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Hadron interferences in the proton-induced coherent
η-meson-production reaction on a scalar-isovector nucleus
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The coherent η-meson energy Eη distribution spectra in proton nucleus reactions have been calculated to
investigate the π 0–η mesons’ interference, in addition to the study of resonance N∗ dynamics in the nucleus. The
elementary reaction occurring in the nucleus is assumed to proceed as pN → pN∗; N∗ → Nη. Born terms in
the intermediate state are also considered. In a scalar-isovector nucleus, this reaction occurs because of π0- and
η-meson exchange interactions for the forward going proton and the η meson; other meson exchange potentials
do not contribute to this process. The sensitivity of the cross section to the hadron nucleus interactions and the
beam energy dependence of the cross section are studied for this reaction.
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I. INTRODUCTION

One of the current interests in intermediate energy nuclear
and particle reactions is to explore the dynamics of η meson
that can be produced either in a (quasi)bound state or in
continuum [1]. Several data sets for the η-meson production
in hadron-induced reactions are available from various labora-
tories, like COSY [2] (see the references therein), SATURNE
[3], Los Alamos [4], and Brookhaven [5]. The production
of η mesons in heavy-ion collisions was reported by GSI
[6]. Due to the advent of high-duty electron accelerators at
Jefferson Laboratory, Bates, MAMI, ELSA, etc., good quality
data have been obtained for the photo- and electroproduction
of η mesons [7]. These accelerator facilities, along with
the newly developed sophisticated detecting systems, provide
ample scope to investigate the physics of η mesons.

The study of reaction mechanisms for η-meson production
opens various avenues to learn about many exciting aspects
of physics. Large and attractive ηN scattering length near
the threshold production of this meson predicts the existence
of a new hadronic atom, i.e., the (quasi) η-mesic nucleus
[8,9]. The π0 − η mixing has been shown to occur in charge
symmetry breaking (CSB) reactions [10]. Being an isoscalar
particle, the η meson can excite a nucleon to I = 1

2 resonances.

Specifically, the N (1535) resonance, I (JP ) = 1
2 ( 1

2
+

), has a
large decay branching ratio to η meson and nucleon at the
pole mass. Therefore, the η-meson production in the nuclear
reaction is considered as a potential tool to investigate the
dynamics of N (1535) in the nucleus. Of course, this reaction
can also be used to study the η-meson nucleus interaction in
the final state [11,12].

The η meson can be produced through the hadronic
interaction by scattering off the pion or proton on the proton
or nuclear target. Theoretical studies of these reactions, as
done by various authors [13–15], show that the η meson in the
final state arises because of the decay of N (1535) produced in
the intermediate state. Sometime back, Lopez Alvaredo and
Oset [16] studied coherent η-meson production in the (p,p′)
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reaction on the spin-isospin saturated nuclei: p + A(gs) →
p′ + A(gs) + η. The elementary reaction in the nucleus is
considered to be pN → p′N (1535); N (1535) → Nη. The
resonance N (1535) in the intermediate state is produced due
to the η-meson (a psuedoscalar-isoscalar meson) exchange
interaction or potential only, specifically, for the forward going
proton and η meson. Contributions from other meson exchange
potentials, as discussed in Ref. [16], vanish for this reaction.

The importance of the N (1520) resonance in the η-meson-
production reaction is discussed in Ref. [17]. The earlier value
of the coupling constant fηNN(1520) was 6.72, whereas the latest
value of it is 9.98. This coupling constant is much larger
than the ηNN (1535) coupling constant: gηNN(1535) � 1.86.
The η-meson-production cross section due to N (1520) in
the abovementioned reaction is increased by a factor of ∼5
because of the enhancement in fηNN(1520). As shown in Fig. 2
of Ref. [17], the N∗ → Nη decay probability of N (1520) rises
sharply over that of N (1535) with the increase in resonance
mass. In fact, this probability for N (1520) is larger than that
for N (1535) at higher energy. It is also shown in Ref. [17] that
the contribution of the N (1535) resonance to the considered
reaction is the largest at low energy, i.e., ∼1 GeV, provided
fηNN(1520) is taken to be equal to 6.72. In the multi-GeV region,
the distinctly dominant contribution to the reaction (quoted
above) arises due to the N (1520) resonance. In addition to
these, the contributions to the cross section due to the Born
terms and other resonances [whose Nη branching ratio is �4%
[18], i.e., N (1650), N (1710), and N (1720) resonances] are
also presented in this work.

