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Entrance channel effects on sub-barrier capture
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Within the quantum diffusion approach, the capture process of a projectile nucleus by a target nucleus is studied
at bombarding energies above and below the Coulomb barrier. The entrance channel effects on the partial and
total capture cross sections and the mean angular momentum of the captured system are studied in the reactions
leading to 156,160Er, 170Hf, 200Pb, 216Ra, and 220Th compound nuclei.
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I. INTRODUCTION

Recently many experimental and theoretical studies have
been devoted to investigation of fusion and capture processes
at near-barrier and deep sub-barrier energies [1–4]. So far, the
study of fusion (capture) was mainly focused on measuring
and calculating the excitation function: the fusion (capture)
cross section as a function of the energy of colliding nuclei.
The fusion (capture) cross section is an integral property of
the angular-momentum distribution of partial fusion (capture)
cross section. Because similar fusion (capture) cross sections
can be obtained with different angular-momentum distribu-
tions, the angular-momentum distribution is more sensitive to
basic ingredients of the model than the fusion (capture) cross
section [5]. For example, in many reactions the fusion (capture)
cross sections are described well, but the mean angular
momenta are not reproduced [6]. Therefore, a description
of experimental angular-momentum distributions of partial
fusion (capture) cross sections or their moments is a good test
of the viability of fusion (capture) models. It is noteworthy
that investigation of partial cross sections is important for
better understanding the survival of a compound nucleus in the
formation of evaporation residues, especially at high angular
momenta, when a significant part of the energy goes to the
nucleus rotation.

From all sets of fusion (capture) reactions, those which lead
to the same compound nucleus are of great interest [7–14]. In
these reactions one can study the entrance channel effects on
fusion (capture) cross sections and other characteristics of the
process. Such kind of information can be used, for instance, to
verify the fusion (capture) models [7,10] and to ascertain the
role of quasifission in asymmetric reactions [11–14].

In the present paper the quantum diffusion approach
[15–18] is applied to study the entrance channel effects on the
total and partial capture cross sections and the mean angular
momentum of the captured system in the reactions leading to
the compound nuclei 156Er ( 12C + 144Sm and 64Ni + 92Zr),
160Er ( 16O + 144Nd, 37Cl + 123Sb, 64Ni + 96Zr, and
80Se + 80Se), 170Hf ( 28Si + 142Ce, 32S + 138Ba, and
48Ti + 122Sn), 200Pb ( 16O + 184W), 216Ra ( 12C + 144Sm,
30Si + 186W, and 48Ca + 168Er), and 220Th ( 16O + 204Pb,
34S + 186W, 50Ti + 170Er, and 96Zr + 124Sn). The mean angu-
lar momentum in question is an important feature of the capture

FIG. 1. The nucleus-nucleus potentials calculated at J = 0 (solid
curve), 30 (dashed curve), 60 (dotted curve), and 90 (dash-dotted
curve) for the 16O + 204Pb reaction. The position Rb of the Coulomb
barrier, interaction radius Rint, and external rex and internal rin turning
points for some value of bombarding energy Ec.m. are indicated at
J = 0.

process and affects the angular anisotropy of fission and
quasifission products following capture. The formalism used
proved to be quite successful in describing the capture process
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FIG. 2. The calculated capture cross sections σcap and the mean
angular momenta 〈J 〉 of captured system vs Ec.m. are compared with
the experimental data for the 16O + 152Sm reaction. The experimental
cross sections are taken from Ref. [33] (closed squares) and the
experimental values of 〈J 〉 from Ref. [34] (closed squares). The
calculations with and without taking into consideration the deforma-
tion effect are shown by solid and dashed lines, respectively. The
following quadrupole deformation parameters are used: β2(16O) = 0
and β2(152Sm) = 0.31 [32]. The height Vb of the Coulomb barrier for
the spherical nuclei case is indicated by the arrow.

at bombarding energies above and well below the Coulomb
barrier in a large number of various reactions [15–17,19,20].
Because the details of our theoretical treatment were already
published in Refs. [15–17,19–21], the model will be shortly
described in Sec. II. The calculated results will be presented in
Sec. III. The summary and conclusions will be given in Sec. IV.

II. MODEL

In the quantum diffusion approach the collisions of nuclei
are treated in terms of a single collective variable: the relative
distance between the colliding nuclei. The nuclear deformation
effects are taken into consideration through the dependence
of the nucleus-nucleus potential on the deformations and
orientations of colliding nuclei. Our approach takes into con-
sideration the fluctuation and dissipation effects in collisions
of heavy ions which model the coupling with various channels
(for example, coupling of the relative motion with low-lying
collective modes such as dynamical quadrupole and octupole

FIG. 3. The calculated partial capture cross sections vs J are
compared with the experimental data from Ref. [34] (closed squares)
for the 16O + 152Sm reaction at indicated Ec.m.. The calculations
with and without taking into consideration the deformation effect
are shown by solid and dashed lines, respectively. The following
quadrupole deformation parameters are used: β2(16O) = 0 and
β2(152Sm) = 0.31 [32].

modes of target and projectile [22]). We have to mention that
many quantum-mechanical and non-Markovian effects accom-
panying the passage through the potential barrier are taken
into consideration in our formalism [15–17,20,21,23,24]. The
details of used formalism are presented in our previous
articles [15–17]. One should stress that the diffusion model
which is including the quantum statistical effects was also
proposed in Refs. [25–28].

The capture cross section is a sum of partial capture cross
sections [15–17],

σcap(Ec.m.) =
∑

J

σcap(Ec.m.,J )

= π�
2

2μEc.m.

∑
J

(2J + 1)
∫ π/2

0
dθ1 sin θ1

×
∫ π/2

0
dθ2 sin θ2Pcap(Ec.m.,J,θ1,θ2), (1)
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FIG. 4. The same as in Fig. 2, but for the 16O + 184W reaction.
The experimental cross sections are taken from Refs. [35] (closed
circles) and [36] (closed squares) and the experimental values of 〈J 〉
from Ref. [36] (closed squares). The following quadrupole deforma-
tion parameters are used: β2(16O) = 0 and β2(184W) = 0.24 [32].

where μ = m0A1A2/(A1 + A2) is the reduced mass [m0 is
the nucleon mass, A1 = Z1 + N1 and A2 = Z2 + N2 are
mass numbers of nuclei, and Zi and Ni (i = 1,2) are the
proton and neutron numbers of nuclei], and the summation
is over the possible values of angular momentum J at a
given bombarding energy Ec.m.. Knowing the potential of
the interacting nuclei for each orientation, one can obtain
the partial capture probability Pcap, which is defined by the
passing probability of the potential barrier in the relative
distance R at a given J . The mean angular momentum
of the captured system is calculated with the following
formula:

〈J 〉 = 1

σcap(Ec.m.)

