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Description of elastic polarized-deuteron scattering in the optical model with Skyrme forces
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Microscopic deuteron-nucleus optical potential was constructed on the basis of the nucleon-nucleus optical
potentials recently obtained by the authors from approximate calculations of the mass operator of the single-
particle Green function using the Skyrme forces, which in general involve additional density- and momentum-
dependent terms. Both the nucleon- and deuteron-nucleus elastic scattering processes are described in a self-
consistent approach using the effective nucleon-nucleon forces, which simultaneously provide a satisfactory
description of nuclear structure. The calculations performed using the Watanabe-type approximation have made
it possible to obtain reasonable results for describing differential cross sections and polarization observables for the
elastic deuteron scattering in a wide range of target-nucleus mass numbers at different incident deuteron energies,
when using several Skyrme-force variants both from literature and proposed by the authors. Contributions to
elastic deuteron-nucleus scattering cross sections coming from the effects of deuteron virtual breakup have been
estimated in the continuum-discretized coupled channels approach.
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I. INTRODUCTION

Development of a unified theory that would include both
the shell model of atomic nuclei and the microscopic optical
potentials (MOP) of the interaction of nucleons and light
nuclei, in particular deuterons, with nuclei is of considerable
interest. At the present time, different models of MOP for
describing nuclear scattering processes are developed, which
are based on using various effective nucleon-nucleon (NN )
forces and realistic nuclear densities. Among the frequently
used approaches are the folding models (see, for example,
[1–3]). For describing the deuteron scattering at energies
of about several tens of MeV, the three-body n + p + A
models are also used of the Watanabe folding type [4–7]
and of the Faddeev-like type with nonlocal and local optical
potentials [8,9]. The continuum-discretized coupled channels
(CDCC) method should be mentioned, which was successfully
employed for studying the deuteron-nucleus (dA) scatter-
ing and reactions in a wide energy range during recent
decades [10–13]. The CDCC formalism is a three-body ap-
proach, which describes the dA interaction, as in the Watanabe
model, in terms of the nucleon-target optical potentials but
explicitly includes effects of the deuteron virtual breakup
channels, which can be important for such weakly bound
projectiles as deuterons. We also mention the approach to
describing the dA interaction developed in Refs. [14–17],
which is based on nonlocal optical potentials and was
employed for analyzing the deuteron stripping reactions on
nuclei. In Refs. [16,17] the connection between the three-body
model and the underlying many-body problem is discussed.

Starting from Ref. [18], extensive investigations have
been devoted to the elaboration of effective NN forces of
the Skyrme type, which are widely used in microscopic
calculations of nuclear structure and properties of nuclear
matter. At the present time, much attention is given to the
problem of searching for Skyrme-type NN forces (see, for
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example, Ref. [19] and references therein) which could be
simultaneously applicable for describing different properties
of nuclei, in particular, of exotic ones, the properties of
excited states of nuclei, including giant resonances, and for
astrophysical problems, such as calculations of neutron stars.
In this connection, it is also of interest to extend the field of
application of the Skyrme forces to the description of nuclear
scattering processes.

For this purpose in Refs. [20–26], an approach to analyzing
NA scattering was developed in which for finding the
corresponding NA optical potentials approximate calculations
of the mass operator of the one-particle Green function
were employed. In our papers [22–24], the real part of
the NA MOP was used in the form of the finite-nucleus
potential, calculated in the Hartree-Fock approximation with
the Skyrme forces (SHF) of the standard form [18]. In the
calculations of the imaginary part of the MOP, which were
performed in the nuclear matter approximation, we used the
dispersion law also with the SHF potential for finite nuclei.
It should be emphasized that in Refs. [22–26], in contrast
to Refs. [20,21], the self-consistent calculations of the NA
MOP and nucleon densities of the target nucleus were used.
In the work of Ref. [25], the approach [22–24] was employed
to find the NA MOP on the basis of the extended variants
of Skyrme forces with the allowance for both the density- and
momentum-dependent terms of the type used in Refs. [27–29].
The analysis of the neutron- and proton-nucleus scattering
allowed us to find some new sets of parameters of the Skyrme
forces of the standard and extended forms, which provide
a satisfactory description of differential cross sections and
analyzing powers of the elastic scattering of medium-energy
nucleons on different target nuclei as well as of the reaction
and total interaction cross sections. Moreover, the use of
certain variants of the extended Skyrme forces yielded a
somewhat better description of experimental data. In view
of the promising results of this approach in analyzing the NA
scattering using the simultaneous self-consistent description of
nuclear structure employing the same Skyrme forces, it seems
expedient to spread such an approach for constructing MOP for
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the deuteron-nucleus (dA) scattering. Here, we will consider
the use of dA MOP constructed in the three-body n + p + A
model basing on the NA optical potentials obtained in the
above self-consistent approach.

