
PHYSICAL REVIEW C 92, 014322 (2015)

Virtual-state character of the 9Be 1/2+ state in the 9Be(γ,n)8Be reaction
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We study the character of the first excited 1/2+ state of 9Be, which is observed as a low-lying sharp peak in
the cross section of 9Be(γ,n)24He just above the 8Be + n threshold. Using the α + α + n three-body model, we
describe the ground and excited unbound states of 9Be above the α + α + n threshold. Applying the complex
scaling method to the three-body model, we find no 1/2+ resonant solutions with the scaling angle of θ � 15◦,
while the low-lying peak in the photodisintegration cross section is reproduced in the present calculation. It is
found that the 8Be + n continuum states dominate the low-lying peak in the cross section. Furthermore, using
the analytical continuation of the coupling constant of the three-body interaction for the α + α + n system, we
discuss the virtual-state character of the 1/2+ state.
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I. INTRODUCTION

The neutron capture (n,γ ) and its inverse (γ,n) reactions are
interesting topics in nuclear physics since these reactions play
important roles in nuclear astrophysics. In neutron capture
reactions, the 4He(αn,γ )9Be reaction is one of the most
interesting ones. It has been suggested that the reaction rate of
this reaction is crucial to understand the productions of heavy
elements in supernova explosions [1,2].

To determine the reaction rate of 4He(αn,γ )9Be, the
9Be (γ,n)8Be reaction has been performed in several exper-
iments [3–8]. In the 4He(αn,γ )9Be reaction, a sequential
process, 4He(α,γ )8Be (n,γ )9Be, has been considered as a
dominant one. However, owing to the short lifetime of the
8Be ground state (∼10−16 s), a direct measurement of the
8Be (n,γ )9Be reaction is impossible. For an alternative way,
the cross section of its inverse reaction, 9Be (γ,n)8Be, has been
measured to deduce the cross section of 8Be (n,γ )9Be.

In the experiments, there is an inconsistency among the
observed cross sections of 8Be (n,γ )9Be, in particular the peak
just above the 8Be + n threshold [3–8]. The main difference
among the cross sections comes from the contribution from
the first excited 1/2+ state of 9Be via the E1 transition.
This low-lying 1/2+ state can have an impact on the reaction
rate of 8Be (n,γ )9Be in stellar environments and supernova
explosions [1,2]. On the theoretical side, it is an interesting
problem to determine how the low-lying 1/2+ state of 9Be
contributes to the 8Be (n,γ )9Be reaction.

Theoretically, the structure and the reaction mechanism of
9Be have been studied by using the α + α + n three-body
models [9–14]. In previous works, the structure of the first
excited 1/2+ state has been discussed. Efros et al. [9] discussed
the structure of 1/2+ state from the scattering length for the
8Be + n scattering. They show that the scattering length is
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obtained as a large negative value, which characterizes the first
excited 1/2+ state as a virtual state. Also, Arai et al. [10] show
the virtual-state character of the 1/2+ state from the R-matrix
analysis. On the other hand, in Refs. [11,12], the first excited
1/2+ state is discussed as a three-body resonance of α + α +
n. In these calculations, they show the importance of a strong
mixture of the 5He + α configuration at the internal region of
the 1/2+ state. There exists contradictions among the theories
and the structure of the first 1/2+ is still unclear. Additionally,
recently in Refs. [13,14], the importance of the direct three-
body capture for 9Be below the 8Be + n threshold has been
suggested . It is important to investigate the relation between
the structure of the first excited 1/2+ state and the mechanism
of the capture reaction. Comprehensive understanding of the
structure of the 1/2+ state of 9Be is now required.

The purpose of this work is to understand the structure
of the low-lying 1/2+ state of 9Be and its contribution to
the 9Be (γ,n)8Be reaction. We describe 9Be by using the
α + α + n three-body model. To treat the photodisintegration
into unbound excited states of 9Be, we apply the complex
scaling method (CSM) [15–21] to the α + α + n three-body
model. The CSM is a powerful tool to investigate many-
body resonances and has been extensively used to discuss
their structures [20,22,23]. It has been shown that the CSM
enables us to describe the resonances from two- to five-body
systems successfully [19–23]. Furthermore, the CSM has been
developed to describe the breaking up of unstable nuclei. The
CSM has been applied to the Coulomb breakup reactions of
two-neutron halo nuclei into core + n + n scattering states and
well reproduces the observed cross sections [24–26]. From
the above, the CSM is promising means to discuss the excited
states of 9Be and the photodisintegration into unbound excited
states of 9Be on the same footing.