∑
J

Jσcap(Ec.m.,J ). (2)

The value of Pcap is obtained by integrating the propagator
G from the initial state (R0,P0) at time t = 0 to the final state
(R,P ) at time t (P is a momentum):

Pcap = lim
t→∞

∫ rin

−∞
dR

∫ ∞

−∞
dP G(R,P,t |R0,P0,0)

= lim
t→∞

1

2
erfc

[
−rin + R(t)√

�RR(t)

]
. (3)

FIG. 5. The calculated partial capture cross sections vs J are
compared with the experimental data from Ref. [36] (closed squares)
for the 16O + 184W reaction at indicated Ec.m.. The calculations
with and without taking into consideration the deformation effect
are shown by solid and dashed lines, respectively. The following
quadrupole deformation parameters are used: β2(16O) = 0 and
β2(184W) = 0.24 [32].

The second equality in Eq. (3) is obtained by using the prop-
agator G = π−1| det �−1|1/2 exp(−vT �−1v) (vT = (vR,vP ),
vR(t) = R − R(t), vP (t) = P − P (t), R0 = R(t = 0), P0 =
P (t = 0), �ij (t) = 2vi(t)vj (t), �ij (t = 0) = 0, i,j = R,P )
calculated in Ref. [29] for an inverted oscillator which approx-
imates the nucleus-nucleus potential V in the variable R. The
frequency ω of this oscillator with an internal turning point rin

is defined from the condition of equality of the classical actions
of approximated and realistic potential barriers of the same
height at given J and Ec.m. (see Fig. 1). It should be noted that
the passage through the Coulomb barrier locally approximated
by a parabola was previously studied in Refs. [23,24,26–28].
This approximation is well justified for the reactions and
energy range, which are considered here. Finally, one can find
the expression for the capture probability:

Pcap = 1

2
erfc

⎡
⎣(

πs1(γ − s1)

2μ�
(
ω2

0 − s2
1

)
)1/2

μω2
0R0/s1 + P0

[γ ln(γ /s1)]1/2

⎤
⎦, (4)
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FIG. 6. The calculated capture cross sections σcap and the mean
angular momenta 〈J 〉 of captured system vs Ec.m. are compared
with the experimental data from Ref. [37] (closed circles) for
the 19F + 175Lu reaction. The following quadrupole deformation
parameters are used: β2(21F) = 0.56 and β2(173Lu) = 0.33. The
height Vb of the Coulomb barrier for the spherical nuclei case is
indicated by the arrow.

where γ is the internal-excitation width, ω2
0 = ω2{1 −

�λ̃γ /[μ(s1 + γ )(s2 + γ )]} is the renormalized frequency in
the Markovian limit, and the value of λ̃ is related to the strength
of linear coupling in coordinate between collective and internal
subsystems. The si are the real roots (s1 � 0 > s2 � s3) of the
following equation:

(s + γ )
(
s2 − ω2

0

) + �λ̃γ s/μ = 0. (5)

The details of the used formalism are presented in
Refs. [15,17]. We have to mention that most of the quantum-
mechanical, dissipative effects and non-Markovian effects
accompanying the passage through the potential barrier are
taken into consideration in our formalism [15,17,23]. For
example, the non-Markovian effects appear in the calculations
through the internal-excitation width γ .

As shown in Refs. [15–17], the nuclear forces start to play
a role at Rint = Rb + 1.1 fm where the nucleon density of
colliding nuclei approximately reaches 10% of the saturation
density. If the value of rex corresponding to the external turning
point is larger than the interaction radius Rint, we take R0 = rex

and P0 = 0 in Eq. (4) (see Fig. 1). For rex < Rint, it is natural
to start our treatment with R0 = Rint and P0 is defined by

FIG. 7. The calculated partial capture cross sections vs J for the
19F + 175Lu reaction at indicated Ec.m. are compared with the exper-
imental data from Ref. [37] (closed squares) for evaporation residue
cross sections. The following quadrupole deformation parameters are
used: β2(21F) = 0.56 and β2(173Lu) = 0.33.

the kinetic energy at R = R0. In this case the friction hinders
the classical motion to proceed toward smaller values of R.
If P0 = 0 at R0 > Rint, the friction almost does not play a
role in the transition through the barrier. Thus, two regimes of
interaction at sub-barrier energies differ by the action of the
nuclear forces and the role of friction at R = rex.

In addition to the parameters related to the nucleus-nucleus
potential, two parameters �γ = 15 MeV and the friction coef-
ficient �λ = −�(s1 + s2) = 2 MeV are used for calculating the
capture probability. The value of coupling strength λ̃ is set to
obtain this value of �λ. The most realistic friction coefficients
in the range of �λR ≈ 1–2 MeV are suggested from the study
of deep inelastic and fusion reactions [30]. These values are
close to those calculated within the mean-field approach [31].
All calculated results presented are obtained with the same
set of parameters and are rather insensitive to a reasonable
variation of them [15–17,23,24]. All parameters of the model
are set as in Ref. [15]. The heights of the calculated Coulomb
barriers Vb = V (Rb) (Rb is the position of the Coulomb
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FIG. 8. The calculated capture cross sections σcap and the mean
angular momenta 〈J 〉 of captured system vs Ec.m. are compared
with the experimental data for the 64Ni + 100Mo reaction. The
experimental cross sections are taken from Refs. [38] (closed
squares) and [39] (closed circles) and the experimental values of
〈J 〉 from Refs. [38] (closed squares) and [40] (closed triangles).
The calculations with and without taking into consideration the
neutron transfer process are shown by solid and dashed lines,
respectively. The following quadrupole deformation parameters are
used: β2(64Ni) = 0.09, β2(66Ni) = 0.16 [32], β2(98Mo) = 0.17 [32],
and β2(100Mo) = 0.23 [32]. The height Vb of the Coulomb barrier for
the spherical nuclei case is indicated by the arrow.

barrier) are adjusted to the experimental data for the fusion
or capture cross sections. To calculate the nucleus-nucleus
interaction potential V (R), we use the procedure presented
in Refs. [15–17]. For the nuclear part of the nucleus-nucleus
potential, the double-folding formalism with the Skyrme-type
density-dependent effective nucleon-nucleon interaction is
used.