In Ref. [30], it was shown that the dA MOP can be identified
with the mass operator of the two-particle Green function
in the nuclear medium. After ignoring the contributions
which go beyond the three-body model and neglecting the
effects of deuteron breakup, the considered model became
analogous to the Watanabe model [4]. As a result, in Ref. [30]
the dA optical potential was represented in the folding
form with employing the NA optical potentials from the
model of Ref. [20] calculated on the basis of the Skyrme
forces in the approximations of nuclear matter and local
density, and this dA MOP was used for analyzing the
experimental elastic dA scattering cross sections. Note that
in Refs. [16,17] it was pointed out that there is a problem of
investigating the role of the terms going beyond the three-body
model, whose quantitative significance is not yet exactly
known.

In our work of Ref. [31], the analysis of the dA scatter-
ing cross sections was performed basing on an analogous
Watanabe-type model, but with employing a more sophisti-
cated model of the NA MOP from Refs. [22–24], which were
calculated in the self-consistent approach with the standard
Skyrme forces. In the present work, this model of the dA
MOP is further developed for using the Skyrme forces of the
above-mentioned extended form. The applicability of various
standard and extended Skyrme forces for describing the dA
scattering is investigated, including the optimized variants of
NN forces found by the authors in Refs. [25,26] from analyz-
ing the elastic NA scattering observables and characteristics
of nuclear structure. We complement the analysis of the dA
elastic scattering differential cross sections by calculations of
various polarization observables, which were not considered
in Refs. [30,31]. Because deuteron is a weakly bound nucleus,
it is also interesting to assess the effects of its virtual breakup
upon description of the dA scattering, which also were not
studied in Refs. [30,31] and here are estimated using the CDCC
approach.

II. THE MODEL OF d A MICROSCOPIC OPTICAL
POTENTIAL WITH THE EXTENDED

SKYRME INTERACTION

Let us consider the scheme of constructing the MOP
for describing the dA scattering on the basis of the model
of NA MOP developed by us earlier in Refs. [22–26],
which is based on calculations of the mass operator of the
one-particle Green function with using the Skyrme forces
depending on the nuclear density. As in Ref. [30], we use
the approximations that make the dA MOP calculation scheme
analogous to the Watanabe model [4], which was used by many
authors for describing scattering of composite particles by
nuclei.

The Schrödinger equation for the scattering of the two-
nucleon system on an atomic nucleus can be written in the

three-body model in the form,{
− �

2

2Md

∂2

∂R2 + Ĥin(r) + Û1(r1) + Û2(r2) − ε

}
×�(R,r; σ1,σ2; τ1,τ2) = 0. (1)

Here �(R,r; σ1,σ2; τ1,τ2) is the wave function of two incident
nucleons; r = r1 − r2 and R = (r1 + r2)/2 are the radius
vectors of their relative motion and of the center of mass of this
system, where r1 and r2 are the radius vectors of these nucleons
being measured from the target-nucleus position; σ1, σ2 and
τ1, τ2 are the spin and isospin variables of these nucleons. In
Eq. (1), ε is the energy of the system; Md = 2mM/(M + 2m)
is the reduced mass of the deuteron-nucleus system, where
m and M are the masses of nucleon and target nucleus. The
Hamiltonian of the internal motion of the two-nucleon system
has the form:

Ĥin(r) = − �
2

2m̃

∂2

∂r2
+ V12(r), (2)

where m̃ = m/2 is the reduced mass of the two-nucleon
system, and V12(r) is the potential of interaction between the
nucleons. The optical potentials Û1(r1) and Û2(r2) describe
the interaction of the first and second nucleons with the target
nucleus.

If we neglect the tensor interaction in the potential V12(r),
then the wave function of the deuteron ground state can be
chosen in the form,

ψ0(r; σ1,σ2; τ1,τ2) = ϕ0(r)χ (s)
1,μ(σ1,σ2)χ (τ )

0 (τ1,τ2), (3)

where ϕ0(r) = u0(r)/(
√

4πr) is the radial wave function
of the deuteron; the spin function χ

(s)
1,μ corresponds to the

deuteron spin S = 1, μ being the deuteron spin projection;
the isospin function χ

