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Detailed description of exclusive muon capture rates using realistic two-body forces
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Starting from state-by-state calculations of exclusive rates of the ordinary muon capture, we evaluated total μ−

capture rates for a set of light- and medium-weight nuclear isotopes. We employed a version of the proton-neutron
quasiparticle random-phase approximation (pn-QRPA, for short) which uses as realistic nuclear forces the
Bonn C-D one-boson exchange potential. Special attention was paid on the percentage contribution to the total
μ− capture rate of specific low-spin multipolarities resulting by summing over the corresponding multipole
transitions. The nuclear method used offers the possibility of estimating separately the individual contributions
to the total and partial rates of the polar-vector and axial-vector components of the weak-interaction Hamiltonian
for each accessible final state of the daughter nucleus. One of our main goals is to provide a reliable description
of the charge-changing transitions matrix elements entering the description of other similar semileptonic nuclear
processes like the charged-current neutrino-nucleus reactions, the electron capture on nuclei, the single β±-decay
mode, etc., which play important role in currently interesting laboratory and astrophysical applications like the
neutrino detection through lepton-nucleus interaction probes and neutrino nucleosynthesis. Such results can also
be useful in various ongoing muon capture experiments at Paul Scherrer Institute (PSI), Fermilab, Japan Proton
Accelerator Research Complex, and Research Center for Nuclear Physics, Osaka University.

DOI: 10.1103/PhysRevC.92.014606 PACS number(s): 23.40.−s, 23.20.Js, 25.30.Mr, 24.10.−i

I. INTRODUCTION

In recent years, various sensitive experiments take
advantage of the powerful muon beams produced in well-
known muon factories (Paul Scherrer Institute (PSI), Fermilab,
Japan Proton Accelerator Research Complex, Research Center
for Nuclear Physics (RCNP), Osaka University, and others)
for standard and nonstandard muon physics probes [1,2].
Among the standard-model probes, those involving muon
capture on nuclei, specifically those emitting x rays and/or
several particles (p, n, α, etc.) after μ− capture (which are
important for understanding the rates and spectra of these
particles) are intensively investigated [1]. For example, at
PSI researchers are interested in experiments based on the
emission of charged particles from muonic atoms of Al, Si,
and Ti or neutron emission following muon capture from
Fe, Ca, Si, and Al [1]. Also very recently, in the highly
intense muon facilities Muon Science Innovation Commission
(MuSIC) at RCNP, nuclear muon capture reactions (on Mo,
Pb, etc.) are planned to study nuclear weak responses (for
neutrino reactions, etc.) [2]. For experiments like the above, it
is important, before going to the rates of the emitted particles,
to know the first-stage muon capture process.

As is well known, when negative muons, μ−, produced in
a meson factory slow down in matter, it is possible for them to
be captured in atomic orbits. Afterwards, fast electromagnetic
cascades bring these muons down to the innermost (1s or
2p) quantum orbits (in this way muonic atoms are produced)
[3–7]. A bound muon in the muonic atom may disappear either
by decay known as muon decay in orbit or by capture by
the nucleus, the main channel of which is the ordinary muon
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capture represented by the reaction [8–10]

μ−
b + (A,Z) → (A,Z − 1)∗ + νμ, (1)

where (A,Z) denotes the initial atomic nucleus with mass
number A and proton number Z, while (A,Z − 1)∗ stands for
an excited state of the daughter nuclear isotope.

Reaction (1) is a well-known example of symbiosis of
atomic, nuclear, and particle physics. In this work, however,
we concentrate on its nuclear physics aspects. As muon
capture in nuclei presents many advantages for the study
of both nuclear structure and the fundamental electroweak
interactions [11–14], process (1) has been the subject of
extensive experimental and theoretical investigations started
early in the 1950s using closure approximation or sum-over
partial rates to find the total μ− capture rate (the measured
quantity) [3–6,15–21]. In the plethora of the relevant papers,
the most important motivation rested on the hope to explain
how nucleons (hadronic current) inside the nucleus couple
weakly to the lepton field (leptonic current). The nuclear
physics aspects of process (1), however, still possess some
yet-unresolved fundamental problems, e.g., those related to the
nucleon-nucleon and lepton-nucleus interactions, the question
of whether the individual properties of the nucleons change
when they are packed together in the nucleus or remain
essentially unaffected like the coupling of the nucleon to the
leptonic field, etc.

The interest in studying μ− capture has recently been
revived [22–24] owing to its prominent role in testing the
nuclear models employed in several physical applications in
neutrino physics and astrophysics [25–27]. Specifically, μ−
capture is a very useful test for various nuclear methods used to
describe semileptonic weak charged-current reactions [8,15]
such as electron capture in stars (critical in the collapse of
supernovae) [25,27,28], neutrino nucleus scattering (important
in the detection of astrophysical neutrinos) [26,27], and
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others [12]. This is because muon capture involves a large
momentum transfer and, hence, it can provide valuable
information about effects which are not found in processes
like the β-decay modes (on medium momentum transfer
processes; however, useful information can be also obtained
from low-spin forbidden transitions of β decays and charge-
exchange reactions) [29]. Furthermore, there is an intimate
relation between the inclusive muon capture rate and the
cross section for the antineutrino-induced charged-current
reactions, because both are governed by the same nuclear
matrix elements and proceed from the same set of initial
nuclear states to the same final nuclear states [10,25–27].
Moreover, from the ground-state transition matrix elements of
the μ− capture process, one may also derive cross sections for
the β-decay modes [28]. Calculations on single β decay, which
are more difficult to calculate, need explicit nuclear-structure
calculations [30].

The purpose of the present work is to perform detailed
state-by-state calculations [31–40] of exclusive muon capture
rates and concentrate on the individual contribution of each
basic multipole operator inducing low-lying excitations in the
daughter nucleus. In contrast, most of the previous muon cap-
ture calculations have been performed within the assumptions
of closure approximation [16,17,41]. Towards this aim, the pn-
QRPA provides a reliable description of the required nuclear
transition matrix elements [3,5,13,14,42–48]. Our extensive
channel-by-channel calculations would be carried out for
the exclusive, partial, and total muon capture rates, and the
results refer to the nuclear isotopes 28Si, 32S, 48Ti, 56Fe, 66Zn,
and 90Zr, which cover the light- and medium-weight region
of the periodic table. We also specialize on the individual
contributions of the polar-vector and axial-vector components
of the μ− capture operators in each of the multipole states
and in the total ordinary muon capture (OMC) rate. Despite
the fact that the semileptonic process (1) is studied for a
long time [3–7,11,15,18–21], essentially only the total muon
capture rates have been measured for a great number of
nuclear isotopes [8,10,22–24]. On the theoretical side, various
nuclear methods using several residual interactions allowed
the calculation of total capture rates on many nuclei with
an accuracy of about 10% compared to the experimental
rates. However, for only few isotopes, exclusive capture
rates to specific states in the daughter nucleus have been
determined [8,10,23,24]. As the experimental data for muon
capture rates are quite precise, and the theoretical techniques of
evaluating the nuclear response in the relevant nuclear systems
are well developed [8,33,34], it is worthwhile to see to what
extent the exclusive capture rates are theoretically understood.

