm, (Im[γ 1/2

γ 3/2(ch)])2 = 36.0 meV is larger than the
value accepted in [14]. Variation of the channel radius by
9% changes the lower limit by 9%. Thus from Eq. (25) we
can conclude that the value of the radiative width adopted
in [14] is too low and that �

1/2
γ 3/2 > 36.0 ± 5.0 meV, where

the uncertainty is contributed by the uncertainties of the
experimental ANC, partial proton resonance width, and
ambiguity in the channel radius.

If for the estimation of the internal radiative width ampli-
tude we use the single-particle approach we get γ

1/2
γ 3/2(int) =

−0.47 eV1/2 and �
1/2
γ 3/2(int) = 0.22 eV for r0 = 4.6 fm. For the

channel radiative width amplitude we get γ
1/2
γ 3/2(ch) = 0.57 +

i 0.19 eV1/2 and �
1/2
γ 3/2(ch) = 0.36 ± 0.07 eV. The calculated

total radiative width �
1/2
γ 3/2 = 1.12 eV is significantly higher

than the lower limit (Im[γ 1/2
γ 3/2(ch)])2 = 36.0 meV given

by Eq. (25). Because the interference between the internal
radiative width amplitude (calculated in the single-particle
model) and the real part of the channel radiative width
amplitude in the case under consideration is constructive, the
channel radiative width �

1/2
γ 3/2(ch) = 0.36 ± 0.07 eV provides

a stronger lower limit for the total radiative width than Eq. (25):
�

1/2
γ 3/2 > 0.36 ± 0.07 eV.

5. Transition 15O(3/2+,Ex = 6.79 MeV) →
15O(1/2−,Ex = 0.0 MeV). As the last example we
consider the transition from the tail of the subthreshold
resonance in 15O, which is the bound state with binding
energy ε = −0.504 MeV, to the ground state of 15O. This
transition plays an important role in the radiative capture
14N +p → 15O +γ , which is the bottleneck reaction in the
CNO cycle [21–23]. A subthreshold resonance is a bound
state which is close to the threshold. Then the tail of this
bound state extended to the continuum works as a resonance
and the radiative capture to the ground state occurs as a
capture to the subthreshold resonance at positive energy E
with its subsequent decay to the ground state by emitting the
photon. The partial width of the subthreshold resonance is
expressed in terms of the ANC and is given by [24]

�li σ Ji
= 1

μ
Pli (E, r0)

[
W−ηbs

i ,li+1/2(2 κi r0)
]2

r0
(Cli σ Ji

)2. (30)

Here Cli σ Ji
is the ANC of the subthreshold state with spin

Ji , channel spin σ , and orbital angular momentum li , and
ηbs

i and κi are the Coulomb parameter and the bound-state
wave number of the subthreshold bound state. The measured
squares of the ANCs of the ground and the subthreshold states
for the channel spin σ = 3/2 in 15O are 54 ± 6.0 fm−1 and
24.0 ± 5.0 fm−1 [22], correspondingly. The radiative width
for the transition of the subthreshold state to the ground state
is determined by the product of the squares of the ANCs of
these two bound states.

In the case under consideration the experimental astrophys-
ical factor is known [23] and the channel radius r0 = 5.5 fm
was determined by fitting the calculated astrophysical factor
to the experimental one [23]. For the channel radius r0 =
5.5 fm the channel radiative width is 0.79 ± 0.24 eV. The

TABLE I. Total radiative width and its estimated lower limit.

Resonant state Bound state �
Jf

γ Jf
Low limit of �

Jf

γ Jf

(eV) (eV)

17F(1/2−,Ex = 3.104 MeV) 17F(1/2+,Ex = 0.495 MeV) (1.2 ± 0.2) × 10−2 (3.1 ± 0.5) × 10−2

17F(5/2−,Ex = 3.857 MeV) 17F(5/2+,Ex = 0.0 MeV) (0.11 ± 0.02) (3.8 ± 0.4) × 10−5

12N(2−,Ex = 1.191 MeV) 12N(1+,Ex = 0.0 MeV) (13 ± 0.5) × 10−3 (0.8 ± 0.3) × 10−3

13O(1/2+,Ex = 2.69 MeV) 13O(3/2−,Ex = 0.0 MeV) 1.12 0.36 ± 0.07
15O(3/2+,Ex = 6.79 MeV) 15O(1/2−,Ex = 0.0 MeV) >0.85 0.79 ± 0.24
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uncertainty is contributed by the uncertainties of the ANCs
of the subthreshold and ground states and uncertainty of the
R-matrix channel radius. The imaginary part of the channel
radiative width amplitude is negligible. From the fitting the
experimental data the internal radiative width was found to
be 1.1 eV [23]. Then for the total radiative width we get
two values: 0.026 eV and 3.75 eV. The first value is too low
compared to the measurements in [25–27]. The higher value
does not contradict to [27] but significantly exceeds the results
obtained in [25,26]. Because the higher value of the total
radiative width corresponds to the constructive interference
of the internal and channel radiative width amplitudes, the
channel radiative width 0.79 ± 0.24 eV provides the lower
limit of the radiative width. It questions the value of the total
radiative width 0.4+0.34

−0.13 eV obtained in [25]. The total radiative
width 0.95+0.6

−0.95 eV obtained in [26] has too high uncertainty
while [27] gives only the lower limit for the radiative width:
�

3/2
γ 1/2 > 0.85 eV. Evidently new, more accurate measurements

of the radiative width for this important transition are needed.
In Table I we summarize the results for all five examples.

IV. SUMMARY

Thus we demonstrated the important role of the ANC in
calculations of the resonance radiative width. In particular,
we showed two examples in which the adopted radiative
widths were smaller than the lower limit imposed by the
measured ANC and the proton partial resonance width.

Especially interesting is the case of the transition 17F(1/2−,
Ex = 3.104 MeV) → 17F(1/2+,Ex = 0.495 MeV). The ex-
perimental radiative width for this transition given in the
compilations [13] based on the measurements in [12] should
be remeasured because it is significantly lower than the lower
limit provided by the ANC and the proton resonance width.
Finally, we discussed the role of the ANC in determination of
the radiative width for the capture to the bound state through
the subthreshold resonance. In this case the radiative width
is determined by the product of the squares of the ANCs for
the subthreshold bound state and the final bound state. The
presented cases require new more accurate measurements of
the radiative width.
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