(τ )
0 corresponds to the zero total isospin

of the deuteron. The wave function (3) does not take into
account the D-wave admixture in the deuteron ground state
and satisfies the equation: Ĥinψ0 = εdψ0, where εd < 0,
|εd | being the deuteron binding energy. Other states of
the two-nucleon system ψi(r; σ1,σ2; τ1,τ2), i > 0, satisfy the
equations: Ĥinψi = εiψi , with energies εi > εd . They are
orthogonal to the ground state, 〈ψ0 | ψi〉 = 0, and, together
with ψ0, form the complete set of states. The wave function
of the two-nucleon system in the target-nucleus field can be
expanded in terms of this complete set of functions:

�(R,r; σ1,σ2; τ1,τ2) = ϕ0(r)χ (τ )
0 (τ1,τ2)�(R; σ1,σ2)

+
∑
i>0

ψi(r; σ1,σ2; τ1,τ2)φi(R). (4)

In the first term in Eq. (4), the wave function of the deuteron
motion, �(R; σ1,σ2), is symmetric relative to the permutation
of space variables, r1 ↔ r2, and must also be symmetric
relative to the permutation of σ1 and σ2, which corresponds
to the total deuteron spin S = 1, and therefore it can be
expanded in the deuteron spin functions χ

(s)
1,μ. The second term

in Eq. (4) describes processes of the deuteron breakup in the
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target-nucleus field:

F (R,r; σ1,σ2; τ1,τ2) =
∑
i>0

ψi(r; σ1,σ2; τ1,τ2)φi(R). (5)

It is orthogonal to the ground state: 〈ψ0|F 〉 = 0.
Taking into account the isotopic invariance of the NA forces

in the absence of the Coulomb interaction, we can represent
the optical NA potentials in Eq. (1) in the form,

Ûi = U0(ri) + ULS(ri)liσ i

+ [
U

(τ )
0 (ri) + U

(τ )
LS (ri)liσ i

]
(T · ti) + 1

2 (1 − τi3)ṼC(ri).

(6)

Here li and σ i are the orbital-moment operator and the spin
Pauli matrices of the ith scattered nucleon (i = 1, 2), and
ti = τ i/2 is its isospin operator, where τ are the isospin Pauli
matrices; T = ∑A

j=1 tj is the total isospin operator of the target
nucleus consisting of A nucleons.

For the NA MOP we shall employ the expressions found
by us in Ref. [25] on the basis of calculations with using the
effective Skyrme NN interaction of the extended form, which
is written as follows:

Vij = V (r,ρ) = t0(1 + x0Pσ )δ(r) + 1
2 t1(1 + x1Pσ )

× [k′2δ(r) + δ(r)k2] + t2(1 + x2Pσ )k′δ(r)k

+ 1
6 t3(1 + x3Pσ )ργ (R̃)δ(r) + iW0(σ 1 + σ 2)

× [k′ × δ(r)k] + 1
2 t4(1 + x4Pσ )[k′2ργ4 (R̃)δ(r)

+ δ(r)ργ4 (R̃)k2] + t5(1 + x5Pσ )k′ργ5 (R̃)δ(r)k. (7)

Here r = ri − rj and R̃ = (ri + rj )/2 are the relative and
center-of-mass coordinates of the ith and j th interacting
nucleons; ρ = ρn + ρp, ρn, and ρp are the total, neutron, and
proton densities of the target nucleus; k = −i∂/∂r and k′ =
i∂/∂r′ are the momentum operators of the relative motion of
these nucleons in the initial and final states; Pσ is the operator
of spin permutation. The quantities tn, xn (n = 0–5), γ , γ4, γ5,
and W0 are the phenomenological parameters characterizing
the NN interaction. In Eq. (7), the terms in the first three lines
correspond to the standard form of Skyrme force and the last
two lines present the momentum- and density-dependent terms
with parameters t4 and t5.

The NA optical potential is found from calculations of
the mass operator of the one-particle Green function by
perturbation theory up to the Goldstone diagrams of the second
order, inclusive [20–25]. The best zero approximation for the
mass operator is the mean self-consistent Hartree–Fock (HF)
potential, which leads to the cancellation of a certain class of
important diagrams [32]. In the SHF theory, the variation of
the HF functional with the effective nuclear-density-dependent
NN forces results in the rise of the so-called rearrangement
potential, which is taken into account in our approach [22–
26,31], in contrast to that of Refs. [20,21,30]. Note that the
rearrangement potential, or differently the saturation potential,
plays an important role in ensuring the saturation of the nuclear
forces.

