
PHYSICAL REVIEW C 92, 014320 (2015)

Operator evolution for ab initio electric dipole transitions of 4He
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A goal of nuclear theory is to make quantitative predictions of low-energy nuclear observables starting from
accurate microscopic internucleon forces. A major element of such an effort is applying unitary transformations to
soften the nuclear Hamiltonian and hence accelerate the convergence of ab initio calculations as a function of the
model space size. The consistent simultaneous transformation of external operators, however, has been overlooked
in applications of the theory, particularly for nonscalar transitions. We study the evolution of the electric dipole
operator in the framework of the similarity renormalization group method and apply the renormalized matrix
elements to the calculation of the 4He total photoabsorption cross section and electric dipole polarizability. All
observables are calculated within the ab initio no-core shell model. We find that, although seemingly small, the
effects of evolved operators on the photoabsorption cross section are comparable in magnitude to the correction
produced by including the chiral three-nucleon force and cannot be neglected.
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I. INTRODUCTION

Unitary transformations of the Hamiltonian have been used
to great effect in a range of nuclear physics problems [1–11]
to decouple high- and low-momentum components of the
interaction and promote numerical convergence in large, but
finite model spaces. However, in an A-nucleon system, such
beneficial decoupling of momentum scales comes at the price
of an effective Hamiltonian containing irreducible three- and
higher-body (up to A-body) terms, even when initially absent.
In addition, for consistency the same unitary transformation
must to be applied to any operator associated with measurable
quantities. This, once again, will induce many-body operators.

Widely adopted is the similarity renormalization group
(SRG) method, which employs a continuous unitary trans-
formation of the Hamiltonian characterized by a momentum
resolution scale λ [12]. The SRG transformation (or evolution)
of the Hamiltonian has been carried out up to the three-body
level both on a harmonic oscillator (HO) basis [8,13–15]
and, more recently, in momentum representation [16], and
the resulting interactions have been successfully applied to
compute properties of a variety of nuclei [8,9,11,13,14,17–19].

For systems with up to A � 10 nucleons, bound-state
calculations including up to three-body-induced forces have
been shown to lead to energies mostly independent of λ
above 1.8 fm−1, i.e., to approximately preserve the unitarity
of the transformation [8,13,14]. Small variations of the SRG
momentum scale around 2 fm−1 have been also shown to
produce mostly negligible differences in n- 4He [20] and
n- 8Be [21] elastic phase shifts, but a more quantitative
investigation has not been possible due to a slower rate
of convergence for larger λ values combined with the high
computational demand.
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Few studies have dealt with the consistent transformation
and application of operators, the other component required for
an accurate description of measurable nuclear properties when
using effective interactions. This was first studied using the
Okubo-Lee-Suzuki (LS) renormalization [1,22,23] to compute
electromagnetic properties for several nuclei [24]. For the
SRG, the evolution of operators was achieved for the first
time in the deuteron, where only one- or two-body operators
are relevant, working in a momentum representation [25]. The
more complicated process of evolving and applying operators
in finite nuclei beyond the deuteron was first examined in
Ref. [26]. There, working on a translationally invariant HO
basis, we extended the approach of Ref. [13] to evolve scalar
(i.e., rank zero in both angular momentum and isospin)
operators in the two- and three-body spaces and used the
resulting matrix elements to calculate expectation values on the
ground state (g.s.) of the 4He nucleus. (Note that only scalar
operators contribute to expectation values for this JπT = 0+0
four-nucleon state.) In particular, we showed that the inclusion
of up to three-body matrix elements in the 4He nucleus
all but completely restores the invariance of the root-mean
square radius and total electric dipole strength under the SRG
transformation.

While the work of Ref. [26] allowed us to perform
initial proof-of-principle calculations, a general description of
observables also requires the ability to evolve, and embed in
finite nuclei, nonscalar operators. Further, more work is needed
to accurately assess the consistency of the SRG approach
for the description of continuum observables. Starting from
an initial nucleon-nucleon plus three-nucleon (NN + 3N )
Hamiltonian from chiral effective field theory [27,28], in this
paper we present the first application of the SRG approach to
compute the 4He photoabsorption cross section and electric
dipole polarizability. All induced forces up to the three-body
level are retained in the transformed Hamiltonian, while
the leading electric dipole transition operator is determined
(for the first time) by evolution in the A = 2 system. All
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calculations are performed within the ab initio no-core shell
model (NCSM) [29] working with translationally invariant HO
basis states. The photoabsorption cross section is computed by
means of the Lorentz integral transform (LIT) method [30,31],
while the electric polarizability is obtained according to
Podolsky’s technique [32]. This allows us to bypass the
direct calculation of scattering states and to work only with
square-integrable basis states.