The considered nuclei are proposed to be spherical or
deformed with the quadrupole deformation parameters β2. The
quadrupole deformation parameters are taken from Ref. [32]
for the deformed even-even nuclei. In Ref. [32] the quadrupole
deformation parameters β2 are given for the first excited 2+
states of nuclei. For the nuclei deformed in the ground state,
the β2 in 2+ state is similar to the β2 in the ground state and
we use β2 from Ref. [32] in the calculations. For the deformed
nuclei with odd atomic numbers β2 are chosen to be equal to

FIG. 9. The calculated partial capture cross sections vs J are
compared with the experimental data from Ref. [38] (closed squares)
for the 64Ni + 100Mo reaction at indicated Ec.m.. The calculations
with and without taking into consideration the neutron transfer
process are shown by solid and dashed lines, respectively. The
following quadrupole deformation parameters are used: β2(64Ni) =
0.09, β2(66Ni) = 0.16 [32], β2(98Mo) = 0.17 [32], and β2(100Mo) =
0.23 [32].

the maximum deformation parameter of the neighboring even
nuclei with the same number of neutrons [β2 = 0.17, 0.33, and
0.28 for the nuclei 123Sb, 173Lu, and 179Ta, respectively] [32].
For double-magic and almost all semimagic nuclei, in the
ground state we take β2 = 0 and 0.05, respectively. Because
there are uncertainties in the definition of the values of
ground state β2 in light- and medium-mass nuclei, we use the
values of the quadrupole deformation parameter β2 = −0.3,
0.09, and 0 for the nuclei 12C, 64Ni, and 90Zr, respectively,
extracted in Ref. [16] from the comparison of the calculated
capture cross sections with the experimental data for other
reactions.

Following the hypothesis of Ref. [16], we assume that
the sub-barrier capture mainly depends on the two-neutron
transfer with the positive Q2n value. Our assumption is that,
before the projectile is captured by the target nucleus (before
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FIG. 10. The calculated capture cross sections σcap and the mean
angular momenta 〈J 〉 of captured system vs Ec.m. are compared
with the experimental data in the evaporation residue channel
for the 58Ni + 60Ni reaction. The calculations with and without
consideration of transfer are shown by solid and dashed lines,
respectively. The experimental cross sections σcap are taken from
Ref. [41] (closed squares) and the experimental values of 〈J 〉 from
Ref. [42] (closed squares). The following quadrupole deformation
parameters are used: β2(58Ni) = 0.05, β2(60Ni) = 0.21 [32]. The
height Vb of the Coulomb barrier for the spherical nuclei case is
indicated by the arrow.

the crossing of the Coulomb barrier), which is the slow
process, the two-neutron transfer occurs at larger separations
that can lead to the population of the first 2+ state in the
recipient nucleus. In the calculations, for such excited recipient
nuclei we use the experimental deformation parameters β2

related to the first 2+ states from the table of Ref. [32]. For
nuclei with odd atomic numbers β2 of the first 2+ state are
chosen to be equal to the maximum deformation parameter
of the first 2+ state of the neighboring even nuclei with the
same number of neutrons. We assume that after two-neutron
transfer the residues of donor nuclei remain in the ground
state with corresponding quadrupole deformation. Because
after two-neutron transfer, the mass numbers, the deformation
parameters of interacting nuclei, and, respectively, the height
and shape of the Coulomb barrier are changed, one can expect
the enhancement, weak influence, or suppression of the capture
[16,18].

FIG. 11. The calculated partial capture cross sections vs J are
compared with the experimental data from Ref. [42] (closed squares)
in evaporation residue channel for the 58Ni + 60Ni reaction at
indicated Ec.m.. The following quadrupole deformation parameters
are used: β2(58Ni) = 0.05, β2(60Ni) = 0.21 [32].

III. CALCULATED RESULTS

A. Effect of quadrupole deformation in the entrance channel

In Figs. 2–5 the calculated partial and total capture cross
sections and mean angular momenta of captured system for the
reactions 16O + 152Sm and 16O + 184W are in good agreement
with available experimental data [33–36]. It is seen that a
good agreement between calculated results and experimental
data is observed only when the deformation of colliding
nuclei is taken into account, particular at small Ec.m.. With
nuclei deformation effect the right-hand side (relatively to the
maximum) of partial distribution is cut under larger J values
(Figs. 3 and 5). Such a behavior is more pronounced with
decreasing bombarding energy. As a result, the enhancement
of the total capture cross sections is observed at sub-barrier
energies.

As seen from Figs. 2 and 4, the nuclei deformation leads
to small increase of mean angular momentum. There is a
minimum in the dependence of 〈J 〉 on Ec.m. which is related
to the change of the regime of interaction between colliding
nuclei [15]. The position of this minimum is shifted to smaller
energies, its depth decreases, and the width becomes larger,

014603-6



ENTRANCE CHANNEL EFFECTS ON SUB-BARRIER CAPTURE PHYSICAL REVIEW C 92, 014603 (2015)

FIG. 12. The calculated partial capture cross sections vs J for
the reactions 32S + 94Zr (solid lines) and 32S + 90Zr (dashed lines)
at indicated Ec.m.. The following quadrupole deformation parameters
are used: β2(32S) = 0.31 [32], β2(34S) = 0.25 [32], β2(90Zr) = 0, and
β2(92Zr) = 0.1 [32].

i.e., the minimum becomes less pronounced. On the left-hand
side of this minimum the dependence of 〈J 〉 on Ec.m. and β2 is
rather weak. The difference between spherical and deformed
cases are particularly visible in sub-barrier region (see Figs. 2
and 4). With increasing deformation of nuclei the deviation
from the calculated results for spherical nuclei becomes larger.
In deeply sub-barrier collisions the value of 〈J 〉 is 5–10.
Note that the change in 〈J 〉 behavior, which is related to the
deformation of the colliding nuclei, would affect the angular
anisotropy of the products of fission-like fragments following
capture.

B. Effect of neutron transfer in the entrance channel

In Figs. 6–9 the calculated partial and total capture cross
sections and mean angular momenta of captured system for the
reactions 19F + 175Lu → 21F + 173Lu (Q2n = 0.3 MeV) and
64Ni + 100Mo → 66Ni + 98Mo (Q2n = 0.8 MeV) (reactions
with positive Q2n values) are in good agreement with available
experimental data [37–40]. For some reactions the experimen-
tal data contain only evaporation residue channels, but not
fusion-fission and quasifission channels, so for these reactions
the above Coulomb barrier experimental data are lower than

FIG. 13. The calculated partial capture cross sections vs J for the
reactions 40Ca + 94Zr (solid lines) and 40Ca + 90Zr (dashed lines) at
indicated Ec.m.. The following quadrupole deformation parameters
are used: β2(40Ca) = 0, β2(42Ca) = 0.25 [32], β2(90Zr) = 0, and
β2(92Zr) = 0.1 [32].

the calculated results. Since the contributions of fusion-fission
and quasifission channels increase with Ec.m. above the
Coulomb barrier, the difference between the theoretical results
and experimental data must increase with bombarding energy.