In Ref. [25], we obtained concrete expressions for the NA
optical potentials Uq(r) for the incident nucleons of sort q

(q = n,p) in the case of the extended Skyrme forces (7), which
are represented as follows:

Uq(r,E) = Vq(r,E) + 1

r
VSO,q(r)(l · σ )

+ iWq(r,E) + δq,p

m∗
q(r)

mq

VC(r), (8)

where the real central part of the NA MOP has the form,

Vq(r,E) = m∗
q(r)

mq

[V (HF)(r) + V (m)(r)]q

+
(

1 − m∗
q(r)

mq

)
M

M + mq

E. (9)

Here mq and E are the mass and laboratory energy of the
incident nucleon. The central V (HF)(r), spin-orbit VSO,q(r),
and Coulomb VC(r) potentials are calculated according to
the SHF theory for finite nuclei and m∗

q(r) is the effective
mass of the nucleon inside the nucleus. The term V (m)(r)
arises in the transformation from the nonlocal HF equation
to the Schrödinger equation with energy-dependent local
potential [33]. The imaginary part of the NA MOP Wq(r,E)
arises from the second-order Goldstone diagrams of the
perturbation theory and it is calculated in the approximations
of nuclear matter and local density. The explicit expressions
for all above-mentioned potentials are given in Eqs. (5)–
(20) of Ref. [25] and we do not present them here. We only
stress that these potentials depend on the densities ρn,p(r), the
kinetic-energy densities τn,p(r), and the spin densities Jn,p(r)
of nucleons [18], which are obtained from the self-consistent
calculations of the target-nucleus structure by the SHF method
with using the same Skyrme force (for details see Ref. [25]).

In the Watanabe approach [4], we should project the
Schrödinger Eq. (1) onto the vector of the deuteron ground
state ψ0 of Eq. (3) and perform averaging over the target-
nucleus isospin state |T ,T3〉, which yields the equation that
describes the process of elastic scattering of deuterons by the
nucleus:〈

χ
(s)
1,μ

∣∣{− �
2

2Md

∂2

∂R2
+ Ûd (R) − (ε − εd )

}
|�(R; σ1,σ2)〉

+ 〈
χ

(s)
1,μ|G(R; σ1,σ2)

〉 = 0. (10)

Here the optical potential of dA interaction is determined by
the expression:

Ûd (R) = 〈T ,T3|
∑
τ1,τ2

χ
(τ )+
0 (τ1,τ2)

∫
drϕ0(r)

[
Û1

(∣∣R + 1
2 r

∣∣)
+ Û2

(∣∣R − 1
2 r

∣∣)]ϕ0(r)χ (τ )
0 (τ1,τ2)|T ,T3〉. (11)

The last term in Eq. (10) corresponds to processes of the
virtual breakup of the incident deuteron in the field of the
target nucleus and has the following form:

G(R; σ1,σ2) = 〈T ,T3|
∑
τ1,τ2

χ
(τ )+
0 (τ1,τ2)

∫
drϕ0(r)

×[
Û1

(∣∣R + 1
2 r

∣∣) + Û2
(∣∣R − 1

2 r
∣∣)]

×F (R,r; σ1,σ2; τ1,τ2)|T ,T3〉. (12)
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In the Watanabe approximation [4], these latter effects are
neglected and the term G(R; σ1,σ2) is omitted, which leads
to the following closed equation for describing the elastic
deuteron scattering by the nucleus:{

− �
2

2Md

∂2

∂R2
+ Vd0(R) + VdC(R) + Vd,LS(R)(L · S)

+ iWd0(R) − E
(cm)
d

}
�(R; σ ) = 0. (13)

The wave function �(R; σ ) depends on the deuteron spin
variable σ = σ1 + σ2, and E

(cm)
d is the incident-deuteron

energy in the center-of-mass frame of the deuteron-nucleus
system. Here the central real and imaginary, the spin-orbit,
and the Coulomb parts of the dA MOP are determined by the
following formulas [31]:

Vd0(R) = 2π

∫ ∞

0
drr2|ϕ0(r)|2

∫ 1

−1
du[Vn(r1,E)

+Vp(r1,E) − (1 − m∗
p(r1)/mp)VC(r1)], (14)

Wd0(R) = 2π

∫ ∞

0
drr2|ϕ0(r)|2

×
∫ 1

−1
du[Wn(r1,E) + Wp(r1,E)], (15)

Vd,LS(R) = π

∫ ∞

0
drr2|ϕ0(r)|2

∫ 1

−1
du[VSO,n(r1)

+VSO,p(r1)]
1

r1

[
1 + r

2R
u
]
, (16)

VdC(R) = 2π

∫ ∞

0
drr2|ϕ0(r)|2

∫ 1

−1
du VC(r1). (17)