It should be mentioned that both π and η mesons are
pseudoscalar particles but the π0 exchange potential cannot
contribute to the abovementioned reaction since it is an
isovector meson and the quoted reaction involves an isoscalar
nucleus. In contrast to this, both π0- and η-meson exchange
interactions can contribute to the p → N∗ excitation in the
spin-saturated isovector nucleus. Therefore, the coherent η-
meson production in the (p,p′) reaction in the scalar-isovector
nucleus can be used to study the contribution of π0- and
η-meson exchange potentials (along with their interference)
to the reaction. In addition, this reaction can also be used
to investigate the dynamics of Born terms and nucleonic
resonances, similar to those presented in Ref. [17].
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FIG. 1. (Color online) Schematic diagrams describing the mech-
anism of the considered reaction (see text): (a) direct (or postemission)
and (b) cross (or preemission) diagrams.

The diagrammatic presentation of the considered reaction
is exhibited in Fig. 1. Figure 1(a) describes the direct or
postemission mechanism for the reaction where both the Born
term N (represented by the bold solid line inside the rectangle)
and the resonance term N∗ (shown by the rectangle) have been
incorporated. Figure 1(b) elucidates the cross or postemission
mechanism for the reaction where only the Born term N is
considered, because the contribution of the resonance N∗ term
in this case can be neglected compared with that described in
Fig. 1(a) [19].

In the coherent meson-production reaction, the meson in
the final state, i.e., the η meson in the considered reaction, takes
away almost the whole energy transferred to the nucleus, i.e.,
Eη ≈ (Ep − Ep′), whereas the momentum of this meson is
adjusted by the recoiling nucleus. The state of the nucleus does
not change in this reaction. In the formalism for the coherent
η-meson production in the proton nucleus (scalar-isovector)
reaction, the distorted wave functions of protons and η meson
are expressed by the eikonal form. The optical potentials
(appearing in the N∗ propagator as well as in the distorted
wave functions of protons) are worked out using the “t�(r)′′
approximation. The η-meson optical potential is evaluated
following that given in Ref. [16]. The cross section for the

coherent η-meson energy Eη distribution in the above reaction
is calculated to study various aspects of it, which include
(i) the resonance dynamics, (ii) the interference of π0- and
η-meson-exchange interactions, (iii) the sensitivity of the cross
section to the hadron nucleus interaction (optical potential),
and (iv) the beam energy dependence of the cross section.

II. FORMALISM

The Lagrangian L representing the meson-baryon interac-
tion depends on their spin and parity. For the pseudoscalar
(0−) meson (i.e., π or η meson) coupling to the resonances in
the considered reaction, the forms for L are presented below
[20,21]. For the 1

2
+

particle [i.e., N (940) or N∗ ≡ N (1710)],
they can be expressed as

LπNN = −igπFπ (q2)N̄γ5τN · π ,

LηNN = −igηFη(q2)N̄γ5Nη,
(1)