Generally, the resonances are obtained as the pole of the
S matrix in the fourth quadrant of the complex momentum
plane. The virtual state is obtained on the negative energy
axis of the second Riemann sheet. In the CSM, we can
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obtain the solution of the resonances but not of the virtual
state. Such a pole of the virtual state has been discussed by
using an analytical continuation method within the two-body
system [10,27]. Tanaka et al. [27] applied this method to the
systems decaying into two- and three-body channels, and
discussed the pole trajectory of the 1/2+ state of 9Be by
varying a coupling constant of the two-nucleon interaction. In
their results, the relative energy of the thresholds for two- and
three-body channels is changed by varying the two-nucleon
interaction, while it is necessary to keep the energy relation
between 8Be + n and α + α + n thresholds in the discussion
on the 1/2+ state of 9Be. The properties of the virtual state of
a three-body system such as 9Be is still unclear.

In this work, we introduce a three-body potential in the α +
α + n three-body model to keep the relative energy between
8Be + n and α + α + n thresholds. Using the three-body
potential, we investigate not only the eigenvalue distribution
but also the photodisintegration cross section in order to clarify
the structure of the 1/2+ state whether the resonance or the
virtual state.

II. FORMALISM

We solve the Schrödinger equation for the α + α + n
system using the complex-scaled orthogonality condition
model [28]. The complex-scaled Schrödinger equation is given
as

Ĥ θ�ν
J (θ ) = Eθ

ν �ν
J (θ ), (1)

where J is the total spin of the α + α + n system and ν is
the state index. The complex-scaled Hamiltonian and wave
function are given as

Ĥ θ = U (θ )ĤU−1(θ ) and �ν
J (θ ) = U (θ )�ν

J , (2)

respectively. The complex-scaling operator U (θ ) transforms
the relative coordinate ξ as

U (θ ) : ξ → ξeiθ , (3)

where θ is the scaling angle being a positive real number.
The Hamiltonian for the relative motion of the α + α + n

three-body system for 9Be is given as

Ĥ =
3∑

i=1

ti − Tc.m. +
2∑

i=1

Vαn(ξ i) + Vαα + VPF + V3, (4)

where ti and Tc.m. are kinetic operators for each particle and
the center of mass of the system, respectively. The interactions
between the neutron and the ith α particle is given as Vαn(ξ i),
where ξ i is the relative coordinate between them. We here
employ the KKNN potential [29] for Vαn. For the α − α
interaction Vαα we employ a folding potential of the effective
NN interaction [30] and the Coulomb interaction:

Vαα(r) = v0 exp (−ar2) + 4e2

r
erf(βr), (5)

where v0 = −106.09 MeV, a = 0.2009 fm−2, and β =
0.5972 fm−1. The pseudopotential VPF = λ|	PF〉〈	PF| is the
projection operator to remove the Pauli forbidden states from
the relative motions of α-α and α-n [31]. The Pauli forbidden

state is defined as the harmonic oscillator wave functions by
assuming the (0s)4 configuration whose oscillator length is
fixed to reproduce the observed charge radius of the α particle.
In the present calculation, λ is taken as 106 MeV.

To discuss the photodisintegration of 9Be, it is important
to reproduce the breakup threshold into the α + α + n. In
the present calculation, we introduce the α + α + n three-
body potential V3 to reproduce the binding energy of the 9Be
ground state, Eg.s., measured from the α + α + n threshold.
The explicit form of V3 is given as

V3 = v3 exp (−μρ2), (6)

where ρ is the hyperradius of the α + α + n system. The
hyperradius is defined as

ρ2 = 2r2 + 8

9
R2, (7)

where r is the distance between two α’s and R is that between
the neutron and the center of mass of the α + α subsystem.