An ab initio investigation of both the photoabsorption
cross section [33] and the electric polarizability [34] of
the 4He nucleus based on chiral NN + 3N interactions had
already been accomplished in the past using LS effective
interactions at the three-body cluster level [35,36], albeit
without renormalization of the electric dipole operator. The
primary purpose of the present work is to use these observables
as testing grounds to explore the performance and consistency
of the SRG approach. In particular we perform the first accurate
investigation of the dependence on the SRG momentum scale
of a continuum observable within a large range of λ values.

The paper is organized as follows. Section II provides
background on the formalism adopted. In particular, we
discuss how the SRG method modifies the Hamiltonian and
external operators and how the LIT can be used to compute
the response induced by an external perturbation, in our case,
the dipole operator. In Sec. III we describe our results in three
parts: convergence of the observables computed with respect
to the size of the NCSM model space adopted, a discussion on
the unitarity of the SRG transformation in our context, and a
comparison to experimental cross section data. Lastly, Sec. IV
gives a brief summary of our results and describes the next
steps in this research.

II. BACKGROUND

A. Hamiltonian and spectral resolution method

We start with the intrinsic nonrelativistic Hamiltonian for a
system of A nucleons (protons and neutrons):

Ĥ = 1

A

∑
i<j

( �pi − �pj )2

2MN

+
A∑

i>j

V NN
ij +

A∑
i>j>k

V 3N
ijk , (1)

where V NN
ij and V 3N

ijk are, respectively, two- and three-
nucleon free-space interactions, which depend on the relative
coordinates (and/or momenta for nonlocal forces) between
particles; �pi is the momentum of particle i; and MN is the
nucleon mass. We then look for the eigenfunctions of Ĥ in
the form of expansions over a complete set of translationally
invariant and fully antisymmetric A-body states. This amounts
to diagonalizing the Hamiltonian in the many-body basis.
In particular, we use the Jacobi-coordinate HO basis of the
ab initio NCSM [29], in which the model space is defined
by all A-body states up to a maximum excitation of Nmax��
above the minimum energy configuration of the system and �
is the HO frequency.

While in principle the above is an exact prescription for
the solution of the Schrödinger equation associated with the
Hamiltonian of Eq. (1), in practice we work with a finite
model space and achieve convergence to the exact results with

increasing Nmax. Crucial for the success of this approach is the
use of unitary transformations of the Hamiltonian chosen to
reduce the coupling between high- and low-momentum states,
which arises from the strong short-range repulsion of the bare
nuclear interaction and leads to slow convergence in the size of
the model space. Here we focus on the unitary transformation
described by the SRG approach outlined in the next section.

Our numerical method of choice for obtaining the spectrum
of energy states of the Hamiltonian is the Lanczos method [37].
Given a starting arbitrary unit vector |φ0〉, it recursively allows
us to define a set of orthonormal basis states |φi〉—known as
Lanczos vectors—for which the Hamiltonian matrix assumes
a tridiagonal form:

bi+1|φi+1〉 = Ĥ |φi〉 − ai |φi〉 − bi |φi−1〉. (2)

Here |φ−1〉 = 0, and ai = 〈φi |Ĥ |φi〉 and bi = ‖bi |φi〉‖ are,
respectively, the diagonal and upper (lower) diagonal elements
of the Hamiltonian in the new basis, or Lanczos coefficients
as they are often called. The power of the Lanczos method
is that the extremum eigenvalues of the Hamiltonian quickly
converge to their true value after a limited number of iterations,
much smaller than the dimension of the problem. Further,
relevant to the calculation of the 4He photoabsorption cross
section and electric polarizability discussed in this paper, the
Lanczos coefficients can be used to accurately evaluate the
expectation value of the Green’s function on a normalized
vector, G(z) = 〈φ0|(z − Ĥ )−1|φ0〉, in terms of the continued
fraction [38,39]

G(z) = 1

z − a0 − b2
1

z−a1− b2
2

z−a2− b2
3

...