LπNN∗ = −ig∗
πF ∗

π (q2)N̄∗γ5τN · π ,

LηNN∗ = −ig∗
ηF

∗
η (q2)N̄∗γ5Nη,

where gπ [πNN(940) coupling constant] � 13.4 [22], gη

[ηNN (940) coupling constant] � 7.93 [23], g∗
π [πNN(1710)

coupling constant] = 1.2, and g∗
η (ηNN (1710) coupling

constant) � 4.26. For the 1
2

−
resonance N∗, i.e., N (1535) and

N (1650), the forms for L are given by

LπNN∗ = −ig∗
πF ∗

π (q2)N̄∗τN · π ,

LηNN∗ = −ig∗
ηF

∗
η (q2)N̄∗Nη, (2)

where g∗
π � 0.71 and g∗

η � 1.86 for N (1535), and g∗
π � 0.83

and g∗
η � 0.67 for N (1650). For N (1520) 3

2
−

, the forms for L
can be written as

LπNN∗ = f ∗
π

mη

F ∗
π (q2)N̄∗μγ5τN · ∂μπ ,

LηNN∗ = f ∗
η

mη

F ∗
η (q2)N̄∗μγ5N∂μη, (3)

where f ∗
π = 6.54 and f ∗

η � 9.98. For the 3
2

+
resonance [24],

i.e., N∗ ≡ N (1720), the forms for L are given by

LπNN∗ = f ∗
π

mη

F ∗
π (q2)N̄∗μτN · ∂μπ ,

LηNN∗ = f ∗
η

mη

F ∗
η (q2)N̄∗μN∂μη, (4)

where f ∗
π � 0.64 and f ∗

η � 1.15. The coupling constants (i.e.,
g∗s and f ∗s) are extracted from the measured decay widths of
the resonances, i.e., N∗ → Nπ and N∗ → Nη [18]. Fπ(η)(q2)
and F ∗

π(η)(q
2) are π (η)NN and π (η)NN∗ form factors at the

respective vertices [23]:

FM (q2) = F ∗
M (q2) = �2

M − m2
M

�2
M − q2

(M ≡ π0,η). (5)

In this equation, q2[= q2
0 − q2] is the four-momentum transfer

to the nucleus, i.e., q0 = Ep − Ep′ and q = kp − kp′ . The
form factors are normalized to unity when the mesons are on
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TABLE I. �N(N∗)(S) for spin S = 1
2 and 3

2 fermions.

Spin(S) �(S)

1
2 {	 k + mN∗ }
3
2 {	 k + mN∗ }[gμ

ν − γ μγν

3 − γ μkν−γ νkμ

3mN∗ − 2kμkν

3m2
N∗

]

shell. Values of the length parameters are �π = 1.3 GeV and
�η = 1.5 GeV [23].

The T matrix Tf i of the considered reaction can be written
as

Tf i =
∑

M=π0,η

[TB(M) + TN∗ (M)], (6)

where TB (M) represents the T matrix due to Born terms arising
because of either the π0-meson exchange potential or the η-
meson exchange potential. It is given by

TB(M) = 	NNη�N (S)VM (q)
∫

drχ (−)∗(kη,r)

×GN�I (r)χ (−)∗(kp′ ,r)χ (+)(kp,r). (7)

The factor �I in the above equation denotes the isospin-
averaged density distribution of the nucleus. χs represent
the wave functions for the continuum particles. These quan-
tities are elaborated later. 	NNη describes the interaction
for the emission of η mesons at the ηNN vertex in the
final state. VM (q) represents the pseudoscalar meson (i.e.,
M ≡ π0 or η) exchange potential between the beam proton
and a nucleon in the nucleus, shown by the dashed line in
Fig. 1: VM (q) = 	MNNGM (q2)	Mpp′ . In this equation, 	MNN

denotes the interaction at MNN vertex (in the nucleus),
whereas 	Mpp′ represents that at the Mpp′ vertex (i.e., meson-
projectile-ejectile vertex). These 	s are addressed by Lπ(η)NN

in Eq. (1). GM (q2) is the virtual π0(η)-meson propagator,
i.e., Gπ0(η)(q2) = − 1

m2
π0(η)

−q2 . �N (S) represents the spin (S)-

dependent part of the nucleon propagator, i.e., �N (S = 1
2 ) in

Table I. The scalar part of the nucleon Born propagator GN

for direct (D) and cross (C) channels, as illustrated in Fig. 1,
are given by

GD
N = 1

s − m2
N

, GC
N = 1

u − m2
N

, (8)

where s and u are invariant Mandelstam kinematical variables
(see page 28 in Ref. [22]).