We solve the eigenvalue problem given in Eq. (1)
with the coupled-rearrangement-channel Gaussian expansion
method [32], where the wave function �ν

J is expanded with the
Gaussian basis functions in the Jacobi coordinate system. We
obtain the energy eigenvalues and eigenstates (their biorthog-
onal states) as {Eθ

ν } and {�ν
J (θ )} ({�̃ν

J (θ )}), respectively.
Using them, we define the complex-scaled Green’s function
Gθ (E; ξ ,ξ ′) as

Gθ (E; ξ ,ξ ′) =
〈
ξ

∣∣∣∣ 1

E − Hθ

∣∣∣∣ξ ′
〉

=
∑

ν

∫
�ν(θ )�̃ν(θ )

E − Eθ
ν

. (8)

In the derivation of the right-hand side of Eq. (8), we use the
extended completeness relation, whose detailed explanation
is given in Ref. [33]. It is noticed that we take into account
outgoing boundary conditions for all open channels of a three-
body system in the form of complex energy eigenvalues Eθ

ν .
The complex-scaled Green’s function in Eq. (8) enables us to
describe the scattering observables for many-body systems,
such as the photodisintegration cross section.

We calculate the cross section of the photodisintegration
of 9Be(3/2−) + γ → α + α + n in terms of the multipole
response. The cross section is expressed as

σ
γ
Eλ(Eγ ) = (2π )2(λ + 1)

λ[(2λ + 1)!!]2

(
Eγ

�c

)2λ−1
dB(Eλ,Eγ )

dEγ

, (9)

where Eγ is the incident photon energy and B(Eλ) is the
electric transition strength with the rank λ. We here calculate
the photodisintegration cross section from the ground 3/2−
state to 1/2+ states in 9Be and consider only the E1 transition
here. Using the CSM and the complex-scaled Green’s function
in Eq. (8), the E1 transition strength is given as

dB(E1,Eγ )

dEγ

=− 1

π

1

2Jgs + 1

× Im

[∑
ν

∫ 〈
�̃gs||(Ôθ )†(E1)||�ν

1/2+(θ )
〉

× 1

E − Eθ
ν

〈
�̃ν

1/2+ (θ )||Ôθ (E1)||�gs
〉]

, (10)
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TABLE I. Ground-state properties in comparison with experi-
ments. The calculated binding energies (Eg.s., in MeV), charge radii
(Rch, in fm), and matter radii (Rm, in fm) with and without the
three-body potential V3 are listed.

Eg.s. Rch Rm v3 μ

With V3 1.57 2.53 2.42 1.10 0.02
Without V3 2.14 2.50 2.39
Expt. 1.5736a 2.519 ± 0.012b 2.38 ± 0.01c

aReference [34].
bReference [35].
cReference [36].

where Jgs and �gs represent the total spin and the wave function
of the ground state, respectively. The energy E is related to Eγ

as E = Eγ − Eg.s.. From Eqs. (9) and (10), we finally obtain
the photodisintegration cross section as

σ
γ
E1(Eγ ) = 16π3

9�c
Eγ

dB(E1,Eγ )

dEγ

. (11)

III. RESULTS

We first show the calculated ground-state properties of 9Be.
In Table I, the calculated binding energy and charge and matter
radii are listed. Without the three-body potential in Eq. (4), the
binding energy of the 9Be ground state is overbound and the
charge radius is slightly small compared to experiments. To
reproduce these quantities, we need the repulsive three-body
potential whose parameters are given as v3 = 1.10 MeV and
μ = 0.02 fm−2. As results, we reproduce the binding energy
and charge radius of the 9Be ground state simultaneously, while
the matter radius is slightly larger than the observed one. We
also confirm that no resonance of the 1/2+ state is found with
the three-body potential in Table I for the θ = 15◦ case.

Next we discuss the photodisintegration cross section to
1/2+ states. In the present calculation, we fix the ground-state
wave function obtained with the three-body potential in Table I.
In Fig. 1, we show the calculated cross sections using Eq. (11)
in comparison with the two sets of the observed data which
commonly have peaks just above the 8Be + n threshold. The
red (dashed) and blue (dotted) lines show the cross sections
with and without the three-body potential for excited 1/2+
states, respectively, whose parameters are the same as those
in Table I. In both results, the calculated cross sections
underestimate the low-lying peak above the 8Be + n threshold.