One can see in Figs. 8 and 9 that for the 64Ni + 100Mo
reaction the neutron transfer process weakly influences the
partial and, correspondingly, the total cross sections. This
happens because the whole deformation of nuclei system
(the nucleus-nucleus interaction) almost do not change after
transfer. For the 64Ni + 100Mo reaction, there is the following
change of quadrupole deformation parameters: 64Ni(β2 =
0.09) + 100Mo(β2 = 0.23) → 66Ni(β2 = 0.16) + 98Mo(β2 =
0.17). One can find the reactions with positive two-neutron
transfer Q values where the transfer suppresses the capture
process [16,18]. This happens if the whole deformation of
nucleus system decreases after transfer.

In the case of the 58Ni + 60Ni reaction [41,42] (Figs. 10
and 11), the two-neutron transfer leads to the population
of the first 2+ state in the recipient nucleus: 58Ni(β2 =
0.05) + 60Ni(β2 = 0.1) → 60Ni(β2 = 0.21) + 58Ni(β2 =
0.05). Due to an increase in the deformation of the recipient
nucleus, an enhancement of the partial capture cross section
occurs at sub-barrier energies. Because for the 58Ni + 60Ni re-
action the experimental data contain only evaporation residue
channel, but not fusion-fission and quasifission channels, a
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FIG. 14. The calculated capture cross sections σcap and the mean
angular momenta 〈J 〉 of captured system vs Ec.m. − Vb are compared
with the experimental data for the reactions 12C + 144Sm and
64Ni + 92Zr (compound nucleus 156Er). The experimental cross
sections for the 12C + 144Sm reaction are taken from Refs. [44]
(closed triangles), [45] (closed squares), and [46] (closed circles) and
for the 64Ni + 92Zr from Ref. [43] (open squares). The experimental
values of 〈J 〉 for the 64Ni + 92Zr reaction are from Ref. [43]
(open squares). The heights Vb of the Coulomb barriers in the case
of the spherical nuclei are 46.0 and 129.9 MeV, respectively. The
following quadrupole deformation parameters are used: β2(12C) =
−0.3, β2(144Sm) = 0.05, β2(64Ni) = 0.09, and β2(92Zr) = 0.1 [32].

good agreement between the experimental and theoretical
partial cross sections takes place only for sub-barrier and near
barrier energies.

In Figs. 12 and 13 the calculated partial capture cross
sections and mean angular momenta of captured system are
presented for the reactions 32S + 90Zr (Q2n < 0), 32S + 94Zr
(Q2n > 0), 40Ca + 90Zr (Q2n < 0), and 40Ca + 94Zr (Q2n >
0). As seen, the difference between the reactions 32S + 90Zr
and 32S + 94Zr in the population of the states with large
J is smaller than between the reactions 40Ca + 90Zr and
40Ca + 94Zr. This difference is explained by the two-neutron
transfer process. In the 32S(β2 = 0.31) + 90Zr(β2 = 0) reac-
tion the 32S nucleus is well deformed, and in the 32S(β2 =
0.31) + 94Zr(β2 = 0.09) → 34S(β2 = 0.25) + 92Zr(β2 =
0.1) (Q2n = 5.1 MeV) reaction after two-neutron transfer
the final 34S nucleus is also deformed. In contrast, in the
40Ca(β2 = 0) + 90Zr(β2 = 0) reaction the 40Ca nucleus is
spherical, and in the 40Ca(β2 = 0) + 94Zr(β2 = 0.09) →
42Ca(β2 = 0.25) + 92Zr(β2 = 0.1) (Q2n = 4.9 MeV) reaction
after two-neutron transfer the final 42Ca nucleus is already
deformed. So, the change of the nucleus deformation in

〈J
〉

FIG. 15. The same as in Fig. 14, but for the reactions
16O + 144Nd, 37Cl + 123Sb, 64Ni + 96Zr, and 80Se + 80Se
(compound nucleus 160Er). The experimental cross sections and
mean angular momenta for the 16O + 144Nd reaction are taken from
Ref. [47] (squares), for the 37Cl + 123Sb from Ref. [7] (triangles),
for the 64Ni + 96Zr from Ref. [43] (circles), and for the 80Se + 80Se
from Ref. [7] (rhombuses). The heights Vb of the Coulomb barriers
in the case of the spherical nuclei are 57.3, 101.2, 128.5, and
132.8 MeV, respectively. The following quadrupole deformation
parameters are used: β2(16O) = 0, β2(144Nd) = 0.12 [32], β2(37Cl) =
0.05, β2(123Sb) = 0.17, β2(66Ni) = 0.16 [32], β2(94Zr) = 0.09 [32],
and β2(80Se) = 0.23 [32].

40Ca + 94Zr reaction causes the difference between 32S and
40Ca induced reactions.

C. Effect of mass (charge) asymmetry in the entrance channel

To analyze the entrance channel effects of the nuclei
reactions, it is helpful to use the mass asymmetry

η = A2 − A1

A2 + A1
(6)

or charge asymmetry

ηZ = Z2 − Z1

Z2 + Z1
(7)

coordinate. In Figs. 14–18 the calculated capture cross sections
and mean angular momenta of captured system for the
reactions 12C + 144Sm and 64Ni + 92Zr (compound nucleus
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FIG. 16. The same as in Fig. 14, but for the reactions
28Si + 142Ce, 32S + 138Ba, and 48Ti + 122Sn (compound nucleus
170Hf). The experimental cross sections for the reactions 28Si + 142Ce
(squares), 32S + 138Ba (triangles), and 48Ti + 122Sn (circles) are
taken from Ref. [10]. The experimental values of 〈J 〉 for the reactions
28Si + 142Ce (squares), 32S + 138Ba (triangles), and 48Ti + 122Sn
(circles) are taken from Ref. [48]. The heights Vb of the Coulomb
barriers in the case of the spherical nuclei are 96.0, 106.1, and
125.9 MeV, respectively. The following quadrupole deformation
parameters are used: β2(30Si) = 0.32 [32], β2(140Ce) = 0.11 [32],
β2(34S) = 0.25 [32], β2(136Ba) = 0.13 [32], β2(50Ti) = 0.17 [32], and
β2(120Sn) = 0.11 [32].