The resonance contribution to the T matrix, i.e., TN∗ (M) in
Eq. (6), is given by

TN∗ (M) =
∑
N∗

	N∗→Nη�N∗ (S)VM (q)
∫

drχ (−)∗(kη,r)

×GN∗�I (r)χ (−)∗(kp′ ,r)χ (+)(kp,r). (9)

�I (r) and χs also appear in Eq. (7). 	N∗→Nη denotes N∗ →
Nη decay in the final state. VM (q) in this case is given by
VM (q) = 	MNN∗GM (q2)	Mpp′ , where 	MNN∗ represents the
interaction at the MNN∗ vertex (in the nucleus) described
by Lπ(η)NN∗ in Eqs. (1)–(4). Other quantities in VM (q) are

TABLE II. Resonance width 	N∗ (mN∗ ) at pole
mass mN∗ in MeV [18].

Resonance N∗ 	N∗ (mN∗ )

N (1520) 115
N (1535) 150
N (1650) 150
N (1710) 100
N (1720) 250

already defined below Eq. (7). The spin-dependent part of the
N∗ propagator �N∗ (S) is expressed in Table I. The scalar part
of this propagator, GN∗ in Eq. (9), according to Fig. 1(a), can
be expressed as

GN∗ (m) = 1

m2 − m2
N∗ + imN∗	N∗ (m)

, (10)

where mN∗ is the pole mass of the resonance N∗. m(≡ s) is the
invariant mass of the η meson and the nucleon, arising due to
the decay of N∗. Because the cross or preemission channel in
this case (as mentioned earlier) can be neglected, the T matrix
for it is not considered. Indeed, this equation represents the
resonance propagator in the free space because the resonance
nucleus interaction in it (which is considered later) is omitted.

	N∗ (m) in Eq. (10) represents the total width of N∗ for its
mass equal to m. The experimentally determined values of it
at its pole mass, i.e., m = mN∗ , for all considered resonances
are listed in Table II. Since the resonance N∗ can decay into
various channels, 	N∗ (m) consists of partial decay widths as
written below [18].

For the N∗ ≡ N (1520) resonance,

	N∗ (m) = 	N∗→Nπ (m)|l=2 + 	N∗→�π (m)|l=0

+	N∗→�π (m)|l=2 + 	N∗→Nη(m)|l=2, (11)

where l is the angular momentum associated with the
decay, 	N∗→Nπ (m)|l=2 ≈ 0.65	N∗ (m), 	N∗→�π (m)|l=0 =
0.2	N∗ (m), 	N∗→�π (m)|l=2 = 0.15	N∗ (m), and
	N∗→Nη(m)|l=2 = 2.3 × 10−3	N∗ (m).

For the N∗ ≡ N (1535) resonance,

	N∗ (m) = 	N∗→Nπ (m)|l=0 + 	N∗→Nη(m)|l=0

+	N∗→Nππ (m), (12)

with 	N∗→Nππ (m) = 0.1	N∗ (mN∗ ) [25], 	N∗→Nπ (m)|l=0 =
0.48	N∗ (m), and 	N∗→Nη(m)|l=0 = 0.42	N∗ (m).

For the N∗ ≡ N (1650) resonance,

	N∗ (m) = 	N∗→Nπ (m)|l=0 + 	N∗→�π (m)|l=2

+	N∗→Nη(m)|l=0, (13)

with 	N∗→Nπ (m)|l=0 = 0.75	N∗ (m), 	N∗→�π (m)|l=2 =
0.15	N∗ (m), and 	N∗→Nη(m)|l=0 = 0.1	N∗ (m).