In Eqs. (14)–(17), there are r1 =
√

R2 + 1
4 r2 + Rru, u =

cos (R̂r). The energy of nucleons in the deuteron in Eqs. (14)
and (15), as it is made in the majority of works considering dA
interaction in the three-body model, is chosen to be E = 1

2Ed ,
where Ed is the incident-deuteron energy in the laboratory
frame. This choice looks reasonable in the case of elastic
scattering in the energy region considered by us, owing to
the loose binding of the deuteron, and was also substantiated
in Ref. [34] in the framework of the folding dA potential
model with using nonlocal NA potentials. However, it may be
noted that this prescription can be sometimes not the case, in
particular for the (d,p) reactions (see Refs. [14–16]). In the
majority of calculations, we used, for the sake of simplicity,
the Hulthén form for the deuteron wave function,

u0(r) =
√

2αβ(α + β)

(β − α)
[exp (−αr) − exp (−βr)], (18)

with the following values of parameters: α = 0.23 fm−1, β =
1.62 fm−1.

Note that under the approximations made by us the obtained
expressions for the MOP of dA interaction do not contain
tensor forces, so that in the calculations of the dA scattering
amplitude there is no mixing of partial waves with different
values of the orbital moment, as well as the found MOP does
not contain a quadratic spin-orbit term.

III. CALCULATIONS OF THE d A SCATTERING
OBSERVABLES

On the basis of the above-described Watanabe-like model
of dA MOP, which is grounded on the effective Skyrme
NN forces of the both standard and extended form, we have
developed an original numerical code. Using this code, an
analysis was performed of differential cross sections and
vector and tensor analyzing powers for the elastic scattering
of deuterons with using different variants of the Skyrme
forces in the projectile energy region Ed < 50 MeV in a wide
range of target-nucleus mass numbers. In these calculations,
we employed up-to-date variants of the Skyrme forces of
both the standard and extended form, which are used in
the literature for studying the nuclear structure, as well as
the optimized variants SkOP (a standard Skyrme force) and
SkOP3 (an extended force with the momentum- and density-
dependent terms), obtained by us in Refs. [25,26] by means
of variation of the Skyrme force parameters for optimizing
the description of the neutron-nucleus scattering with the
simultaneous control of values of the main characteristics
of the nuclear matter and target-nucleus structure. It should
be emphasized that our optimized force variants SkOP and
SkOP3 ensured a satisfactory description of the cross sections
and polarizations of neutron- and proton-nucleus scattering,
which was considerably better than in the cases of using the
considered forces from the literature, simultaneously with an
acceptable description of characteristics of nuclear structure.
Note also that the extended force SkOP3 yielded somewhat
better results for the description of NA scattering, than the
standard force SkOP.

As an example, in Fig. 1 we present results of calculations
of the observables of the elastic d+208Pb scattering (here and
below the numbers in parentheses are the offsetting factor for
the cross section and the offset value along the ordinate axis
for the analyzing power) at the deuteron energy of 28.8 MeV
by the considered model of dA MOP with using our force
variants SkOP (γ = 1/6) and SkOP3 (γ = γ4 = γ5 = 1/3), as
well as with the known from literature standard forces SLy5*
(γ = 1/6) [42], SLyIII.0.8 (γ = 1) [43], and SAMi (γ ≈
0.256) [44], and extended forces BSk24 (γ = γ5 = 1/12, γ4 =
1/2) [45]. All the nucleus-structure calculations in the SHF
approach have been performed under the same conditions (the
allowance for the center-of-mass motion, exchange Coulomb
potential, and spin-orbit interaction), as in the original works
for the corresponding force variants. For comparison, here
we also present the results of calculations by the analogous
Watanabe-type model with using the global NA optical
potential CH89 [46]. This global potential is an approved
phenomenological approach to describing observables of the
elastic NA scattering and, on the whole, yields a better
agreement with corresponding experimental data than our
NA MOP. Therefore, the comparison of calculations in the
considered dA MOP model with using CH89 could be an
additional test of applicability of our microscopic NA potential
for being employed in the dA scattering calculations.