156Er), 16O + 144Nd, 37Cl + 123Sb, 64Ni + 96Zr, and
80Se + 80Se (compound nucleus 160Er), 28Si + 142Ce,
32S + 138Ba, and 48Ti + 122Sn (compound nucleus 170Hf),
12C + 144Sm, 30Si + 186W, and 48Ca + 168Er (compound
nucleus 216Ra), and 16O + 204Pb, 34S + 186W, 50Ti + 170Er,
and 96Zr + 124Sn (compound nucleus 220Th) are presented.
The calculated results are in rather good agreement with the
available experimental data [43–50]. As seen, the decrease
of the reaction asymmetry leads to larger values of capture
cross section at above barrier energies and to smaller values of
capture cross section at below barrier energies. At the Coulomb
barrier the cross sections are close for the reactions leading
to the same compound nucleus. At the same time the mean
angular momenta of captured systems are larger for more
symmetric cases at above barrier and below barrier energies
almost in all reactions. The position of the minimum in 〈J 〉

〈J
〉

FIG. 17. The same as in Fig. 14, but for the reactions 12C + 204Pb,
30Si + 186W, and 48Ca + 168Er (compound nucleus 216Ra). The
experimental cross sections for the reactions 12C + 204Pb (squares),
30Si + 186W (triangles), and 48Ca + 168Er (circles) are taken from
Ref. [11]. The heights Vb of the Coulomb barriers in the case of the
spherical nuclei are 56.7, 115.7, and 151.2 MeV, respectively. The
following quadrupole deformation parameters are used: β2(12C) =
−0.3, β2(204Pb) = 0, β2(32Si) = 0.22 [32], β2(184W) = 0.24 [32],
β2(48Ca) = 0, and β2(168Er) = 0.34 [32].

dependence shifts to smaller energies relatively to the barriers
with the decreasing asymmetry in the entrance channel. This
minimum is originated because of the change of the regime
of interaction between the colliding nuclei [15]. At energies
above the Coulomb barrier, the small deviations between
the calculated σcap and 〈J 〉 and corresponding experimental
data probably arise from the fact that the fusion-fission and
quasifission channels are not in the experimental capture cross
sections.

One can see in Fig. 18 that the 96Zr + 124Sn reaction is out
of the trend shown in Figs. 15 and 17 where the sub-barrier
capture growths with decreasing asymmetry in the entrance
channel. For more asymmetric reactions 34S + 186W and
50Ti + 170Er, the capture cross sections are larger at sub-barrier
energies. Also in the 50Ti + 170Er reaction the mean angular
momentum exceeds the value for the 96Zr + 124Sn reaction
at Ec.m. − Vb < 10 MeV. The reason for such a behavior is
larger deformations in 34S + 186W and 50Ti + 170Er systems
after two-neutron transfer compared to the 96Zr + 124Sn
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〈J
〉

FIG. 18. The same as in Fig. 14, but for the reactions 16O + 204Pb,
34S + 186W, 50Ti + 170Er, and 96Zr + 124Sn (compound nucleus
220Th). The experimental cross sections for the 16O + 204Pb reaction
are taken from Ref. [49] (squares) and for the 96Zr + 124Sn
from Ref. [50] (rhombuses). The heights Vb of the Coulomb
barriers in the case of the spherical nuclei are 73.6, 131.4, 165.5,
and 199.2 MeV, respectively. The following quadrupole deforma-
tion parameters are used: β2(16O) = 0, β2(204Pb) = 0, β2(36S) =
0.17 [32], β2(184W) = 0.24 [32], β2(52Ti) = 0.27, β2(168Er) =
0.34 [32], β2(96Zr) = 0.08 [32], and β2(124Sn) = 0.1 [32].

system. The larger deformations of colliding nuclei result in the
enhancement of the capture cross sections and mean angular
momenta at near and sub-barrier energies [16,18]. Therefore,
the 96Zr + 124Sn reaction with stiff nuclei is out of the trends
observed in the reactions with soft nuclei.

In Fig. 19 the calculated partial capture cross sections for the
reactions 16O + 144Nd and 64Ni + 96Zr (compound nucleus
160Er) at different bombarding energies are compared with
the available experimental data [47,51]. Some overestimation
of the experimental data is probably related to the fact that
the fusion-fission and quasifission channels are disregarded in
the corresponding measurements, and there are only the data
for the evaporation residue channel. In Fig. 19 the maximum
of the partial distribution becomes smaller with decreasing
reaction asymmetry and its position shifts to large values of
J . This shift is found to be larger with increasing Ec.m. − Vb.
The decrease of the reaction asymmetry leads to the broader
partial distribution, and its right-hand side becomes less steep.

FIG. 19. The calculated partial capture cross sections versus J are
compared with the experimental data for the reactions 16O + 144Nd
at Ec.m. − Vb = 13 MeV and 64Ni + 96Zr at Ec.m. − Vb = 11 MeV
(compound nucleus 160Er). The experimental partial evaporation
residue cross sections for the 16O + 144Nd reaction are taken
from Ref. [47] (squares) and for the 64Ni + 96Zr from Ref. [51]
(circles). The heights Vb of the Coulomb barriers in the case of the
spherical nuclei are 57.3 MeV and 128.5 MeV, respectively. The
following quadrupole deformation parameters are used: β2(16O) = 0,
β2(144Nd)=0.12 [32], β2(66Ni)=0.16 [32], and β2(94Zr)=0.09 [32].

In Figs. 20 and 21 the calculated capture cross sections
and the mean angular momenta of captured system versus
η are presented for the reactions 16O + 144Nd (η = 0.8),
37Cl + 123Sb (η = 0.54), 64Ni + 96Zr (η = 0.2), and
80Se + 80Se (η = 0) (compound nucleus 160Er) and for the
reactions 16O + 204Pb (η = 0.86), 34S + 186W (η = 0.69),
50Ti + 170Er (η = 0.55), and 96Zr + 124Sn (η = 0.13)
(compound nucleus 220Th) at different values of Ec.m. − Vb.
For 160Er compound nucleus (see Fig. 20), we have the
following: at above barrier energies the capture cross section
grows with reaction asymmetry, at barrier energies it is almost
constant, and at energies below barrier it dramatically falls
down. The mean angular momentum almost linearly decreases
with increasing η at all energies. For 220Th compound nucleus
(see Fig. 2), we have the same picture for all reactions except
96Zr + 124Sn (η = 0.13). As mentioned above, the reason
of such a behavior is larger deformations in the systems
34S + 186W and 50Ti + 170Er after two-neutron transfer as
compared to the 96Zr + 124Sn system.