To discuss the observed sharp peak just above the 8Be + n
threshold in the photodisintegration cross section, we change
the strength v3 for the 1/2+ state to fit the observed data, but its
range μ is fixed as the same as used in the ground state. We here
take the strength as v3 = −1.02 MeV for the 1/2+ state and ob-
tain the cross section as shown as the black (solid) line in Fig. 1.
Our result reproduces the observed peak by using the attractive
three-body potential. The origin of the three-body potential
would be a strong state-dependent tensor force and an anti-
symmetrization of the nucleon among different three clusters.
It can be estimated that the tensor force gives a repulsive effect
for a p-shell neutron around two α clusters but an attractive one
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FIG. 1. (Color online) Calculated photodisintegration cross sec-
tions in comparison with experimental data. The red (dashed) and
blue (dotted) lines are results with and without the three-body
potential, where v3 = 1.10 MeV and μ = 0.02 fm. The black (solid)
line represents the cross section calculated by using an attractive
three-body potential with v3 = −1.02 MeV. The experimental data
below Eγ = 2.2 MeV are taken from Refs. [6] and [8]. The arrow
indicates the threshold energy of the 8Be(0+) + n channel.

for a higher s-shell neutron [37], though we do not have enough
knowledge on the antisymmetrization effect. We confirm that
the calculated cross section rapidly increases just above the
8Be + n threshold and there is negligibly small strength below
this threshold. We also find that the calculated cross sections
show the strong dependence on the strengths of the three-body
potentials as shown in Fig. 1. This result is interesting and
suggests the existence of the three-body unbound state of
9Be(1/2+), such as a resonance or virtual state. In relation
to the cross section, we discuss the character of the 1/2+ state.

We investigate the origin of the low-lying peak above the
8Be + n threshold in more detail. For this purpose, we show
the distribution of the energy eigenvalues of the 1/2+ states
by using the CSM. In the CSM, continuum states are obtained
along the branch cuts which start from the threshold energies
and are rotated down by 2θ . A resonance is obtained as a
solution with a complex energy of Eθ = Er − i/2 isolated
from the continuum ones. However, the virtual states and
broad resonances, which are located on the second Riemann
sheet covered by the rotated first Riemann sheet, cannot be
obtained as the isolated pole in the CSM. The contributions
from these states to the cross section are scattered into the
continuum states rotated on the 2θ lines. In Fig. 2, we
show the distribution of the energy eigenvalues for the 1/2+
states calculated with v3 = −1.02 MeV, which reproduces the
observed peak as shown in Fig. 1. In the present calculation, we
find no resonances in the energy eigenvalue distribution. All
energy eigenvalues are located on the 2θ lines, corresponding
to the branch cuts for the α + α + n, 8Be(0+) + n, and
5He(3/2−) + α continuum states.

We investigate the contributions of two- and three-body
continuum states to the cross section to understand the
mechanism of the photodisintegration. Using the CSM, we
decompose the cross section calculated with v3 = −1.02 MeV
into 8Be + n and α + α +n components as shown in Fig. 3,
to see the dominant contribution in the cross section [24]. The
5He + α contribution is found to be negligible in the low-lying
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FIG. 2. (Color online) Distribution of energy eigenvalues of
1/2+ states measured from the α + α + n threshold with scaling
angle θ = 15◦. We here employ the three-body potential with v3 =
−1.02 MeV and μ = 0.02 fm−2. The red (solid), blue (dashed), and
green (dotted) lines represent the branch cuts for α + α + n, 8Be(0+)
+ n, and 5He(3/2−) + α continua, respectively.

region, and we do not show it in Fig. 3. From the results, we
see that the 8Be + n component is almost identical to the total
cross section. This fact indicates that the 8Be + n decay is
dominant in the photodisintegration. This decay mode should
be related to the structure of the 1/2+ state of 9Be.

To investigate the structure of the 1/2+ state of 9Be, we
calculate the energy eigenvalues of the α + α + n system by
changing the strength of the three-body potential v3, which is
shown in Fig. 4. In the present calculation, when the strength of
the three-body potential v3 = −1.3 MeV, the resonance pole
suddenly appears just below the 8Be(0+) + n threshold. This
resonance pole with a narrow decay width moves smoothly
to the bound state region as the three-body potential becomes
more attractive, and we finally obtain the 9Be bound state with
the region of v3 < −1.8 MeV. On the other hand, we consider
the pole trajectory in the opposite case of the three-body
potential with v3 > −1.3 MeV. If the resonance exists, the pole
with a narrow decay width should appear above the 8Be + n
threshold as the analytical continuation from the resonance
pole as shown with the crosses in Fig. 4. However, we found
that no resonances appear above the 8Be(0+) + n threshold
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FIG. 3. (Color online) Decomposed photodisintegration cross
sections. The red (solid) and blue (dashed) lines are contributions
of the α + α + n and 8Be + n continuum states. The black thin line
is the same as that in Fig. 1.
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FIG. 4. (Color online) Pole trajectory of the 9Be 1/2+ state in
a complex energy plane by changing the three-body potential. The
closed circles represent the poles obtained as isolated three-body
resonances in CSM. The open circles and crosses are speculated pole
positions for the virtual states and broad resonances, respectively.

for v3 > −1.3 MeV of the three-body potential. These facts in
the pole trajectory show the possibility of the virtual state of
the 1/2+ state consisting of 8Be(0+) + n when we take v3 =
−1.02 MeV, which reproduces the experimental cross section.
The existence of the virtual state is consistent with the domi-
nant decay into 8Be + n in the photodisintegration of 9Be.