Furthermore, we mention that there appear recently clear
indications that the axial-vector coupling constant gA =
−1.262 in a nuclear medium is reduced from its free nucleon
value [8,10,22,49–52]. The evidence for such a renormaliza-
tion of the value gA comes primarily from the analysis of
β-decay modes between low-lying states of medium-heavy
nuclei [52], but the use of a quenched gA value is mainly
invoked from the second-order core polarization caused by
the tensor force [53] and the screening of the Gamow-
Teller (GT) operator by the �-hole pairs [54]. Thus, it is
necessary to scrutinize the in-medium quenching of the axial

vector coupling constant, which is in agreement with various
well-known indications that gA is reduced to the value of
gA ≈ 1.000. In this work we do not study systematically this
effect, but we compare our results of μ capture rates obtained
with the values (i) gA = 1.262 and (ii) gA = 1.135 with other
theoretical ones obtained with the latter value.

The rest of the paper is organized as follows. In Sec. II,
we summarize briefly the main characteristics of the effective
charged-current weak-interaction Hamiltonian and present
the main formalism of the OMC rates, which is based on
our compact formalism for the relevant nuclear transition
matrix elements (relying on the Donnelly-Walecka projection
method) and in the expressions for exclusive, partial, and
total muon capture rates [5,33,42]. Special focus is given on
the calculation of the nuclear wave functions derived within
the context of proton-neutron quasiparticle random-phase
approximation (pn-QRPA). In Sec. III, we concentrate on
the determination of the required model parameters for the
nuclear ground state, derived by solving the BCS (Bardeen-
Cooper-Schrieffer) equations, as well as of the excited states
(solution of the pn-QRPA equations). Our results (Sec. IV)
refer to exclusive, partial, and total muon capture rates of
the above-mentioned nuclear isotopes, which cover the light-
and medium-weight regions of the periodic table. We also
include the individual contributions of the polar-vector and
axial-vector operators in each of the multipole states and in
the total OMC rate. Finally, in Sec. V, we summarize the main
conclusions extracted from the present work.

II. FORMALISM OF MUON CAPTURE RATES

The OMC process, that takes place in muonic atoms and
is represented by the semileptonic reaction (1), proceeds
via a charged-current weak-interaction Hamiltonian, which is
written as a product of a leptonic, j lept

μ , and a hadronic current,
Ĵ μ [5,33,36,42],

Ĥw = G√
2
j lept
μ Ĵ μ, (2)

where G = GF cosθc, with GF and θc being the well-known
weak-interaction coupling constant and the Cabbibo angle,
respectively.

From the nuclear-theory point of view, the main task is to
calculate the partial and total capture rates of reaction (1),
which are based on the evaluation of exclusive nuclear
transition matrix elements of the form

〈f |Ĥw|i〉 = G√
2

�μ

∫
d3xe−iqx〈f |Ĵμ|i〉 (3)

(the integration is performed in the region of the nuclear
system). In the latter expression |i〉 and |f 〉 denote the initial
(ground) and the final nuclear states, respectively. The quantity
�μe−iqx stands for the leptonic matrix element written in
coordinate space, with q being the 3-momentum transfer. The
magnitude of −→q is defined from the kinematics of the process
and is approximately given by [55]

q ≡ qf = mμ − εb + Ei − Ef , (4)
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where mμ is the muon rest mass, εb is the muon-binding
energy in the muonic atom, Ei denotes the energy of the initial
state of the parent nucleus, and Ef is the final energy of the
corresponding daughter nucleus.

In the unified description of all semileptonic elec-
troweak processes in nuclei developed by Donnelly and
Walecka [3,5,13,14,42], the calculation of the required transi-
tion strengths of Eq. (3) is based on a multipole decomposition
of the hadronic current density which leads to a set of eight
independent irreducible tensor multipole operators (four of
them come from the polar-vector component and the other
four from the axial-vector component of the nuclear current).
In the present work we assume that the pn-QRPA excitations
|Jπ

m 〉 have good quantum numbers of angular momentum (J ),
parity (π ), and energy, which is a basic assumption for the
Donnelly-Walecka projection method to be applicable. In this
spirit, the computation of each partial transition rate of the
muon capture is written in terms of the eight different nuclear
matrix elements (between the initial |Ji〉 and the final |Jf 〉
states) as


i→f = 2G2q2
f

2Ji + 1
Rf

[|〈Jf ‖�1s(M̂J − L̂J )‖Ji〉|2

+ |〈Jf ‖�1s

(
T̂ el

J − T̂ magn
J

)‖Ji〉|2
]
, (5)

where �1s represents the muon wave function in the 1s muonic
orbit [41]. The operators in Eq. (5) are known as Coulomb
M̂J , longitudinal L̂J , transverse electric T̂ el

J , and transverse
magnetic T̂ magn

J multipole operators and contain polar-vector
and axial-vector parts (see Appendix A). The factor Rf in
Eq. (5) takes into consideration the nuclear recoil, which is

written as Rf = (1 + qf /Mtarg)
−1

, with Mtarg being the mass
of the target nucleus.

III. DESCRIPTION OF THE NUCLEAR METHOD

For reliable predictions of partial muon capture rates, a
consistent description of the structure of the ground state |Ji〉
of the parent nucleus as well as of the multipole excitations |Jf 〉
of the daughter nucleus are required. In the present work, the
state-by-state muon capture rates are evaluated using Eq. (5)
with the transition matrix elements between the states |Ji〉
and |Jf 〉 determined with the use of the BCS and pn-QRPA
equations, respectively (the BCS equations determine the
ground state and the pn-QRPA equations provide the excited
states, as shown below) [33–40]. To this end, at first we
have chosen the active model space (the same for proton and
neutron configurations) for each studied isotope consisting of
the single-particle j shells shown in Table I.

As is well known, in a rather good approximation, the
nucleus can be considered as a system of Z protons and N
neutrons moving independently inside the nuclear volume and
attracted by the nuclear center through a central strong nuclear
force. This central attraction is well described by a mean field
which, in our case, is assumed to be a Woods-Saxon potential
with a Coulomb correction and a spin-orbit parts [34]. For the
latter potential we tested two different parametrizations—(i)
that of Bohr and Motelson [56] and (ii) that of the IOWA
group [57]—and found that both give rather similar results.

TABLE I. The used active model space with the respective
harmonic oscillator parameter for all the studied nuclei. In the last
column the major harmonic oscillator shells N plus the individual
orbits used for each nucleus are listed.

Nucleus b (h.o.) Model space

Core Active levels N (�ω)

28Si 1.809 No 10 0, 1, 2, 3
32S 1.843 No 12 0, 1, 2, 3, 0g9/2, 0g7/2
48Ti 1.952 No 12 0, 1, 2, 3, 0g9/2, 0g7/2
56Fe 1.996 16O 12 2, 3, 4
66Zn 2.043 16O 12 2, 3, 4
90Zr 2.138 16O 16 2, 3, 4, 0h11/2, 0h9/2,

1f7/2, 1f5/2

For the purposes of the present work, however, we adopted the
more realistic IOWA parametrization [57].