It can be seen from Fig. 1 that the calculations with our
variants SkOP and SkOP3, as well as with the SLy5* force,
yield reasonable results being close to each other, although
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FIG. 1. Differential cross sections σ (θ ) ≡ dσ (θ )/d� and vector analyzing powers iT11(θ ) of the elastic scattering of 28.8-MeV deuterons
on 208Pb nuclei calculated by the developed model of dA MOP. Experimental data are from Ref. [35].

there is a certain shift of the oscillations of observables towards
smaller scattering angles as compared with the experiment.
In this concrete case, a somewhat better description of
the considered observables was obtained with the forces
SLyIII.0.8 and SAMi, the agreement for the analyzing powers
being even better than for the cross sections. We may note that
the above-mentioned force variants have somewhat different
values of the density-dependence exponents but the obtained
results do not differ very essentially. Making use of the
approved global NA potential CH89 does not give better
results in describing the dA scattering observables than
the calculations on the basis of these Skyrme forces. The
calculations with extended Skyrme force BSk24 have yielded
the worst agreement with the data, the results for the all

extended-force variants BSk22–BSk26 from Ref. [45] being
somewhat close to each other. Note that the use of the extended
force SkOP3, in contrast to the case of NA scattering, does
not lead to a considerable improving the description of the
dA scattering in the employed model and gives results close
to those of calculations with SkOP, which is also the case for
other considered target nuclei and deuteron-energy values. For
this reason, further we shall consider results of calculations
with using the Skyrme force variants SkOP and SLyIII.0.8,
comparing them with corresponding calculations with
CH89.

In Fig. 2, we present results of such calculations for
differential cross sections σ (θ ) and vector analyzing powers
iT11(θ ) for the elastic deuteron scattering on 90Zr and 120Sn

FIG. 2. Observables of the elastic deuteron scattering on 90Zr at 28.8 MeV and 120Sn at 28.6 MeV, calculated by the developed model of
dA MOP. Experimental data are from Refs. [35,36].
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FIG. 3. Differential cross sections σ (θ ) and analyzing powers Ay(θ ) for the elastic scattering of deuterons at Ed ≈ 29 MeV on 58Ni and
208Pb nuclei and of neutrons and protons on the same nuclei at the energy E ≈ Ed/2, calculated by the considered models of NA and dA MOP.
Experimental data are from Refs. [35,37–41].

nuclei, as well as for the tensor analyzing power T20(θ ) for the
latter target nucleus, at the same energy value Ed ≈ 29 MeV,
as in Fig. 1. Like in the case of scattering on 208Pb, here
the description obtained in the considered model for the
analyzing powers is somewhat better than for the cross
sections, especially in the case of the 120Sn target nucleus,
and the calculations with the global NA potential CH89 do
not give better results, as compared with the model based on
the Skyrme forces.

Note that the SkOP force was found in Ref. [26] from
fitting the differential cross section of n + 116Sn scattering at
the neutron energy of E = 14 MeV. In the calculations of cross
sections and polarization observables of the NA scattering in
Refs. [25,26] on the basis of various Skyrme forces, the best
description of experimental data was obtained at the neutron
energies E < 20 MeV, and for the proton scattering this model
yielded satisfactory results also at somewhat higher energy

values. However, in description of the proton scattering there
arises a certain limitation of this model at small energies owing
to the existence of the Coulomb barrier in the real pA potential,
which is most essential for heavy target nuclei. Therefore,
this model of NA MOP can be used for constructing the
dA optical potential at energies lower than 50 MeV, because
in this case it works well for describing both the neutron-
and proton-nucleus scattering. Figure 3 presents the results
of calculations of cross sections and analyzing powers for
the elastic deuteron scattering on 58Ni and 208Pb nuclei at
the energy Ed ≈ 29 MeV, as well as for the neutron and
proton scattering on the same nuclei at energy values close to
the energy of nucleons in the incident deuteron (E ≈ Ed/2).
As can be seen, these calculations provide simultaneously a
satisfactory description of observables of both the deuteron and
nucleon scattering. Although the phenomenological potential
CH89 gives a somewhat better description of the NA scattering
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FIG. 4. Differential cross sections σ (θ ), vector iT11(θ ), and tensor T2m(θ ) analyzing powers of the elastic deuteron scattering on 60Ni and
90Zr nuclei at 15 and 22 MeV. Experimental data are from Refs. [47,48].
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than our microscopic model does, the quality of description of
the deuteron scattering in Fig. 3 is roughly the same. Some
shortcomings in describing the deuteron scattering can be
explained by a number of simplifications made in the employed
model of dA MOP.