IV. SUMMARY

By using the quantum diffusion approach, we systemati-
cally studied the deformation and neutron transfer effects in
the partial capture cross sections and in the mean angular
momentum of the captured system in various reactions.
The calculated results are in rather good agreement with
the available experimental data. The deformation effect in
the entrance channel is important at energies below the
Coulomb barrier. When disregarding this effect one cannot
describe the partial cross sections and, correspondingly,
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〈J
〉

FIG. 20. The calculated capture cross sections σcap and the mean
angular momenta 〈J 〉 of captured system (lower part) versus η for
the reactions 16O + 144Nd (η = 0.8), 37Cl + 123Sb (η = 0.538),
64Ni + 96Zr (η = 0.2), and 80Se + 80Se (η = 0) (compound
nucleus 160Er) at indicated values of Ec.m. − Vb. The heights Vb

of the Coulomb barriers in the case of the spherical nuclei are
57.3 MeV, 101.2 MeV, 128.5 MeV, and 132.8 MeV, respec-
tively. The following quadrupole deformation parameters are used:
β2(16O) = 0, β2(144Nd) = 0.12 [32], β2(37Cl) = 0.05, β2(123Sb) =
0.17, β2(66Ni) = 0.16 [32], β2(94Zr) = 0.09 [32], and β2(80Se) =
0.23 [32].

the total capture cross sections. At Ec.m. > Vb the role of
deformation effect becomes minor. The neutron transfer
(Q2n > 0) influences the sub-barrier capture if it results in
the change of the deformations of the reaction partners. The
sub-barrier fusion is indifferent to the neutron transfer if either
Q2n < 0 or the nucleus-nucleus interaction potential is not
changed by the neutron transfer as in the reactions with stiff
nuclei.

The entrance channel mass (charge) asymmetry effect was
studied in the capture cross section and in the mean angular
momentum of the captured system in the reactions leading
to 156,160Er, 170Hf, 216Ra, and 220Th compound nuclei.
Almost in all reactions considered the decrease of the reaction
asymmetry leads to larger values of capture cross section at
above-barrier energies and to smaller values of capture cross
section at below-barrier energies. At the Coulomb barrier
the cross sections are close for the reactions leading to the

〈J
〉

FIG. 21. The same as in Fig. 20, but for the reactions 16O + 204Pb
(η = 0.855), 34S + 186W (η = 0.691), 50Ti + 170Er (η = 0.545),
and 96Zr + 124Sn (η = 0.127) (compound nucleus 220Th). The
heights Vb of the Coulomb barriers in the case of the spherical
nuclei are 73.6 MeV, 131.4 MeV, 165.5 MeV, and 199.2 MeV,
respectively. The following quadrupole deformation parameters are
used: β2(16O) = 0, β2(204Pb) = 0, β2(36S) = 0.17 [32], β2(184W) =
0.24 [32], β2(52Ti) = 0.27, β2(168Er) = 0.34 [32], β2(96Zr) =
0.08 [32], and β2(124Sn) = 0.1 [32].

same compound nucleus. Some general trends on the mass
asymmetry are revealed if the reactions with soft deformed
nuclei are considered. The mean angular momenta of captured
systems are larger for more symmetric reactions at energies
above and below barrier. The reactions with stiff nuclei deviate
from these trends.

Thus, all entrance channel effects like the deformations,
neutron transfer, and mass (charge) asymmetry effects have
to be taken into consideration for describing capture (fusion)
reactions.
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[47] G. Duchêne et al., Phys. Rev. C 47, 2043 (1993).
[48] A. Charlop et al., Phys. Rev. C 49, R1235 (1994).
[49] M. Dasgupta, D. J. Hinde, A. Diaz-Torres, B. Bouriquet, C.

I. Low, G. J. Milburn, and J. O. Newton, Phys. Rev. Lett. 99,
192701 (2007).

[50] A. M. Vinodkumar et al., Phys. Rev. C 74, 064612
(2006).

[51] A. M. Stefanini et al., Nucl. Phys. A 538, 195c (1992).