For a reliable nuclear Hamiltonian, in addition to the
mean field, the two-nucleon correlations, known as residual
two-body interaction, are necessary to be included. Towards
this aim, we employed the pn-Bonn C-D one-boson exchange
potential, but, because the initially evaluated bare nucleon-
nucleon matrix elements of the latter potential refer to all
nuclides with mass number A for a specific isotope (A,Z)
studied, a renormalization of these two-body matrix elements
was carried out with the use of four multiplicative parameters.
The first two, known as pairing parameters, g

p,n
pair, for protons

(p) and neutrons (n) renormalize the monopole (pairing)
interaction, which is the part of the correlations involved at
the BCS level for the description of the considered indepen-
dent quasiparticles. The third, gpp, tunes the particle-particle
channel and the fourth, gph, renormalizes the particle-hole
interaction of the Bonn C-D potential. We briefly summarize
the adjustment of these parameters below (Sec. III B).

A. Determination of the parent nucleus ground state

The ground state of the parent nucleus is obtained within
the context of the BCS theory where the one-quasiparticle
states are deduced by solving (iteratively) the BCS equations.
Towards this aim, one is defining quasiparticle creation,
α†, and annihilation, α, operators related to the particle-
creation, c†κ , and particle-annihilation, cκ , operators through
the Bogolyubov-Valatin transformations [58,59],

α†
κ = ukc

†
κ − υkc̃κ , α̃κ = ukc̃κ + υkc

†
κ , (6)

where c̃κ denotes the time-reversed particle-annihilation oper-
ator defined as c̃κ = (−1)jk+mkc−κ , with −κ = (k, − mk). The
probability amplitudes vk and uk for the k single-particle level
to be occupied or unoccupied, respectively, are [58]

υ
2(p,n)
k = 1

2

[
1 − ε

p(n)
k − λp(n)

E
p(n)
k

]
(7)

(u2
k = 1 − υ2

k ), where εk is the single-particle energy of the
jκ level and λp (λn) denotes the chemical potential for
protons (neutrons). Moreover, the solution of the relevant BCS
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TABLE II. Parameters for the renormalization of the interaction
of proton pairs, gp

pair, and neutron pairs, gn
pair. They have been fixed in

such a way that the corresponding experimental gaps, �exp
p and �exp

n ,
are quite accurately reproduced.

Nucleus gn
pair gp

pair �exp
n �theor

n �exp
p �theor

p

(MeV) (MeV) (MeV) (MeV)

28Si 1.1312 1.0601 3.1428 3.1429 3.0375 3.0377
32S 0.8862 0.8230 2.0978 2.0979 2.0387 2.0386
48Ti 0.9259 0.9833 1.5576 1.5578 1.9112 1.9111
56Fe 0.9866 0,9756 1.3626 1.3626 1.5682 1.5683
66Zn 1.0059 0.9271 1.7715 1.7716 1.2815 1.2814
90Zr 0.9057 0.7838 1.8567 1.8568 1.1184 1.1183

equations gives the single quasiparticle energies [44,58]

E
p(n)
k =

√(
ε

p(n)
k − λp(n)

)2 + �2
k, (8)

with �κ being the theoretical energy gaps (�k =
−∑

k′>0 ῡkk̄k′ k̄′uk′υk′) [58]. From the solution of the gap
equation [43,44],

�k
p(n) = g

p(n)
pair

2[jk]

∑
k′

[jk′]
�k′

E
p(n)
k

〈(kk)0|G|(k′k′)0〉 (9)

(here the notation is, [j ] = √
2j + 1), one obtains the pair-

ing gaps for protons �k
p and neutrons �k

n through the
renormalization of the proton and neutron pairing matrix
elements 〈(kk)0|G|(k′k′)0〉 of the residual interaction, using
the parameters g

p
pair and gn

pair. The lowest quasiparticle energy,
obtained from the gap equation, is determined, through the
pairing parameters g

p(n)
pair entering the theoretical gaps of Eq. (9)

so as to reproduce the experimental (empirical) energy gaps
�

exp
p,n given from the three-point formula [44]

�
exp
p(n) = − 1

4 {Sp(n)[(A − 1,Z − 1(Z))] − 2Sp(n)[(A,Z)]

+ Sp(n)[(A + 1,Z + 1(Z))]}. (10)

In the latter equation Sp and Sn are the experimental separation
energies for protons and neutrons, respectively, of the target
nucleus (A,Z) and of the neighboring nuclei (A ± 1,Z ± 1)
and (A ± 1,Z). Here we used the method of Ref. [44] to obtain
the g

p,n
pair values for the studied nuclei and tabulate them in

Table II. We note that, to achieve the reproducibility of the
experimental energy spectrum in similar QRPA calculations,
some authors modify slightly the Woods-Saxon proton and
neutron single-particle energies in the vicinity of the nuclear
Fermi surfaces [25,35]. In this work, we pay special attention
on the reproducibility of the energy spectrum of the daughter
nucleus, as discussed in detail in the next section.

B. The pn-QRPA excitation spectrum of the daughter nucleus

For the purposes of the present study, transitions between
the |0+〉 ground state of a rather spherical even-even parent-
nucleus and the excited states of the resulting daughter nucleus
are the basic ingredients. For several charged-current reactions,
the pn-QRPA method provides a reliable description of the
nuclear excited states of the resulting odd-odd nuclear system

in Eq. (1) [44]. Here we exploit this advantage to derive
the excitation spectrum of the daughter nucleus produced
in the μ capture process. In this context, we first define the
two quasifermion operators A† and Ã (which obey boson
commutation relations in a correlated RPA ground state)
as [12,31–40,58,59]

A
†
mi(JM) = [

a
†
jm

a
†
ji

]J

M

=
∑

mm(mi )

〈jmjimmmi |JM〉α†
jmmm

α
†
jimi

, (11)

Ãmi(JM) = (−1)J−MAmi(J − M). (12)

Afterwards, we write the pn-QRPA phonon operators

Q
ν†
Jπ M =

∑
m�i

[
Xν

miA
†
mi(JM) + Y ν

miÃmi(JM)
]
, (13)

where ν enumerates the multipole states of the multipolarity
Jπ , which creates the excitation |ν〉 ≡ |Jπ

ν 〉 by acting on the
QRPA vacuum |0̃〉QRPA as [12,32,34,35,37–40]∣∣Jπ

ν

〉 = Q
ν†
Jπ M |0̃〉QRPA. (14)

The X (forward) and Y (backward) scattering amplitudes
entering Eq. (13) are obtained by solving the pn-QRPA
equations (pn-QRPA eigenvalue problem), which in matrix
form is written as [58](