In Fig. 4, we present the results of calculations of differ-
ential cross sections and vector and tensor analyzing powers
for the elastic deuteron scattering on 60Ni and 90Zr nuclei
at somewhat lower energy values of 15 and 22 MeV on the
basis of the described model of dA MOP with using the
Skyrme force variants SkOP and SLyIII.0.8 in comparison
with the corresponding experimental data. The comparison
with calculations on the basis of the global NA optical
potential CH89 is made only at the energy value that belongs to
the region of its determination (E > 10 MeV). On the whole,
we may conclude that the model under consideration yields a
reasonable description of the observables of dA scattering also
in these cases. It should be noted that there is not altogether
bad agreement with the experimental data for the calculated
polarization observables. The best description is seen for the
vector analyzing power iT11(θ ). As for the tensor analyzing
powers, some shortcomings in the description of the quantities
T20(θ ) = Azz/

√
2 and T21(θ ) = −Axz/

√
3 can be caused by

the fact that in this variant of the model there is no tensor
part of the dA MOP, which can be essential for describing the
quantities Azz and Axz [6]. The calculations with the SLyIII.0.8
force give a description of the dA scattering that is comparable
with the calculations with our optimized force SkOP, which
ensured a better description of the neutron scattering. We also
note that employing our optimized extended Skyrme force
SkOP3 also yielded results, close to those for SkOP, and does
not allow us to remove certain drawbacks in agreement of
the calculated cross sections with the data. Note also that the
results of calculations with the global NA optical potential
CH89 do not look better than those with the used Skyrme
forces.

Because in describing the dA scattering observables on the
basis of the considered model there are certain discrepancies
with experimental data, a question arises about a possible
role of effects that have been neglected in this approximation.
When describing the elastic scattering of such weakly bound
nuclei as deuterons, in the incident-particle energy region
under consideration an important role can be played by effects
related to the influence of channels of deuteron virtual breakup.
For this reason, in addition to using the main approximation
in the form of the Watanabe-like model for the dA MOP,
we have also estimated possible corrections to this approach,
which are generated by contributions from such virtual
channels.

At present, as one of the most accurate methods for de-
scribing scattering processes of deuterons with the allowance
for their virtual breakup, the method of CDCC [10–13] is
considered. Virtually, this approach allows one to take account
of the contribution of the last term in Eq. (10), this equation
being complemented by a set of equations describing inelastic
channels coupled with the entrance one. In Ref. [9], the
accuracy of the CDCC method was tested by means of
comparison with calculations on the basis of solving the
three-particle Faddeev equations.

To assess the effects of deuteron breakup in the CDCC
approach, we have used the known numerical code FRESCO

2.9 [50]. In the calculations of scattering cross sections with
the FRESCO code, as in Ref. [9], we did not take into account
the spin-orbit interaction in Eq. (8) (VSO,q = 0). In the FRESCO

code, the deuteron wave functions in the ground state (the S
wave) and in the continuum (l = 0,1,2) are taken for the Gauss
potential: V12(r) = −v0 exp[−(r/r0)2] (with v0 = 72.15 MeV
and r0 = 1.484 fm) in Eq. (2). For the discretization of
continuum we used 10 bins with a uniform step in energy
and did not allow for closed channels. The radius of matching
was equal to 40 fm, the maximum angular momentum was
60, and the multipolarity of expansion of the potentials was
4. With these parameters for the FRESCO code, we were able
to reproduce well all the results presented in Ref. [9] for the
elastic dA scattering cross sections in the energy range from
12 up to 56 MeV calculated with employing the NA optical
potential CH89.

In Fig. 5, we present a comparison of the results of calcu-
lations of the differential cross sections of the elastic deuteron
scattering on 58,60Ni nuclei at several energies performed by
the CDCC method with the FRESCO code and in the Watanabe
approximation with our code on the basis of the Skyrme forces
SkOP and SLyIII.0.8, as well as for analogous calculations
with using the NA potentials CH89. Note that the results
of calculations in the Watanabe approximation by means of
FRESCO and with our code (if the spin-orbit interaction is also
omitted) are very close in spite of employing different deuteron
wave functions in these codes. Generally, our calculations
in this approximation with different variants of the deuteron
wave function show a somewhat weak sensitivity to its choice
in the energy region under consideration. From Fig. 5, one
can see that the allowance for the effects of deuteron virtual
breakup can yield certain noticeable corrections but it does
not lead to changing radically the behavior of the calculated
cross sections, and their influence somewhat increases with
the deuteron energy growth, especially in the region of large
scattering angles. It is interesting that the character of influence
of these effects considerably differs in the calculations on the
basis of the Skyrme forces and with using the NA potentials
CH89; in the latter case they being more pronounced.