014603-12

http://dx.doi.org/10.1103/RevModPhys.86.317
http://dx.doi.org/10.1103/RevModPhys.86.317
http://dx.doi.org/10.1103/RevModPhys.86.317
http://dx.doi.org/10.1103/RevModPhys.86.317
http://dx.doi.org/10.1140/epja/i2012-12152-0
http://dx.doi.org/10.1140/epja/i2012-12152-0
http://dx.doi.org/10.1140/epja/i2012-12152-0
http://dx.doi.org/10.1140/epja/i2012-12152-0
http://dx.doi.org/10.1016/j.ppnp.2007.02.002
http://dx.doi.org/10.1016/j.ppnp.2007.02.002
http://dx.doi.org/10.1016/j.ppnp.2007.02.002
http://dx.doi.org/10.1016/j.ppnp.2007.02.002
http://dx.doi.org/10.1016/j.physrep.2005.10.006
http://dx.doi.org/10.1016/j.physrep.2005.10.006
http://dx.doi.org/10.1016/j.physrep.2005.10.006
http://dx.doi.org/10.1016/j.physrep.2005.10.006
http://dx.doi.org/10.1016/S0375-9474(99)00838-6
http://dx.doi.org/10.1016/S0375-9474(99)00838-6
http://dx.doi.org/10.1016/S0375-9474(99)00838-6
http://dx.doi.org/10.1016/S0375-9474(99)00838-6
http://dx.doi.org/10.1103/PhysRevC.72.064614
http://dx.doi.org/10.1103/PhysRevC.72.064614
http://dx.doi.org/10.1103/PhysRevC.72.064614
http://dx.doi.org/10.1103/PhysRevC.72.064614
http://dx.doi.org/10.1016/j.physletb.2010.02.018
http://dx.doi.org/10.1016/j.physletb.2010.02.018
http://dx.doi.org/10.1016/j.physletb.2010.02.018
http://dx.doi.org/10.1016/j.physletb.2010.02.018
http://dx.doi.org/10.1103/PhysRevC.82.054609
http://dx.doi.org/10.1103/PhysRevC.82.054609
http://dx.doi.org/10.1103/PhysRevC.82.054609
http://dx.doi.org/10.1103/PhysRevC.82.054609
http://dx.doi.org/10.1146/annurev.ns.42.120192.002311
http://dx.doi.org/10.1146/annurev.ns.42.120192.002311
http://dx.doi.org/10.1146/annurev.ns.42.120192.002311
http://dx.doi.org/10.1146/annurev.ns.42.120192.002311
http://dx.doi.org/10.1103/PhysRevLett.54.398
http://dx.doi.org/10.1103/PhysRevLett.54.398
http://dx.doi.org/10.1103/PhysRevLett.54.398
http://dx.doi.org/10.1103/PhysRevLett.54.398
http://dx.doi.org/10.1103/PhysRevLett.56.2356
http://dx.doi.org/10.1103/PhysRevLett.56.2356
http://dx.doi.org/10.1103/PhysRevLett.56.2356
http://dx.doi.org/10.1103/PhysRevLett.56.2356
http://dx.doi.org/10.1103/PhysRevLett.65.3100
http://dx.doi.org/10.1103/PhysRevLett.65.3100
http://dx.doi.org/10.1103/PhysRevLett.65.3100
http://dx.doi.org/10.1103/PhysRevLett.65.3100
http://dx.doi.org/10.1103/PhysRevC.51.1336
http://dx.doi.org/10.1103/PhysRevC.51.1336
http://dx.doi.org/10.1103/PhysRevC.51.1336
http://dx.doi.org/10.1103/PhysRevC.51.1336
http://dx.doi.org/10.1103/PhysRevC.68.014603
http://dx.doi.org/10.1103/PhysRevC.68.014603
http://dx.doi.org/10.1103/PhysRevC.68.014603
http://dx.doi.org/10.1103/PhysRevC.68.014603
http://dx.doi.org/10.1016/j.nuclphysa.2004.01.045
http://dx.doi.org/10.1016/j.nuclphysa.2004.01.045
http://dx.doi.org/10.1016/j.nuclphysa.2004.01.045
http://dx.doi.org/10.1016/j.nuclphysa.2004.01.045
http://dx.doi.org/10.1103/PhysRevC.77.034610
http://dx.doi.org/10.1103/PhysRevC.77.034610
http://dx.doi.org/10.1103/PhysRevC.77.034610
http://dx.doi.org/10.1103/PhysRevC.77.034610
http://dx.doi.org/10.1016/j.nuclphysa.2012.07.004
http://dx.doi.org/10.1016/j.nuclphysa.2012.07.004
http://dx.doi.org/10.1016/j.nuclphysa.2012.07.004
http://dx.doi.org/10.1016/j.nuclphysa.2012.07.004
http://dx.doi.org/10.1140/epja/i2010-10978-x
http://dx.doi.org/10.1140/epja/i2010-10978-x
http://dx.doi.org/10.1140/epja/i2010-10978-x
http://dx.doi.org/10.1140/epja/i2010-10978-x
http://dx.doi.org/10.1103/PhysRevC.84.064614
http://dx.doi.org/10.1103/PhysRevC.84.064614
http://dx.doi.org/10.1103/PhysRevC.84.064614
http://dx.doi.org/10.1103/PhysRevC.84.064614
http://dx.doi.org/10.1103/PhysRevC.85.024616
http://dx.doi.org/10.1103/PhysRevC.85.024616
http://dx.doi.org/10.1103/PhysRevC.85.024616
http://dx.doi.org/10.1103/PhysRevC.85.034612
http://dx.doi.org/10.1103/PhysRevC.85.034612
http://dx.doi.org/10.1103/PhysRevC.85.034612
http://dx.doi.org/10.1103/PhysRevC.85.034612
http://dx.doi.org/10.1134/S1063778812030118
http://dx.doi.org/10.1134/S1063778812030118
http://dx.doi.org/10.1134/S1063778812030118
http://dx.doi.org/10.1134/S1063778812030118
http://dx.doi.org/10.1134/S1063778813060094
http://dx.doi.org/10.1134/S1063778813060094
http://dx.doi.org/10.1134/S1063778813060094
http://dx.doi.org/10.1134/S1063778813060094
http://dx.doi.org/10.1103/PhysRevC.91.014613
http://dx.doi.org/10.1103/PhysRevC.91.014613
http://dx.doi.org/10.1103/PhysRevC.91.014613
http://dx.doi.org/10.1103/PhysRevC.91.014613
http://dx.doi.org/10.1140/epja/i2014-14157-y
http://dx.doi.org/10.1140/epja/i2014-14157-y
http://dx.doi.org/10.1140/epja/i2014-14157-y
http://dx.doi.org/10.1140/epja/i2014-14157-y
http://dx.doi.org/10.1103/PhysRevC.84.044320
http://dx.doi.org/10.1103/PhysRevC.84.044320
http://dx.doi.org/10.1103/PhysRevC.84.044320
http://dx.doi.org/10.1103/PhysRevC.84.044320
http://dx.doi.org/10.1103/PhysRevC.81.024607
http://dx.doi.org/10.1103/PhysRevC.81.024607
http://dx.doi.org/10.1103/PhysRevC.81.024607
http://dx.doi.org/10.1103/PhysRevC.81.024607
http://dx.doi.org/10.1103/PhysRevC.82.034610
http://dx.doi.org/10.1103/PhysRevC.82.034610
http://dx.doi.org/10.1103/PhysRevC.82.034610
http://dx.doi.org/10.1103/PhysRevC.81.034605
http://dx.doi.org/10.1103/PhysRevC.81.034605
http://dx.doi.org/10.1103/PhysRevC.81.034605
http://dx.doi.org/10.1103/PhysRevC.81.034605
http://dx.doi.org/10.1103/PhysRevC.80.034606
http://dx.doi.org/10.1103/PhysRevC.80.034606
http://dx.doi.org/10.1103/PhysRevC.80.034606
http://dx.doi.org/10.1103/PhysRevC.80.034606
http://dx.doi.org/10.1103/PhysRevC.80.047603
http://dx.doi.org/10.1103/PhysRevC.80.047603
http://dx.doi.org/10.1103/PhysRevC.80.047603
http://dx.doi.org/10.1134/S1063779610020012
http://dx.doi.org/10.1134/S1063779610020012
http://dx.doi.org/10.1134/S1063779610020012
http://dx.doi.org/10.1134/S1063779610020012