. (3)

B. SRG evolution

As implemented for nuclear physics [12,40], the SRG
method employs a unitary transformation, Us , on the initial
Hamiltonian Ĥs=0 = Ĥ ,

Ĥs = ÛsĤs=0Û
†
s , (4)

that can be implemented as a flow equation [41] in the
continuous parameter s and an anti-Hermitian generator η̂s =
(dÛs/ds)Û †

s ,

dĤs

ds
= [η̂s ,Ĥs]. (5)

Although other generators have been used [15,42], a common
choice for this operator is the commutator of the evolved
Hamiltonian with the kinetic energy, η̂s = [T̂ ,Ĥs]. This drives
the Hamiltonian towards a diagonal form in momentum space,
thus decoupling high- and low-momentum states. The spread
of the residual off-diagonal strength can be measured by
the parameter with units of momentum λ [where s−1 =
(�λ)4/M2

N ], which can be used to follow the evolution of the
Hamiltonian in place of s. As λ decreases, the Hamiltonian
undergoes more evolution while λ = ∞ corresponds to the
initial Hamiltonian.
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Working within a discrete basis, Eq. (5) can be cast into
a set of coupled first-order differential equations for the
matrix elements of the flowing Hamiltonian Ĥs , with the
right-hand side of the equation being simply given by matrix
multiplications. The procedure to determine the two- and
three-body components of the evolved Hamiltonian within the
Jacobi-coordinate HO wave functions adopted in this work
is presented in Refs. [8,13]. In particular, depending on the
absence or presence of V 3N in Eq. (1), one can identify
three classes of evolved Hamiltonians: (1) NN -only, two-body
Hamiltonian from the SRG evolution of the NN force in
the two-nucleon space; (2) NN + 3N -induced, three-body
Hamiltonian from the SRG evolution of the NN force in the
3N space; and (3) NN + 3N , SRG Hamiltonian obtained from
evolving the NN plus initial 3N force in the 3N system.

The consistent application of the SRG approach requires
that any other operator, Ô, undergo the same unitary transfor-
mation as the Hamiltonian, i.e.,

Ôs = ÛsÔs=0Û
†
s . (6)

While this can be rewritten into a form similar to Eq. (5),
it is more computationally efficient to compute the unitary
transformation, Ûs , using the eigenvectors of the Hamiltonian
before and after the transformation, |ψα(0)〉 and |ψα(s)〉,
respectively,

Ûs =
∑

α

|ψα(s)〉〈ψα(0)|. (7)

In a discrete basis, the transformation of Eq. (6) is then given,
once again, by simple matrix multiplications. In particular, for
parity-conserving rank-zero operators (as for the Hamiltonian,
working in the isospin formalism) Ûs corresponds to a
block-diagonal matrix with respect to the various angular-
momentum, parity, and isospin channels (JπT ) of the system,
and the evolution can be performed block by block in parallel
with that of Ĥs . This type of evolution for operators, in both
the A = 2 and A = 3 systems, has been recently implemented
working within the Jabobi-coordinate NCSM basis [26]. The
situation is more complicated for nonscalar operators, as
they will couple different blocks. In this case, the unitary
transformation must be computed and stored for each block
during the evolution of the Hamiltonian and the matrix
elements of the evolved operator must be reconstructed in a
second step. In this work, we have implemented this process in
the A = 2 space, while we defer to future work the technically
more challenging process of evolving nonscalar operators in
the three-body space.

In general, to determine the two- and three-body compo-
nents of an evolved operator we follow a procedure similar
to that adopted for the Hamiltonian in Refs. [8,13]. We start
by evolving Ĥs , hence calculating Ûs , in the A = 2 system
and determining the matrix elements of the two-body evolved
operator, 〈Ô(2)

s 〉, through Eq. (6). Next, (for scalar operators)
we repeat the operation in the A = 3 system, thus computing
〈Ô(3)

s 〉, and then isolate the induced three-body components of
the evolved operator via subtraction, 〈Ô(3)

s 〉 − 〈Ô(2)
s 〉, where

the second term corresponds to the two-body evolved operator
embedded in the 3N basis. This allows us to accurately
calculate and separate the two- and three-body matrix elements

of the evolved operator, which we can then use unchanged
in calculations for any nucleus. The second step can also
be performed with or without the initial 3N force in the
Hamiltonian. Similar (but not quite parallel) to the three
classes of Hamiltonian discussed earlier, this procedure leads
to the following three stages of operator evolution: (1) bare
or unevolved operator; (2) two-body (2B) evolved, SRG
evolution of the operator in the 2B space; and (3) three-body
(3B) evolved, SRG evolution of the operator in the 3B space,
allowing the induction of 3B terms.