A B
−B −A

)(
Xν

Y ν

)
= �ν

Jπ

(
Xν

Y ν

)
, (15)

where �ν
Jπ denotes the excitation energy of the QRPA state

|Jπ
ν 〉. Thus, the X and Y amplitudes are calculated separately

for each multipole set of states (multipolarity).
The reliability of the QRPA excitations �ν

Jπ and of the
corresponding many-body nuclear wave functions is checked
through the reproducibility of the energy spectrum of the final
odd-odd nucleus. The values of particle-particle (gpp) and
particle-hole (gph) parameters in the set of isotopes chosen
(determined separately for each multipolarity) [34,38,40] lie
in the region 0.65–1.20 (with the exception of the 1+ and
2− multipolarities in some isotopes, for which the values are
rather small, 0.2–0.6) [60]. Such small values of the strength
parameters come out in studies of charged-current reactions
(e− capture, single- and double-β decays) when fitting si-
multaneously the QRPA parameter, gpp, and the axial-vector
coupling constant, gA [45,49,61–63]. We stress that in our
QRPA method the strength parameters are determined through
the reproduction of the energy spectrum of the daughter
nucleus but we have also made an effort to test them through
the GT energy position and the total GT strength [24,27]. Even
though our GT-type operator contributes differently (owing to
the presence of the Bessel function), we found that the total
GT strength differs significantly (more than a factor of 2.5)
from the experimental one, although the energy position is
well reproduced. In our muon capture (and e− capture) rates
the simultaneous variation of gA and gpp parameters has not
been checked extensively (see Ref. [30]).

We furthermore note that, to achieve the reproducibility of
the experimental energy spectrum of the daughter nucleus and
for measuring the excitation energies of the daughter nucleus
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TABLE III. The shift of the spectrum separately of each state in MeV.

Positive-parity states Negative-parity states

J + 28Si 32S 48Ti 56Fe 66Zn 90Zr J − 28Si 32S 48Ti 56Fe 66Zn 90Zr

0+ 2.60 0.00 0.65 1.60 0.90 1.00 0− 4.20 1.00 4.00 4.30 5.00 4.47
1+ 5.00 2.50 2.65 5.90 2.50 2.85 1− 4.40 4.05 4.00 4.20 6.80 4.30
2+ 4.35 2.43 2.10 3.10 2.55 2.78 2− 5.80 4.40 5.10 6.80 3.85 2.39
3+ 5.90 0.00 2.70 2.30 2.50 2.82 3− 6.00 3.98 4.10 6.80 2.60 2.59
4+ 4.90 3.56 3.25 2.50 1.75 0.00 4− 5.00 2.57 4.25 3.50 3.55 1.30
5+ 2.70 0.84 3.35 2.00 0.55 2.40 5− 6.50 0.00 3.05 3.50 3.00 0.00

from the ground state of the initial (even-even) nucleus, some
authors shift the entire set of QRPA spectrum by about
λp − λn in the muon capture process [23]. In our present
study we also adopt the latter treatment, so the calculated
pn-QRPA energy spectrum of each individual multipolarity
Jπ is shifted in such a way that the first calculated value of each
multipole state (i.e., 1+

1 , 2+
1 , . . . , etc), to approach as close as

possible the corresponding lowest experimental energy of the
daughter nucleus. Such a shifting is necessary whenever in the
pn-QRPA a BCS ground state is used, a treatment adopted by
other groups too [45,46]. Table III shows the shifting applied
to the QRPA spectrum for each multipolarity of the studied
nuclei. We note that a similar treatment is required in QRPA

calculations for double-β-decay studies where the excitations
derived for the intermediate odd-odd nucleus (intermediate
states) through p-n or n-p reactions from the neighboring
nuclei do not match each other [45]. The resulting low-energy
spectrum (up to 3.0 MeV) using our pn-QRPA method
agrees well with the experimental one as can be seen from
Fig. 1.

Before proceeding to our results, it is worthwhile to briefly
summarize the advantages of the calculational procedure
followed in performing the present detailed calculations of
partial and total muon capture rates as compared to the methods
used by other groups [8,15,22,23]. In the earlier pioneering
work of Foldy and Walecka [15], the authors related the

FIG. 1. (Color online) Comparison of the theoretical excitation spectrum, resulting from the solution of the pn-QRPA eigenvalue problem,
with the low-lying (up to about 3 MeV) experimental one for 56Mn and 90Y nuclei (for the other spectra, see Refs. [28,60]). The agreement is
quite good at least for low excitation energies.

014606-5



P. G. GIANNAKA AND T. S. KOSMAS PHYSICAL REVIEW C 92, 014606 (2015)

dipole capture rate to the experimental photoabsorption cross
section and used symmetry arguments to compare polar-vector
and axial-vector matrix elements. The aforementioned authors
derived μ− capture sum rules based on the giant dipole
resonance (GDR) strength excited after μ− capture. The
required GDR amplitudes are obtained (for light and medium
nuclei) from the corresponding photoabsorption cross sections.
Later, the calculations of Eramzhyan et al. [23] employed
a truncated model space with ground-state correlations and
adopted the standard free nucleon coupling constants. In
the work of Kolbe et al. [8], for the calculations of muon
capture rates, use of the continuum RPA method was made
with the free nucleon form factors, while recently, Zinner
et al. [22] proposed the use of a quenched value for the
axial-vector coupling constant gA to reliably evaluate the true
GT transitions.

It is worth mentioning that recent studies of single and
double β decays as well as of neutrino-nucleus reactions under
stellar conditions, have demonstrated an important role of
the quenched value of the coupling constant gA [28,49,50].
In the present calculations we also use a quenched value of
gA, the same for all multipole transitions (see the following
section).

IV. RESULTS AND DISCUSSION

In the OMC on complex (A � 12) nuclei, the nuclear
response is governed by the momentum transfer q of Eq. (4),
i.e., by an energy transfer to the daughter nucleus of the order
of the muon mass mμ minus the binding energy εb of the
muon in the muonic atom restricted from below by the mass
difference of the initial and final nuclei and from above by
the muon mass [see Eq. (4)]. The phase space and the nuclear
response favor lower nuclear excitations; namely, the nuclear
states in the giant resonance region (GDR and GT resonance)
are expected to dominate [8].

In our calculational procedure we followed three steps. (i)
We performed realistic state-by-state calculations on exclusive
OMC rates in the isotopes 28Si, 32S, 48Ti, 56Fe, 66Zn, and
90Zr, a set that covers a rather wide range of the periodic
table from light- to medium-weight nuclei. These calculations
have been performed twice: once with the use of the free
nucleon coupling constants gA = 1.262 and the other with
the use of the value gA = 1.135, to take into account the
rather small quenching effect indicated for medium-weight
nuclei [22,51,52]. We also focused on the study of the relative
strength of the polar-vector and axial-vector contributions
for each individual excitation induced by the respective
components of the muon capture operators. (ii) We examined
the dominance of the low-spin multipolarities into the total
μ capture rate. We also estimated the percentage (portion)
of their contribution in the total rate for the most important
multipolarities. (iii) We evaluated total muon capture rates
for the above set of isotopes. For all the above calculations,
the required wave functions [for the initial (ground) state and
for all accessible final states] were constructed by solving the
BCS and QRPA equations, respectively, as described before
(see Secs. III A and III B).