http://dx.doi.org/10.1103/PhysRevE.71.016121
http://dx.doi.org/10.1103/PhysRevE.71.016121
http://dx.doi.org/10.1103/PhysRevE.71.016121
http://dx.doi.org/10.1103/PhysRevE.71.016121
http://dx.doi.org/10.1103/PhysRevE.71.016122
http://dx.doi.org/10.1103/PhysRevE.71.016122
http://dx.doi.org/10.1103/PhysRevE.71.016122
http://dx.doi.org/10.1103/PhysRevE.71.016122
http://dx.doi.org/10.1103/PhysRevA.83.062117
http://dx.doi.org/10.1103/PhysRevA.83.062117
http://dx.doi.org/10.1103/PhysRevA.83.062117
http://dx.doi.org/10.1103/PhysRevA.83.062117
http://dx.doi.org/10.1103/PhysRevA.84.032117
http://dx.doi.org/10.1103/PhysRevA.84.032117
http://dx.doi.org/10.1103/PhysRevA.84.032117
http://dx.doi.org/10.1103/PhysRevC.81.041603
http://dx.doi.org/10.1103/PhysRevC.81.041603
http://dx.doi.org/10.1103/PhysRevC.81.041603
http://dx.doi.org/10.1103/PhysRevC.81.041603
http://dx.doi.org/10.1103/PhysRevC.82.054617
http://dx.doi.org/10.1103/PhysRevC.82.054617
http://dx.doi.org/10.1103/PhysRevC.82.054617
http://dx.doi.org/10.1103/PhysRevC.81.014609
http://dx.doi.org/10.1103/PhysRevC.81.014609
http://dx.doi.org/10.1103/PhysRevC.81.014609
http://dx.doi.org/10.1103/PhysRevC.81.014609
http://dx.doi.org/10.1016/S0370-1573(97)00006-9
http://dx.doi.org/10.1016/S0370-1573(97)00006-9
http://dx.doi.org/10.1016/S0370-1573(97)00006-9
http://dx.doi.org/10.1016/S0370-1573(97)00006-9
http://dx.doi.org/10.1016/j.nuclphysa.2003.07.013
http://dx.doi.org/10.1016/j.nuclphysa.2003.07.013
http://dx.doi.org/10.1016/j.nuclphysa.2003.07.013
http://dx.doi.org/10.1016/j.nuclphysa.2003.07.013
http://dx.doi.org/10.1103/PhysRevC.69.054605
http://dx.doi.org/10.1103/PhysRevC.69.054605
http://dx.doi.org/10.1103/PhysRevC.69.054605
http://dx.doi.org/10.1103/PhysRevC.69.054605
http://dx.doi.org/10.1103/PhysRevC.79.024609
http://dx.doi.org/10.1103/PhysRevC.79.024609
http://dx.doi.org/10.1103/PhysRevC.79.024609
http://dx.doi.org/10.1103/PhysRevC.79.024609
http://dx.doi.org/10.1103/PhysRevC.79.054606
http://dx.doi.org/10.1103/PhysRevC.79.054606
http://dx.doi.org/10.1103/PhysRevC.79.054606
http://dx.doi.org/10.1103/PhysRevC.79.054606
http://dx.doi.org/10.1006/adnd.2001.0858
http://dx.doi.org/10.1006/adnd.2001.0858
http://dx.doi.org/10.1006/adnd.2001.0858
http://dx.doi.org/10.1006/adnd.2001.0858
http://dx.doi.org/10.1103/PhysRevC.21.2427
http://dx.doi.org/10.1103/PhysRevC.21.2427
http://dx.doi.org/10.1103/PhysRevC.21.2427
http://dx.doi.org/10.1103/PhysRevC.21.2427
http://dx.doi.org/10.1016/0370-2693(91)91701-V
http://dx.doi.org/10.1016/0370-2693(91)91701-V
http://dx.doi.org/10.1016/0370-2693(91)91701-V
http://dx.doi.org/10.1016/0370-2693(91)91701-V
http://dx.doi.org/10.1088/0305-4616/14/4/002
http://dx.doi.org/10.1088/0305-4616/14/4/002
http://dx.doi.org/10.1088/0305-4616/14/4/002
http://dx.doi.org/10.1088/0305-4616/14/4/002
http://dx.doi.org/10.1103/PhysRevC.74.064603
http://dx.doi.org/10.1103/PhysRevC.74.064603
http://dx.doi.org/10.1103/PhysRevC.74.064603
http://dx.doi.org/10.1103/PhysRevC.74.064603
http://dx.doi.org/10.1103/PhysRevC.62.054604
http://dx.doi.org/10.1103/PhysRevC.62.054604
http://dx.doi.org/10.1103/PhysRevC.62.054604
http://dx.doi.org/10.1103/PhysRevC.62.054604
http://dx.doi.org/10.1103/PhysRevC.40.2558
http://dx.doi.org/10.1103/PhysRevC.40.2558
http://dx.doi.org/10.1103/PhysRevC.40.2558
http://dx.doi.org/10.1103/PhysRevC.40.2558
http://dx.doi.org/10.1103/PhysRevC.71.044613
http://dx.doi.org/10.1103/PhysRevC.71.044613
http://dx.doi.org/10.1103/PhysRevC.71.044613
http://dx.doi.org/10.1103/PhysRevC.71.044613
http://dx.doi.org/10.1016/S0375-9474(97)00783-5
http://dx.doi.org/10.1016/S0375-9474(97)00783-5
http://dx.doi.org/10.1016/S0375-9474(97)00783-5
http://dx.doi.org/10.1016/S0375-9474(97)00783-5
http://dx.doi.org/10.1103/PhysRevLett.74.864
http://dx.doi.org/10.1103/PhysRevLett.74.864
http://dx.doi.org/10.1103/PhysRevLett.74.864
http://dx.doi.org/10.1103/PhysRevLett.74.864
http://dx.doi.org/10.1016/S0375-9474(03)01515-X
http://dx.doi.org/10.1016/S0375-9474(03)01515-X
http://dx.doi.org/10.1016/S0375-9474(03)01515-X
http://dx.doi.org/10.1016/S0375-9474(03)01515-X
http://dx.doi.org/10.1016/0375-9474(92)90695-G
http://dx.doi.org/10.1016/0375-9474(92)90695-G
http://dx.doi.org/10.1016/0375-9474(92)90695-G
http://dx.doi.org/10.1016/0375-9474(92)90695-G
http://dx.doi.org/10.1103/PhysRevC.32.1612
http://dx.doi.org/10.1103/PhysRevC.32.1612
http://dx.doi.org/10.1103/PhysRevC.32.1612
http://dx.doi.org/10.1103/PhysRevC.32.1612
http://dx.doi.org/10.1016/0370-2693(86)91245-1
http://dx.doi.org/10.1016/0370-2693(86)91245-1
http://dx.doi.org/10.1016/0370-2693(86)91245-1
http://dx.doi.org/10.1016/0370-2693(86)91245-1
http://dx.doi.org/10.1103/PhysRevC.46.244
http://dx.doi.org/10.1103/PhysRevC.46.244
http://dx.doi.org/10.1103/PhysRevC.46.244
http://dx.doi.org/10.1103/PhysRevC.46.244
http://dx.doi.org/10.1103/PhysRevC.47.2043
http://dx.doi.org/10.1103/PhysRevC.47.2043
http://dx.doi.org/10.1103/PhysRevC.47.2043
http://dx.doi.org/10.1103/PhysRevC.47.2043
http://dx.doi.org/10.1103/PhysRevC.49.R1235
http://dx.doi.org/10.1103/PhysRevC.49.R1235
http://dx.doi.org/10.1103/PhysRevC.49.R1235
http://dx.doi.org/10.1103/PhysRevC.49.R1235
http://dx.doi.org/10.1103/PhysRevLett.99.192701
http://dx.doi.org/10.1103/PhysRevLett.99.192701
http://dx.doi.org/10.1103/PhysRevLett.99.192701
http://dx.doi.org/10.1103/PhysRevLett.99.192701
http://dx.doi.org/10.1103/PhysRevC.74.064612
http://dx.doi.org/10.1103/PhysRevC.74.064612
http://dx.doi.org/10.1103/PhysRevC.74.064612
http://dx.doi.org/10.1103/PhysRevC.74.064612
http://dx.doi.org/10.1016/0375-9474(92)90771-B
http://dx.doi.org/10.1016/0375-9474(92)90771-B
http://dx.doi.org/10.1016/0375-9474(92)90771-B
http://dx.doi.org/10.1016/0375-9474(92)90771-B