For the N∗ ≡ N (1710) resonance,

	N∗ (m) = 	N∗→Nπ (m)|l=1 + 	N∗→�π (m)|l=1

+	N∗→Nη(m)|l=1 + 	N∗→�K (m)|l=1, (14)
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TABLE III. Blatt-Weisskopf barrier-penetration
factor Bl(k̃R) [26].

l B2
l (x = k̃R)

0 1
1 x2/(1 + x2)
2 x4/(9 + 3x2 + x4)

with 	N∗→Nπ (m)|l=1 = 0.2	N∗ (m), 	N∗→�π (m)|l=1 =
0.4	N∗ (m), 	N∗→Nη(m)|l=1 = 0.3	N∗ (m), and
	N∗→�K (m)|l=1 = 0.1	N∗ (m).

For the N∗ ≡ N (1720) resonance,

	N∗ (m) = 	N∗→Nπ (m)|l=1 + 	N∗→�π (m)|l=1

+	N∗→Nη(m)|l=1 + 	N∗→�K (m)|l=1, (15)

with 	N∗→Nπ (m)|l=1 = 0.11	N∗ (m), 	N∗→�π (m)|l=1 =
0.75	N∗ (m), 	N∗→Nη(m)|l=1 = 0.04	N∗ (m), and
	N∗→�K (m)|l=1 = 0.1	N∗ (m).

The partial decay width of a resonance, N∗, decaying to a
baryon, B, and a meson, M , i.e., 	N∗→BM (m)|l , varies with its
mass, m [26], as

	N∗→BM (m)|l = 	N∗→BM (mN∗ )

[
�l(m)

�l(mN∗ )

]
. (16)

The phase-space factor �l(m) is given by �l(m) = k̃
m

B2
l (k̃R),

where k̃ is the relative momentum of the decay products
(i.e., B and M) in their center-of-mass frame. Bl(k̃R) is the
Blatt-Weisskopf barrier-penetration factor, listed in Table III.
R (= 0.25 fm) is the interaction radius.

The fivefold differential cross section of the considered
reaction can be written as

dσ

dEp′d�p′d�η

= KF 〈|Tf i |2〉, (17)

where the annular brackets around |Tf i |2 represent the average
over spins in the initial state and the summation over spins in
the final state. KF is the kinematical factor for the reaction:

KF = π

(2π )6

m2
pmAkp′k2

η

kp|kη(Ei − Ep′) − Eηq.k̂η|
. (18)

All symbols carry their usual meanings.

III. RESULTS AND DISCUSSION

The differential cross sections dσ
dEp′d�p′d�η

have been cal-
culated for the coherent η-meson energy Eη distribution in
the (p,p′) reaction on 14C, a scalar-isovector nucleus. To
describe the plane-wave results, χs in T matrices in Eqs. (7)
and (9) are given by χ (+)(kp,r) = eikp.r for the beam proton
p, and χ (−)∗ (kX,r) = e−ikX.r for a particle in the final state,
i.e., X is either the ejectile proton p′ or the η meson. The
resonance nucleus interaction or optical potential VON∗ (r) is
not considered at this stage. The spatial density distribution
�(r) of the 14C nucleus, as extracted from the electron
scattering data [27], is given by

�(r) = �0[1 + w(r/c)2]e−(r/c)2
, w = 1.38, c = 1.73 fm.

(19)

FIG. 2. (Color online) The η-meson energy Eη distribution spec-
tra for the 14C nucleus at 2.5 GeV. The cross section due to the
N (1520) resonance is distinctly the largest (dot-dot-dashed curve).
The coherently added cross section (dot-dashed curve) is less than the
previous cross section because of the interference of the Born terms
and resonances quoted in the figure.

This density distribution is normalized to the mass number of
the nucleus.