The virtual state is often discussed in unstable nuclei, such
as 10Li and 11Li [25,26,38]. For 10Li, Masui et al. [38] showed
the explicit pole trajectory of the virtual state of 10Li as a
9Li + n picture, which is similar to the present 8Be(0+) + n
situation. Tanaka et al. [27] also calculated a pole trajectory for
the 1/2+ state of 9Be by varying the u parameter in the two-
nucleon interaction used in the microscopic α + α + n model.
Although their calculation changes the relative energy between
8Be + n and α + α + n thresholds, their result suggests the
existence of the 1/2+ virtual pole dominated by the 8Be + n
channel, which changes to a physical resonant pole as u is
decreased. In Fig. 4, we schematically plot the pole trajectory
in the region of v3 > −1.3 MeV, considering the analogy with
the 10Li case as shown in Fig. 3(b) of [38] and the microscopic
calculation shown in Fig. 6 of [27]. This trajectory is located
on the second Riemann sheet of the 8Be + n system which
cannot be obtained in the CSM.

We consider the different case when there exists the
1/2+ resonance to see how the resonance contributes to the
photodisintegration cross section. By using the three-body
potential with v3 = −1.3 MeV, the 1/2+ resonance is obtained
with the energy and decay width being 0.091 and 0.002 MeV,
respectively, just below the 8Be + n threshold at 0.0918 MeV
measured from the α + α + n threshold. In Fig. 5, we show the
cross section in this case, which shows quite a sharp peak at the
resonance energy. From the decomposition of the cross section,
we find that the peak in the cross section is dominated by the
resonance while the 8Be + n continuum states have a sizable
contribution to the cross section. This trend is much different
from that in Fig. 3. In the result of Fig. 3, the peak in the
cross section is constructed by several low-lying eigenstates
located on the 8Be + n continuum 2θ line in Fig. 2. For
v3 > −1.3 MeV, the decomposition of the photodisintegration
cross section shows a similar trend to the result of Fig. 3.
We confirm that the cross sections with v3 = 0.00 and 1.10
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FIG. 5. (Color online) Decomposed photodisintegration cross
sections by using the three-body potential with v3 = −1.3. The red
(solid) and blue (dashed) lines are contributions of the α + α + n

and 8Be + n continuum states. The green (dotted) line is that of the
resonance pole. The black thin line represents the sum of them. The
arrow indicates the threshold energy of the 8Be(0+) + n channel.

MeV shown in Fig. 1 show the dominant components from the
8Be + n continuum states.

IV. SUMMARY

We investigate the character of the 1/2+ state of 9Be using
the photodisintegration reaction with the α + α + n three-

body model and the CSM. The calculated photodisintegration
cross sections into the 1/2+ states are shown to have a strong
dependence on the strength of the three-body potential for the
1/2+ state. The experimental cross section shows a sharp peak
just above the 8Be + n threshold, which is nicely reproduced
with the attractive three-body potential. We cannot find any
resonance poles for the 1/2+ states in explaining the peak in
the cross section. From the decomposition of the calculated
cross section, it is shown that the 8Be + n continuum states
dominate the cross section to the 1/2+ states. These results
indicate the possibility of the virtual-state nature of the first
excited 1/2+ state. In addition, the pole trajectory suggests
that the pole of the 1/2+ state is located on the second
Riemann sheet of 8Be + n instead of the broad resonances of
α + α + n.
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(2012).
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K. Blaum, M. L. Bissell, R. Cazan, G. W. F. Drake,
C. Geppert, M. Kowalska et al., Phys. Rev. Lett. 102, 062503
(2009).

[36] I. Tanihata, T. Kobayashi, O. Yamakawa, S. Shimoura, K. Ekuni,
K. Sugimoto, N. Takahashi, T. Shimoda, and H. Sato, Phys. Lett.
B 206, 592 (1988).
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