C. Photoabsorption cross section and electric polarizability

At low excitation energies, when the long-wavelength limit
applies, the nuclear photoabsorption process can be described
by the cross section [43]

σγ (ω) = 4π2 e2

�c
ωR(ω), (8)

where ω is the perturbing photon energy and R(ω) is the
inclusive response function, given by

R(ω) =
∫

d�f |〈�f |D̂|�0〉|2δ(Ef − E0 − ω), (9)

where Ef and E0 represent the final-state and g.s. energies
along with their associated wave functions, |�f 〉 and |�0〉,
respectively, and D̂ is the electric dipole operator,

D̂ =
√

4π

3

A∑
i=1

τ z
i

2
riY10(r̂i). (10)

Here, τ z
i is the third component of isospin and �ri = ri r̂i is the

position vector of the ith particle in the center-of-mass frame.
To bypass the direct calculation of the final states, which

for a light nucleus such as 4He are all in the energy continuum,
the LIT method [30,31] obtains the response function, R(ω),
after the evaluation and subsequent inversion [44,45] of its
convolution with a Lorentzian kernel of finite width σI ,

L(σR,σI ) =
∫

dω
R(ω)

(ω − σR)2 + σ 2
I

, (11)

where σR is a continuous variable with unit of energy. Taking
advantage of the completeness of the eigenstates of the
Hamiltonian this can be rewritten as [46]

L(σR,σI ) = −M0

σI

Im{G(z)}, (12)

where G(z) is the Green’s function of Eq. (3) evaluated
at the complex energy z = E0 + σR + iσI on the starting
Lanczos vector |φ0〉 = M

−1/2
0 D̂|�0〉. The quantity M0 is the

total strength of the transition induced by the dipole operator,
which can be evaluated either directly as the expectation value
M0 = 〈�0|D̂†D̂|�0〉 of the operator D̂†D̂ on the g.s. wave
function or as the square norm M0 = ||D̂|�0〉||2 of the vector
D̂|�0〉. In the first case, only the scalar component of the D̂†D̂
operator is needed for the evaluation of the total dipole strength
on the JπT = 0+0 g.s. of the 4He nucleus.

Similarly, in the unretarded dipole long-wavelength approx-
imation adopted here, the electric dipole polarizability of the
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nucleus is given by

αE = 2
e2

�c

∫
d�f

|〈�f |D̂|�0〉|2
Ef − E0

, (13)

which corresponds to the double inverse-energy weighted sum
rule of the photoabsorption cross section of Eq. (8):

αE = 1

2π2

∫ ∞

ωth

dω
σγ (ω)

ω2
, (14)

with ωth being the threshold energy for photoabsorption. While
the electric polarizability can be obtained through Eq. (14)
by numerical integration of the computed cross section of
Eq. (8), it is more efficient and numerically more accurate to
take advantage of the completeness of the eigenstates of the
Hamiltonian and directly evaluate it by means of the Lanczos
method as

αE = −2
e2

�c
M0G(E0), (15)

with the same starting vector as in Eq. (12).

III. RESULTS

All results are obtained employing the Idaho N3LO
nucleon-nucleon interaction of Ref. [47] and the N2LO 3N
force from Ref. [48] with the low-energy constants adjusted to
reproduce the triton half-life and the binding energies of 3H
and 3He nuclei [49]. Unless otherwise stated, we truncate all of
our calculations in the A = 2 model space at Nmax = 300 and
in the A = 3 model space at Nmax = 40, denoted as NA2max

and NA3max, respectively. The HO model-space size for the
4He system is simply indicated as Nmax.

In Sec. III A we start by exploring the evolution of a few
matrix elements of the dipole transition. Next, in Sec. III B, we
discuss the convergence properties of our results with respect
to variations in both Nmax and HO frequency, ��. Finally, in
Sec. III C, we study the λ dependence of our calculations,
and in Sec. III D we present a comparison with available
experimental data.

A. Two-body evolved dipole operator

To obtain the photoabsorption cross section and electric
dipole polarizability of Sec. II C within the SRG approach, we

need to consider the evolution of the electric dipole operator
of Eq. (10) that induces a JπT = 1−1 transition between
the initial and final states. For 4He, the total dipole strength
entering Eqs. (12) and (15) can be evaluated as the expectation
value of a scalar operator, and we can use the technology we
developed in Ref. [26] to renormalize D̂†D̂ (a scalar operator)
up to the 3B level. However, the matrix elements of D̂ are
still needed to compute the Lanczos starting vector, which
is proportional to D̂|�0〉. As already mentioned in Sec. II B,
properly evolving a nonscalar operator introduces additional
technical complications, particularly in the A = 3 system.
At the same time, we expect that the renormalization of the
dipole will principally affect the total strength M0 and have
a relatively smaller effect on the Green’s functions G(z) and
G(E0) of Eqs. (12) and (15), respectively, which are mainly
driven by the energy spectrum of the system. If the Hamiltonian
is evolved up to the 3B level, such a spectrum is also mostly
independent from the SRG momentum scale. Therefore, for
the time being we limit ourselves to 2B matrix elements of the
evolved D̂ in the calculation of the Lanczos starting vector.