In Ref. [51], a new code for solving the equations in the
CDCC approach was developed, and it was tested for the
Gauss-potential wave functions, which showed a very good
agreement with results obtained with the FRESCO code at
the same calculation conditions. On the other hand, we have
made a comparison of the results of calculations in the CDCC
approach, using the global NA potential CH89, which have
been carried out with FRESCO and were performed in the work
of Ref. [51] with more realistic deuteron wave functions (for
the Reid potential). This comparison shows sensitivity of the
effects of deuteron breakup to the choice of the deuteron
wave functions (see Fig. 6). The calculations with FRESCO

that are shown in Fig. 6 have been performed by us at the
same conditions, as in Ref. [51] (four bins with equal spacing,
l = 0,2, and the Coulomb dA potential from CH89 are used).
It can be seen from Fig. 6 that this sensitivity increases with
the incident deuteron energy. Here we also show the curves we
have calculated by the FRESCO code, using the NA MOP with
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FIG. 5. Differential cross sections σ (θ ) of the elastic deuteron
scattering on 58,60Ni nuclei at different energy values, calculated in
the Watanabe approximation (a) and by CDCC (b) with the FRESCO

code. Experimental data are from Refs. [37,47–49].

our Skyrme force SkOP. In Ref. [51], as also in our calculations
with FRESCO, the spin-orbit interaction and the D wave in the
deuteron ground-state wave function were not allowed for,
which should be taken into account in a further more thorough
analysis of the experimental data on the basis of the CDCC
approach.

IV. CONCLUSION

We have considered an approach to constructing the
microscopic optical dA potential for analyzing differential
cross sections and polarization observables of the deuteron
elastic scattering on even-even nuclei at medium energies on
the basis of up-to-date effective Skyrme forces, including those

FIG. 6. Differential cross sections σ (θ ) of the elastic deuteron
scattering on 90Zr nuclei at different energies, calculated in the
CDCC approximation with deuteron wave functions for the Gauss
(the FRESCO code) and Reid (the curve by P. Chau Huu-Tai from
Ref. [51]) potentials. Experimental data are from Refs. [35,47].

of the extended form with allowance for both the momentum-
and density-dependent terms, which provide simultaneously a
satisfactory description of the nuclear structure in calculations
by the Hartree-Fock method. We consider the description of
the dA scattering in the three-body n + p + A model with
using the NA optical potentials, which were obtained earlier
by the authors from simultaneously analyzing the elastic NA
scattering observables and nuclear structure in a self-consistent
microscopic approach with the Skyrme forces. The sought
dA MOP, under neglecting the effects of deuteron virtual
breakup, which corresponds to the well-known Watanabe
model, was presented in the form of the folding of the
deuteron wave function with these NA optical potentials. In
this approximation, expressions have been found for the real
and imaginary parts of the dA MOP for the case of using the
above-mentioned variants of Skyrme forces.

In the considered approach, we have carried out an
analysis of the differential cross sections and vector and
tensor polarization observables at the deuteron energies Ed <
50 MeV in a wide range of the mass numbers of target nuclei
(from 58Ni up to 208Pb) with using both the well-approved
up-to-date standard and extended Skyrme forces from the
literature, as well as the NN force variants optimized by us.
The calculations show that employing the developed model
of dA MOP with making use of some of the considered
standard-form Skyrme force variants from the literature, as
well as the optimized NN force variants of the standard and
extended types proposed by the authors, provides a reasonable
description of experimental data for the differential cross
sections and vector and some of tensor analyzing powers of the
elastic dA scattering by different target nuclei in this energy
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region. The description of the set of tensor analyzing powers
probably could be improved by allowance for the tensor part
of dA MOP, which was neglected here.

In addition to the calculations in the main approximation in
the form of the Watanabe-type model, we have also performed
estimations of possible contributions of the effects related
to deuteron virtual breakup channels. An analysis of such
corrections was performed in calculations of differential cross
sections of the elastic dA scattering in the CDCC approach
with employing the known numerical code FRESCO 2.9. The
conclusion was made that the allowance for deuteron breakup
in the energy region under consideration sometimes can give
noticeable corrections, but does not lead to a cardinal change
of the results of calculations of scattering observables by the
considered model based on the Skyrme forces.

The results of the calculations performed show that the
employment of the self-consistent approach based on the

effective Skyrme NN forces for describing processes of the
nucleon and deuteron scattering on nuclei in the microscopic
optical model leads to reasonable results, along with a
successful description of the nuclear structure by the SHF
method with the same Skyrme forces. However, because in
describing the dA scattering observables on the basis of
the considered model there are certain discrepancies with
experimental data, it is necessary to thoroughly investigate
a possible role of different effects that have been neglected
in the approach used. In particular, it is advisable to take into
account the D wave in the deuteron wave function, which
would lead to the rise of the tensor part of the dA MOP, and
to perform much more accurate allowance for the deuteron
breakup effects with employing more realistic deuteron wave
functions, presumably, in the CDCC approach. It also would
be necessary to investigate the role of effects related to going
beyond the three-body n + p + A model.
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