A. State-by-state calculations of exclusive transition
rates in μ capture

At first, we evaluated the exclusive μ− capture rates 
i→f

of Eq. (5) for all multipolarities with Jπ � 5±. In Eq. (5)
transitions between the ground state |i〉 ≡ |0+

gs〉 of a spherical
target nucleus and an excited state |Jπ

f 〉 ≡ |f 〉 of the resulting
odd-odd nucleus are considered. In most of the previous
studies a mean value of the muon wave function, �μ(−→r ),
with −→r being the spherical coordinate, has been utilized (see
Appendix B). An accurate description of the reaction (1) [and
of any reaction having the same initial state with it, i.e., a
muon orbiting around an atomic nucleus (A,Z)], however,
requires the exact muon wave function derived by solving the
Schrödinger equation (or the Dirac equations) that obeys a
bound muon within the extended Coulomb field of the nucleus
in such muonic atoms [22].

Assuming that the muon wave function in the region of the
nuclear target is nearly constant, the integrals entering Eq. (5)
can be performed by taking out of them an average value
〈�1s〉. Hence, the exclusive muon capture rates 
Jπ

f
can be

rewritten as


gs→Jπ
f

≡ 
Jπ
f

= 2G2〈�1s〉2Rf q2
f ·

× [∣∣〈Jπ
f

∥∥(M̂J − L̂J )‖0+
gs〉

∣∣2

+ ∣∣〈Jπ
f

∥∥(
T̂ el

J − T̂ magn
J

)‖0+
gs〉

∣∣2]
. (16)

On the basis of the latter expression, we initially, performed
state-by-state calculations, for the above-mentioned set of
nuclear isotopes, by using the free nucleon coupling constant
gA for the axial-vector form factor. Then we repeated these
calculations (with the exception of 28Si and 32S isotopes) by
taking into account the quenching effect of the axial-vector
coupling constant gA = 1.135. For each excitation of the
daughter nucleus, our code provides us with the separate
contributions induced by the components of the muon capture
operator. Relying on this possibility, we examined the multi-
pole decomposition of the QRPA response in the muon capture
reaction for the studied nuclei. In Figs. 2, 3, and 4 we illustrate
the contribution of each individual transition. We also show
the contribution of the polar-vector as well as the axial-vector
parts originated from the corresponding components of the
weak-interaction Hamiltonian (see Sec. II). Evidently, most of
the muon capture strength goes to 1−, 1+, and 2− low-lying
multipole excitations of the particle bound spectrum and of the
giant dipole, spin, and spin-dipole resonances.

As mentioned before, our code initially gives results
for exclusive muon capture rates, 
Jπ

f
, separately for each

multipolarity (in ascending order with respect to the pn-QRPA
excitation energy �ν

Jπ ). To study the dependence of the rates
on the excitation energy ω throughout the entire pn-QRPA
spectrum of the daughter isotopes, a rearrangement of all
possible excitations in ascending order with respect to ω and
with the corresponding rates, is required. This was performed
by using a special code (appropriate for matrices). In total,
for Jπ � 5± in the model space chosen for each isotope, we
have 286 states for the 28Si isotope, 440 states for each of
the 32S and 48Ti isotopes, 488 states for each of the 56Fe
and 66Zn isotopes, and 912 states for 90Zr isotope in the
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FIG. 2. (Color online) Individual contribution of the polar-vector 
V (a) and axial-vector 
A (b) to the total muon capture rate (c) as a
function of the excitation energy ω for the 28Si and 32S nuclei.

corresponding daughter nucleus. The variation of the exclusive
rates throughout the entire excitation spectrum of the daughter
nucleus in the case of the above target isotopes is demonstrated
in Figs. 2, 3, and 4. For all reactions, the rates present some
characteristic clearly pronounced peaks at various excitation
energies ω and specifically for transitions Jπ = 1+ and 1− but
also for Jπ = 0+, 0−, and 2− transitions.

More specifically, in the daughter 28Al isotope the max-
imum peak corresponds to the 1+

7 QRPA transition at ω =
7.712 MeV (see Fig. 2). Two other characteristic peaks are at
ω = 18.135 MeV and at ω = 18.261 MeV, which correspond
to the 0−

9 and 1−
26 transitions, respectively. In the case of 32P

isotope the maximum peak corresponds to the 1+
5 transition

at ω = 4.855 MeV. Another characteristic peak is at ω =
15.564 MeV, which corresponds to the 1−

28 transition as shown
in Fig. 2 (left). For the 48Sc isotope, the pronounced peaks cor-
respond to the first excited 0+ state (0+

1 ) (at ω = 4.319 MeV),
the 2−

17 (at ω = 9.672 MeV), the 1+
13 (ω = 10.666 MeV), and

the 1−
26 transitions (ω = 18.868 MeV). From Fig. 3 (right

panel), for the daughter isotope 56Mn, we see that the
maximum peak appears at ω = 8.278 MeV and corresponds

to the 1+
10 transition. Another important transition is that of

1−
38 at ω = 18.716 MeV. As shown in Fig. 4, in the case of

the daughter isotope 66Cu, the maximum peak appears at
ω = 6.555 MeV and corresponds to 1+

10 state and a pronounced
peak for the 1−

38 at ω = 14.833 MeV. Finally, for the 90Y
isotope, the maximum peak appears for the 1−

54 transition at
ω = 18.218 MeV and for the 1+

36 at ω = 9.752 MeV.
From the above results, we conclude that, in general, a great

part of the OMC rate comes from the excitation energy region
where the centroid of the GT strength is located for each
daughter nucleus. As is known from closure approximation
studies [16,17], the mean excitation energy in muon capture
(about 15 MeV) is nearly equal to the energy of the GDR,
which is slowly decreasing with A or Z [22]. However, the
GT-like operators (in which the full spherical Bessel functions
is taken into account) contribute very little in heavier nuclei,
where most of the active neutrons and protons are in different
oscillator shells. In lighter nuclei, however, i.e., for nuclei
having N and Z smaller than 40, the GT strength is significant
and it is concentrated at the low-energy region. Regarding the
giant spin resonance (Jπ = 1+) for all nuclei, the peak of
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FIG. 3. (Color online) The same as Fig. 2 but for the nuclei 48Ti and 56Fe.

the exclusive μ capture rate is located between 5–11 MeV. It
should be stressed that concerning the pronounced contribution
to the 1− states, it may contain a small portion of the spurious
center of mass motion part (up to about 17% in our QRPA
method) [34]. This can be attributed to the isoscalar movement
of the nucleons in the mean field (dipole oscillation of the
whole nucleus). As is known, this is usually removed by using
specific methods [34].