The isospin-averaged nuclear density distribution �I (r),
appearing in Eqs. (7) and (9), is related to �(r) as

�I (r) =
[
Z

A
Cis(p) + (A − Z)

A
Cis(n)

]
�(r), (20)

where Cis(p) and Cis(n) are the isospin matrix elements
for the proton and the neutron, respectively. Cis(p) = +1
and Cis(n) = −1 are the values for the π0-meson exchange
potential; both of them are equal to +1 for the η-meson
exchange potential.

The calculated plane-wave (VON∗ not included) results at
2.5 GeV are illustrated in Fig. 2. The coherent contribution of
π0- and η-meson exchange potentials, i.e., Vπ0 (q) and Vη(q),
are incorporated in these results. This figure represents the
cross sections due to Born terms and resonances (mentioned
earlier) and the cross section occurring due to their coherent
contributions. The dot-dot-dashed curve in this figure shows
that the cross section because of the N (1520) resonance is
distinctly the largest. Compared to it, the cross sections due
to Born terms and other resonances are insignificant. The
interferences of Born terms and resonances in the coherently
added cross section, presented by the dot-dashed curve, is
visible in the figure. The peak of this cross section arises close
to that due to the N (1520) resonance.

The cross sections of the considered reaction due to Vπ0 (q)
and Vη(q) at 2.5 GeV are described in Fig. 3. Along with them,
the coherently added cross section due to these potentials is
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FIG. 3. (Color online) (a) Contributions of π 0- and η-meson
exchange potentials to the cross section arising due to the N (1520)
resonance only. The peak position is shifted to the higher value of Eη

because of the interference of these potentials (dot-dot-dashed curve).
(b) Same as those presented in the panel (a) but for the coherently
added cross sections due to Born terms and resonances (see text).

also presented in this figure. Figure 3(a) shows the calculated
results (plane wave; VON∗ not included) arising due to the
N (1520) resonance only, because the cross section due to this
resonance (as shown in the previous figure) is distinctly the
largest. The cross section due to Vπ0 (short-dashed curve) is
significantly smaller (∼ 1

5 ) than that due to Vη (large-dashed
curve). The interference of these potentials is noticeable in the
coherently added cross section (see dot-dot-dashed curve in
this figure).

The smaller cross section arising due to the π0-meson
exchange potential Vπ0 over that due to the η-meson exchange
potential Vη may be understood, as an initial thought, by

analyzing the ratios of various factors appearing in |Vπ0

Vη
|2

at the respective peaks of the cross sections. The coupling

constants, quoted below Eqs. (1) and (3), show the ratio | gπf ∗
π

gηf ∗
η
|2

is approximately equal to 1.23. The ratio of isospin matrix

elements in |Vπ0 (q)
Vη(q) |2 is 1

49 , as the isospin contribution of a
proton cancels that of a neutron in the nucleus for Vπ0 (q).
Referring to Fig. 3(a), the peak cross section due to Vπ0 (q)
appears at the four-momentum transfer q2 � −0.18 GeV2,
whereas that due to Vη(q) arises at q2 ≈ −0.25 GeV2. The
form factors at the respective peaks, according to Eq. (5),
are Fπ (q2 � −0.18 GeV2) = F ∗

π (q2 � −0.18 GeV2) � 0.89
and Fη(q2 ≈ −0.25 GeV2) = F ∗

η (q2 ≈ −0.25 GeV2) � 0.78.

These values give |Fπ (q2)
Fη(q2) |

4 � 1.7. The values of the pseu-

doscalar meson propagators are Gπ (q2 � −0.18 GeV2) �
−5.06 GeV−2 and Gη(q2 ≈ −0.25 GeV2) ≈ −1.83 GeV−2,

which show |Gπ (q2)
Gη(q2) |

2 ≈ 7.65. The product of these factors

shows |Vπ0 (q)
Vη(q) |2 � 1

3.06 , but the calculated results show the peak
cross section due to Vη is ∼5 larger than that due to Vπ0 .