As becomes clear from Figs. 2, 3, and 4, for the studied
nuclei the muon capture response presents a maximum peak in
the very important GDR region, which is located in the energy
region of 18–19 MeV for 28Si, 48Ti, 56Fe, and 90Zr isotopes
and in the region of 15–16 MeV for 32S and 66Zn isotopes.
These results can be compared with the empirical expression,
for medium-weight and heavy isotopes, which gives the energy
location of the GDR, EIV D , based on the Jensen-Steinwedel
and Goldhaber-Teller models (a hydrodynamical view of the
giant resonance) as [64]

EIV D = 31.2A−1/3 + 20.6A−1/6 (17)

(A is the atomic mass of the nucleus). Even though this formula
refers to pp and nn reactions, it can, however, be used also for

the μ− capture (pn reaction) on the basis of the well-known
Foldy-Walecka theorem, according to which the GDR in μ−
capture rates are calculated starting from the experimental
photoabsorption cross sections [15]. According to Eq. (17)
for 48Ti, the maximum 1− peak is located at 18.668 MeV,
for 56Fe at 18.716 MeV, for 66Zn at 17.945 MeV, and for
90Zr at 16.684 MeV, which are in good agreement with our
results (the worst case occurs for 66Zn, where the empirical
peak is at about 15 MeV). Moreover, our results are in good
agreement with the conclusions of Ref. [23], where authors
mention that for the stable Ni isotopes (58.60,62Ni) the peak
appears in the range of 18–19 MeV. We note that a similar
conclusion is extracted from the study of the charged-current
reaction 56Fe(νe,e

−)56Co by Kolbe and Langanke [26], where
the peak of the GDR appears at about 17 MeV (see Fig. 1 of
Ref. [26]).

As can be seen from Figs. 2, 3, and 4, the main contributions
coming from the polar-vector operator are the 1− and 0+ states,
while the most important transitions owing to the axial-vector
operator are the 0−, 1+, and 2− excitations, namely the lowest
spin states.

We note that the figures of this section have been designed
by using the ROOT program of Cern with binning width 0.112,
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FIG. 4. (Color online) The same as Fig. 2, but for the nuclei 66Zn and 90Zr.

0.105, 0.105, 0.15, 0.14, and 0.11, respectively, for 28Si, 32S,
48Ti, 56Fe, 66Zn, and 90Zr nuclei.

B. Contribution of multipole transitions

The second step of our study includes calculations of the
partial μ− capture rates for various low-spin multipolarities,

Jπ (for Jπ � 4±), in the chosen set of nuclei. These partial
rates have been found by summing over the contributions of
all the individual multipole states of the studied multipolarity
as


Jπ =
∑
f


gs→Jπ
f

= 2G2〈�1s〉2

×
⎡
⎣∑

f

q2
f Rf

∣∣〈Jπ
f

∥∥(M̂J − L̂J )
∥∥0+

gs

〉∣∣2

+
∑
f

q2
f Rf

∣∣〈Jπ
f

∥∥(
T̂ el

J − T̂ magn
J

)∥∥0+
gs

〉∣∣2

⎤
⎦, (18)

where f runs over all states of the multipolarity |Jπ 〉. As
mentioned before, these calculations have been performed first
by using the free nucleon axial-vector coupling constant gA =
1.262 and then by taking into account the quenching effect
indicated for medium-weight nuclei with gA = 1.135.

For the target 28Si [65,66] and 32S isotopes, these calcula-
tions were performed only for the free nucleon coupling con-
stant gA = 1.262. (the quenching effect can be ignored [24]).
The results obtained for the partial μ− capture rates of these
isotopes are illustrated in Fig. 5, from which one can see
that, as expected, the most important multipole transitions
are the Jπ = 1+ and 1−. More specifically, for the 28Si
isotope, the contributions of all Jπ = 1− transitions exhaust
the 36% of the total muon capture rate and the Jπ = 1+
about 30%. A significant contribution, about 14%, comes
from the Jπ = 0− multipolarity and about 13% from the
Jπ = 2−. A similar picture is found in 32S isotope, where
the dominant contributions to the total muon capture rate are
the Jπ = 1− (38%) and the Jπ = 1+ (30%). From the rest of
the multipolarities, rather significant portions come from the
abnormal parity transitions 0− and 2−, about 13% and 14%,
respectively.
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FIG. 5. (Color online) Partial muon capture rates 
Jπ of different multipole transitions in 28Si and 32S isotopes. In both isotopes the
pronounced contributions are the J π = 1− and J π = 1+ multipolarity.

Because, as mentioned in the Introduction, for electro-
magnetic and weak charged-current nuclear processes, the
free nucleon coupling constant gA must be modified for
medium-weight and heavy nuclei [22], in μ− capture on
48Ti, 56Fe, 66Zn, and 90Zr isotopes we repeated the state-by-
state calculations by using gA = 1.135 (a value smaller by
about 10%–12% compared to the gA = 1.262). Historically,
the necessity of the renormalization of gA came out of the
following studies: (i) In the analysis of measurements on
the nuclear β decays that lead to low-lying excitations [52]
and (ii) in the interpretation of the missing GT strength
revealed in forward-angle (p,n) and (n,p) charge-exchange
reactions [51]. We note that, in (n,p) reactions many authors
use quenched values of gA lying in the region of 0.9 < gA <
1.0 for nuclei with mass number 41 < A < 64 [63,67,68]. In
β−-decay and (p,n) reactions the quenching is mainly related
to the neglect of configurations outside the model space used
and the nonconsideration of the meson-exchange currents.

A quenched value of gA was recently suggested to be used in
other weak-interaction processes such as the neutrino-induced
nuclear reactions. As has been found [24], the consideration
of a quenched factor instead of the free nucleon axial-vector
coupling constant leads to better agreement of the theoretical
results with the experimental muon capture rates. Because the
axial-vector form factor FA(q2) multiplies all four operators
[see Eqs. (A1)–(A4)], a quenched value of gA must enter
the multipole operators generating the pronounced excitations
0−, 1±, . . ., etc. In Ref. [22], a quenched value of gA is used
only for the true GT transitions. In our study, we find that
for the reproducibility of the experimental data, as the mass
number A of the nucleus increases, the quenching becomes
more significant and cannot be ignored, as we have done in
the case of the 28Si and 32S isotope.

For the medium-weight nuclei 48Ti, 56Fe, 66Zn, and 90Zr,
we used the moderate quenched value gA = 1.135 and found
that our rates are in good agreement with the results of other
works [22]. By using this value of gA for the contributions of
the different multipole transitions in the isotopes 56Fe, 66Zn,
and 90Zr, we found that the most important peaks correspond to
the Jπ = 1+ and 1−. For the 48Ti isotope, however, we found

that a great part of the total rate comes from the Jπ = 1−
and 2−, as is shown in Fig. 6. In more detail, in the case
of 48Ti isotope the 1− multipolarity contributes about 44%,
the 2− about 17%, the 1+ about 16%, and the 0− about
11%. Significant contribution (about 7%) originates also from
the 0+ multipolarity. For 56Fe isotope the most important
contribution about 42% comes from the 1− multipolarity.
Other multipolarities with significant contributions are the
1+(22%), 2−(13%), 0−(10%), and 0+(8%). A similar picture
appears in the other two isotopes, 66Zn and 90Zr, where the
major contribution is derived from the 1− multipolarity, about
44% and 42%, respectively. The 1+ multipolarity contributes
about 21% in the 66Zn and about 20% in the 90Zr isotope.
Correspondingly, the 2− contributes about 13% for 66Zn and
about 14% for 90Zr, the 0+ about 8% and 9%, respectively,
and finally the 0− multipolarity offers about 8% for 66Zn and
about 7% for 90Zr.

In Table IV we present the partial muon capture rates
obtained for the low-spin multipole transitions up to Jπ =
4± evaluated with our pn-QRPA code. Correspondingly, in
Table V we tabulate the individual portions to the total OMC
rate, for the low-spin multipole transitions up to Jπ = 4±. As
can be seen, for all nuclei the contribution of 1− multipole
transitions is the most important multipolarity, exhausting
more than 39% of the total muon capture rate. OMC proceeds
mainly through spin-multipole transitions, the most important
of which are the GT transitions [j0(kr)σ t+ operator], and the
spin-dipole transitions [j1(kr)[Y1 ⊗ σ ]J t+ operator], where j0

and j1 are the spherical Bessel functions of zero and first order,
respectively [23]. Such important contribution is found in 16O
and in 48Ca isotopes studied in Ref. [10].

There are no similar results for the isotopes 28Si, 32S, 48Ti,
56Fe, and 66Zn to compare with our portions. For the 90Zr,
however, Kolbe, Langanke, and Vogel [10] found about 28%
(for 1−), 25% (for 1+), and about 13% (for 2−) multipolarities
which, with the exception of 1− contribution, are in good
agreement with our results listed in Table V. The difference
in 1− multipolarity is mostly attributed to the fact that 90Zr is
a double closed-shell nucleus and the QRPA convergence is
treated as in Refs. [32,69].
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FIG. 6. (Color online) Contribution of multipole transition rates 
Jπ (up to J π = 4±) with the total muon capture rate in 48Ti, 56Fe,
66Zn, and 90Zr isotopes with (solid histograms) and without (double dashed histograms) quenching effect. The dominance of J π = 1− and 1+

multipolarities is obvious in all nuclei.

C. Total muon capture rates

In the last stage of our present work, we computed the total
rates of muon capture on the chosen set of nuclei. These rates
are obtained by summing over all partial multipole transition
rates in two steps. At first we sum up the contribution of each
final state of a specific multipolarity, and then we sum over the
multipole responses (up to Jπ = 4±) as


tot =
∑
Jπ


Jπ =
∑
Jπ

∑
f


Jπ
f
. (19)

Such calculations have been carried out twice: one with gA =
1.262 (free nucleon axial-vector coupling constant) and the

TABLE IV. Muon capture rates 
Jπ (in 106 s−1) of each
multipolarity evaluated with our pn-QRPA code.

28Si 32S 48Ti 56Fe 66Zn 90Zr

0− 0.125 0.168 0.264 0.398 0.471 0.662
0+ 0.037 0.016 0.177 0.327 0.488 0.866
1− 0.319 0.481 1.074 1.740 2.623 4.087
1+ 0.271 0.383 0.397 0.926 1.263 1.968
2− 0.114 0.171 0.415 0.524 0.790 1.307
2+ 0.014 0.030 0.065 0.115 0.169 0.401
3− 0.001 0.002 0.006 0.013 0.020 0.050
3+ 0.010 0.012 0.045 0.073 0.093 0.255
4− 0.001 0.001 0.003 0.006 0.014 0.029
4+ 0.2×10−4 0.8×10−4 0.2×10−3 0.5×10−3 0.7×10−3 2.5×10−3

other with the quenched value gA = 1.135 [22]. The results
are tabulated in Table VI, where, for the sake of comparison,
we also include the experimental total rates as well as the
theoretical ones of Ref. [22]. Moreover, in Table VI we show
the individual contribution in the total muon capture rate of
the polar vector (
V

tot), the axial-vector (
A
tot), and the overlap

(
V A
tot ) parts.
As can be seen, our results obtained with the quenched gA

are in very good agreement with the experimental total muon
capture rates. For all studied nuclei the deviations from the
corresponding experimental rates are smaller than 7% when
using the quenched gA (the deviation is much bigger when
using the gA = 1.262). So, for the reliability of our results

TABLE V. The percentage of each multipolarity into the total
muon capture rate evaluated with our pn-QRPA code.

28Si 32S 48Ti 56Fe 66Zn 90Zr

0− 14.03 13.30 10.78 9.64 7.94 6.89
0+ 4.11 1.27 7.24 7.92 8.22 8.99
1− 35.74 38.01 43.88 42.18 44.21 42.43
1+ 30.42 30.28 16.24 22.46 21.29 20.43
2− 12.81 13.54 16.97 12.72 13.32 13.57
2+ 1.62 2.36 2.67 2.79 2.85 4.16
3− 0.10 0.15 0.23 0.32 0.34 0.52
3+ 1.09 0.97 1.82 1.78 1.58 2.65
4− 0.06 0.10 0.14 0.16 0.23 0.30
4+ 0.01 0.01 0.01 0.01 0.01 0.03
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TABLE VI. Individual contribution of polar-vector, axial-vector,
and overlap part to the total muon capture rate. Comparison between
the total muon capture rates obtained by using the pn-QRPA with
the quenched value of gA = 1.135 for medium-weight nucleus
(48Ti 56Fe, 66Zn, and 90Zr ) and the free nucleon coupling constant
gA = 1.262 for the light nucleus 28Si and 32S, with the available
experimental data and with the theoretical rates of Ref. [22].

Total muon capture rates 
tot(×106) s−1

Nucleus pn-QRPA Calculations Experiment RPA Dean


V
tot 
A

tot 
V A
tot 
tot 


exp
tot 
theor

tot [22]

28Si 0.150 0.751 −0.009 0.892 0.871 0.823
32S 0.204 1.078 −0.017 1.265 1.352 1.269
48Ti 0.628 1.902 −0.081 2.447 2.590 2.214
56Fe 1.075 3.179 −0.129 4.125 4.411 4.457
66Zn 1.651 4.487 −0.204 5.934 5.809 4.976
90Zr 2.679 7.310 −0.357 9.631 9.350 8.974

it is necessary to take into account the quenching effect. To
make it more perceptual, in Fig. 7 we have plotted the ratio
of our theoretical total muon capture rates divided by the
experimental ones, i.e.,

λ = ωcalc

ωexp
, (20)

for the results obtained with the above two values of gA (with
and without quenching). The solid circles represent the results
for the free gA and the X symbols the results for the quenched
gA. The better agreement of our calculations with quenched
value of gA is evident. We furthermore compare our results
with the available calculated rates Zinner [22] obtained by
using different approach, and the comparison is good.