To resolve the above discrepancy (i.e., a factor of ∼1.63),
the N∗(m) → Nη decay probabilities [for N∗ ≡ N (1520)] at
the peaks quoted in the previous analysis are considered. It is
noticeable in Fig. 3(a) that the peak cross section due to Vπ0

appears at Eη � 1.18 GeV, which corresponds to the resonance
mass m ≈ 1.83 GeV, as mentioned on the upper x axis of
this figure. The peak of the cross section due to Vη appears
at m � 1.9 GeV. The ratio of the decay probabilities at the

respective peaks,
	N∗→Nη(m≈1.83 GeV)|V

π0

	N∗→Nη(m�1.9 GeV)|Vη

, according to Eq. (16),

is close to 1
1.61 . Therefore, the above analyses justify the lesser

cross section due to Vπ0 over that due to Vη, as is visible in
Fig. 3(a).

The importance of Vπ0 and Vη in the coherently added
cross sections due to Born terms and quoted resonances is
presented in Fig. 3(b). These spectra show features which
are qualitatively similar to those elucidated in Fig. 3(a).
This occurs because the distinctly dominant cross section, as
mentioned earlier, arises because of the N (1520) resonance.

To include the hadron nucleus interaction (optical potential)
in the calculated cross section, the distorted wave functions are
used for χs in T matrices [given in Eqs. (7) and (9)] and GN∗

in Eq. (10) is replaced by the in-medium resonance propagator.
Using the Glauber model [28,29], χ for the beam proton p can
be written as

χ (+)(kp,r) = eikp.r exp

[
− i

vp

∫ z

−∞
dz′VOp(b,z′)

]
. (21)

For outgoing particles, i.e., p′ and η meson, the form for the
distorted wave functions is

χ (−)∗ (kX,r) = e−ikX.r exp

[
− i

vX

∫ +∞

z

dz′VOX(b,z′)
]

× (X = p′,η). (22)

In the above equations, v and V (b,z′) represent the velocity
and optical potential, respectively, of the continuum particle.
These potentials describe the initial and final state interactions
of the reaction.

Incorporating the resonance nucleus interaction VON∗ (r) in
GN∗ (m) given in Eq. (10), the resonance propagator in the
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nucleus can be expressed as

GN∗ (m,r) = 1

m2 − m2
N∗ + imN∗	N∗ (m) − 2EN∗VON∗ (r)

,

(23)

where EN∗ is the energy of the resonance N∗.
The optical potential VOX(r), appearing in Eqs. (21)–(23),

is calculated using the “t�(r)′′ approximation [29], i.e.,

VOX(r) = −vX

2
[i + αXN ]σXN

t �(r), (24)

where the symbol X represents either a proton or a resonance
N∗. vX is the velocity of the particle X. αXN denotes the
ratio of the real part to the imaginary part of X-nucleon
scattering amplitude fXN , and σXN

t is the corresponding
total cross section. To evaluate the proton nucleus optical
potential, i.e., VOp(r) as well as VOp′(r), the energy-dependent
experimentally determined values for αpN and σ

pN
t have been

used [30]. The measured values for N∗-nucleon scattering
parameters, i.e., αN∗N and σN∗N

t , are not available. To estimate
them, αN∗N ≈ αpN and σN∗N

el ≈ σ
pN
el are taken since the elastic

scattering dynamics of N∗ can be assumed to be not much
different from that of a proton [31]. For the reactive part of
σN∗N

t , the dynamics of N∗ can be considered to be the same
as that of a nucleon at its kinetic energy enhanced by �m,
i.e., σN∗N

r (TN∗N ) ≈ σNN
r (TN∗N + �m). Here, �m is the mass

difference between the resonance and the nucleon. TN∗N is the
total kinetic energy in the N∗N center-of-mass system [31].

The η-meson optical potential VOη(r) is evaluated from
its self-energy �η(r) in the nucleus. The resonance hole
contribution to �η(r), according to Lopez Alvaredo and Oset
[16], can be written as

�η(r) = 2EηVOη(r) =
∑
N∗

|C(N∗)|2

× �(r)

m − mN∗ + i
2	N∗ (m) − VON∗ (r) + VON (r)

. (25)

The prefactor |C(N∗)|2 in this equation depends on the N∗
resonance used to evaluate �η(r). The nucleon potential
energy in the nucleus is taken as VON (r) = −50�(r)/�(0)
MeV [16]. �η(r) arising due to the nucleon-hole pair is worked
out following that due to the π0 meson (see page 157 in
Ref. [22]).

The sensitivity of the calculated cross section to the hadron
nucleus interaction is exhibited in Fig. 4. The large peak
(shown in this figure) in the coherently added cross sections
(arising because of Born terms and considered resonances as
well as because of π0- and η-meson exchange potentials) is
considered for this purpose. The dot-dashed curve represents
the plane-wave (VON∗ not included) cross section of the
considered reaction (also shown earlier). The cross section
is reduced by a factor of 3.74 because of the incorporation of
the initial state interaction (ISI) (see the long-dashed curve).
The short-dashed curve elucidates the calculated spectrum
obtained after the inclusion of both the ISI and the FSI (final
state interaction); i.e., it describes the distorted wave results
where VON∗ is not taken into consideration. The cross section

FIG. 4. (Color online) The sensitivity of the cross section to the
hadron nucleus interaction (optical potential). The cross section is
reduced drastically (by a factor of � 12), and the peak position is
shifted by 40 MeV towards the higher value of Eη because of these
interactions.

is further reduced by a factor of 2.86 due to the inclusion of
the FSI. The solid curve represents the calculated distorted
wave results where VON∗ has been incorporated. It shows the
change in the cross section due to this potential is negligible.

FIG. 5. (Color online) Beam energy dependence of the cross
section. The cross section increases and the peak position shifts
towards the higher Eη with the enhancement in the beam energy.
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Therefore, the calculated plane-wave (VON∗ not included)
cross section is reduced drastically, i.e., by a factor of 11.81,
because of the inclusion of all hadron nucleus interactions.
The shift in the peak position because of these interactions is
about 40 MeV towards the higher value of Eη in the spectrum.

The beam energy dependence of the distorted wave results
is elucidated in Fig. 5. The resonance nucleus interactions are
also included in these results. The cross section at the large
peak is increased by a factor of 5.37, and the peak position
is shifted from Eη � 1.39 GeV to Eη � 1.75 GeV with an
increase in the beam energy from 2.25 to 3 GeV.

IV. CONCLUSIONS

Differential cross sections have been calculated for the
coherent η-meson energy Eη distribution in the proton-induced
reaction on a scalar-isovector nucleus. The η meson in the
final state is considered to arise because of Born terms and
resonances produced in the intermediate state. The interaction
between the projectile proton and a nucleon in the target
nucleus is described by the pseudoscalar meson (i.e., π0 and η

meson) exchange potentials. The calculated results show that
the distinctly dominant contribution to the η-meson production
cross section arises because of the N (1520) resonance. The
coherently added cross section arising due to Born terms
and considered resonances is less than the previous cross
section due to their interferences. The cross section because
of the π0-meson exchange potential is less than that due to
the η-meson exchange potential. The interference of these
potentials is distinctly visible in the η-meson energy Eη

distribution spectrum. The cross section is reduced drastically
and shifted towards higher Eη because of the hadron nucleus
interactions, i.e., ISI and FSI including resonance nucleus
interactions. The calculated results show that the cross section
is very sensitive to the beam energy, because the magnitude of
the cross section increases and its peak position shifts towards
higher Eη with the enhancement in the beam energy.
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