Finally, it is worth noticing that, in medium-weight nuclei
the contribution comes mainly from transitions for which
the angular momentum transfer is L = 0, 1, and 2 but, in
heavy nuclei, some contributions from higher multipolarities
become noticeable.

FIG. 7. (Color online) Ratio of the calculated and experimental
total muon capture rates as a function of Z. Circles and X symbols
correspond to rates calculated with free nucleon gA and quenched
value of gA, respectively.

V. SUMMARY AND CONCLUSION

In the present work, relying on an advantageous numerical
approach constructed by our group recently, we performed
detailed calculations for all multipole transition matrix ele-
ments entering the exclusive muon capture rates. The required
nuclear wave functions were obtained within the context of
the pn-QRPA using realistic two-body forces (Bonn C-D
potential). Results for the exclusive rates through extensive
state-by-state calculations and subsequently for the total muon
capture rates on the set of isotopes 28Si, 32S, 48Ti, 56Fe, 66Zn,
and 90Zr were computed.

Because the capture rates are rather sensitive to the
quenching of the axial-vector coupling constant, we examined
the so-called in-medium effect of the nucleon by reducing this
constant from its free nucleon value gA = 1.262 to the effective
value gA = 1.135 for all multipole transitions and found that
the experimental muon capture rates are well reproduced with
an accuracy better than 10%. A detailed study of this effect,
however, required for experiments at RCNP [70,71] is under
way and results are expected to be obtained soon.

The muon capture studies on these nuclei demonstrate
that the used pn-QRPA method may provide an accurate de-
scription of the charged-current semileptonic weak-interaction
processes in the Z range of the isotopes chosen. As the
inclusive muon capture rates and the cross section of the
antineutrino-induced charged-current reactions are closely
related (both of them are governed by the same nuclear
matrix elements and proceed via the same initial and final
states), we have adopted this method to study other types of
charge-changing weak-interaction processes such as electron
capture, β-decay modes, etc. [28,30], in currently interesting
nuclei from a nuclear astrophysics point of view.
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APPENDIX A: NUCLEAR MATRIX ELEMENTS

The tensor multipole operators entering Eq. (5), i.e. the
Coulomb M̂J , longitudinal L̂J , transverse electric T̂ el

J and
transverse magnetic T̂ magn

J , contain polar-vector as well as
axial-vector parts and are written as

M̂JM (qr) = M̂coul
JM + M̂coul5

JM

= FV
1 MJ

M (qr) − i
q

MN

[
FA�J

M (qr)

+ 1

2
(FA + q0Fp)�

′′J
M (qr)

]
, (A1)

L̂JM (qr) = L̂JM + L̂5
JM

= q0

q
FV

1 MJ
M (qr) + iFA�

′′J
M (qr), (A2)
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T̂ el
JM (qr) = T̂ el

JM + T̂ el5
JM

= q

MN

[
FV

1 �
′J
M (qr) + 1

2
μV �J

M (qr)

]
+ iFA�

′J
M (qr), (A3)

T̂ magn
JM (qr) = T̂

magn
JM + T̂

magn5
JM

= − q

MN

[
FV

1 �J
M (qr) − 1

2
μV �

′J
M (qr)

]
+ iFA�J

M (qr), (A4)

where the form factors FX, X = 1, A, P , and μV are functions
of the 4-momentum transfer q2

μ.
These multipole operators, owing to the conserved vector

current (CVC) theory, are reduced to seven new basic operators
expressed in terms of spherical Bessel functions, spherical
harmonics, and vector spherical harmonics (see Refs. [5,33]).
The single-particle reduced-matrix elements of the form
〈j1‖T J

i ‖j2〉, where T J
i represents any of the seven basic

multipole operators (MJ
M , �J

M , �J
M , �

′J
M , �

′′J
M , �J

M , �
′J
M ) of

Eqs. (A1)–(A4), have been written in closed compact formulas
as [33,34]

〈(n1l1)j1‖T J ‖(n2l2)j2〉 = e−yyβ/2
nmax∑
μ=0

P J
μ yμ, (A5)

where the coefficients P J
μ are given in Ref. [33]. In the latter

summation, the upper index nmax represents the maximum
harmonic oscillator quanta included in the active model space
chosen as nmax = (N1 + N2 − β)/2, where Ni = 2ni + li , i =
1, 2, and β is related to the rank of the above operators [33].

In the context of the pn-QRPA, the required reduced nuclear
matrix element between the initial |0+

gs〉 and any final |f 〉 state
entering the rates of Eq. (16) are given by

〈f ‖T̂ J ‖0+
gs〉 =

∑
j2�j1

〈j2‖T̂ J ‖j1〉
[J ]

[
Xj2j1u

p
j2
υn

j1
+ Yj2j1υ

p
j2
un

j1

]
,

(A6)

where uj and υj are the probability amplitudes for the j level
to be unoccupied or occupied, respectively (see the text) [31].

These matrix elements enter the description of various
semileptonic weak-interaction processes in the presence of
nuclei [3,5,13,14,33–40,42,72,73].

APPENDIX B: MUON WAVE FUNCTION
IN THE MUONIC ATOM

The calculation of the exact muon wave function, �1s(r),
entering Eq. (5) needs the use of a specific numerical method.
This, however, can be avoided by using either its value at r � 0,
namely the �1s(r � 0) or, as stated in Sec. II, an average value
〈�1s〉, which is given in terms of the effective nuclear charge
Zeff that sees the bound muon as

〈�1s〉2 = 1

π
α3m3

μ

Z4
eff

Z
(B1)

(α denotes the fine structure constant). The quantity Zeff is
approximated by Z4

eff = πα3
0〈ρ〉, where α0 is the muon Bohr

radius and 〈ρ〉 is the mean charge density of the parent
nucleus [74]. For light nuclei Zeff � Z, but for heavier
ones Zeff 
 Z. In recent studies the exact wave functions
for the bound muon are obtained by solving the Schrödinger
and Dirac equations by using neural network techniques or
genetic algorithms [75]. In the work of Zinner, Langanke,
and Vogel [22], for the description of the exact bound muon
wave functions (w-fs), the muon density beyond the site of the
nucleus is considered for solving the Dirac equation. These
authors use exact muon wave functions for other muonic
orbits, �2p, etc., which are considered to have rather significant
contributions [22].

APPENDIX C: pn-QRPA EQUATIONS

In our numerical solution performance we rewrite the
QRPA equations (15) by defining a new set of amplitudes
P m and Rm, which are related to the preceding ones through

Xm =
√

1
2

(
�1/2

m P m + �−1/2
m Rm

)
,

Ym =
√

1
2

(−�1/2
m P m + �−1/2

m Rm
)
. (C1)

The new amplitudes satisfy the matrix expressions

(A − B)P m = Rm, (A + B)Rm = �2
mP m. (C2)

Then we have

(A + B)(A − B)P m = �2
mP m. (C3)

The latter equations can be diagonalized separately and,
subsequently, the X and Y amplitudes are directly deter-
mined [43,44].
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