Figure 1 shows snapshots of the evolution of the dipole
operator in HO space for 3S1 (T = 0) to 3P2 (T = 1) transitions.
The color bar represents the value of HO matrix elements and is
truncated to highlight the off-diagonal behavior as the operator
is evolved. Because this is a transition between different initial
and final states, the representation in the HO space is not
symmetric. Snapshots of this kind are useful for examining
the behavior of the matrix elements during evolution and have
been shown previously for operators evolved in momentum
space [25] and for the Hamiltonian evolved in the HO [15,50]
and momentum space [12,51]. Here, the discretized axes, n and
n′, are the radial quantum numbers of the HO wave function
and directly correspond to the energy in HO space. For this
transition, the bare operator starts as a lower bidiagonal matrix
and as λ decreases we see increased strength in the off-diagonal
matrix elements. So while the SRG evolves the momentum
space Hamiltonian to a more diagonal form, it spreads out the
dipole operator in HO space.

B. Convergence

In this section, we discuss the behavior of our calculations
with respect to variations of the frequency �� and the size
Nmax of the adopted HO model space. We start in Fig. 2 by

FIG. 1. (Color online) SRG evolution of the 2B dipole operator in HO space for the 3S1 to 3P2 transition. The color bar represents the value
of the dipole matrix elements and is truncated to highlight the off-diagonal behavior as a function of evolution, from bare (λ = ∞) to λ = 1.5
fm−1. The matrix elements have units of femtometers.
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FIG. 2. (Color online) Convergence of the total dipole strength
M0 of 4He as a function of Nmax using the bare operator and evolved
wave functions from the NN + 3N Hamiltonian with λ = 2.5 fm−1

at �� = 22, 28, 34, and 40 MeV.

analyzing the total strength, M0, of the bare dipole operator
evaluated on the 4He evolved g.s. wave function (using, in
this example, the NN + 3N Hamiltonian with λ = 2.5 fm−1)
for a range of HO frequencies and various basis sizes. As
Nmax increases, the total dipole strength becomes more and
more independent from the choice of the �� value in the
range 22–40 MeV, reaching a flat behavior in the largest model
spaces. The weakest Nmax dependence is found for frequencies
between 22 and 28 MeV, for which an excellent convergence
is already achieved at Nmax = 18 proceeding from above and
from below, respectively. These two �� values are adopted for
the reminder of our study. In addition, our choices for Nmax

have been shown to be fully converged and robust against
changes to the HO frequency [52].

The typical convergence of M0 as a function of Nmax,
computed as the norm ||D̂|�0〉||2, for the bare and 2B
evolved dipole operators is presented in Figs. 3(a) and 3(b),

respectively. Because the dipole is a long-range operator,
we see almost no increase in the rate of convergence of
the evolved over the bare operator (both evaluated, as in
Fig. 2, on NN + 3N evolved wave functions). Rather, the SRG
evolution of the wave function provides a smooth convergence
pattern, especially at smaller values of λ, regardless of the
level of operator evolution. As an example, for λ = 2.5 fm−1

the M0 values begin to follow an exponential convergence
above Nmax = 10, whereas at λ = 1.8 fm−1 the exponential
convergence already starts at Nmax ∼ 6. This could be used
effectively to extrapolate to Nmax = ∞ in heavier systems
where one cannot feasibly reach large Nmax values or where
convergence of observables is very slow.

As is discussed in the next section and can be seen in
Figs. 3(a) and 3(b), for dipole transitions the converged values
tend to increase as λ decreases. This is due to the omission
of induced many-body [3B and four-body (4B) in the case of
Fig. 3(b)] contributions to the SRG evolved operator. Indeed,
the difference between the M0 values obtained with bare and
2B evolved operators is much larger at 1.8 than at 3.0 fm−1

due to the increasing strength of the SRG-induced terms as λ
decreases.

In Fig. 4 we compare the convergence with respect to Nmax

of M0 computed in two different ways: as the norm ||D̂|�0〉||2
of the 2B evolved dipole operator, D̂, acting on the 4He g.s.
and as the expectation value on the g.s. wave function of the
2B evolved D̂†D̂ operator. The two procedures yield the same
results when the bare operators are employed, represented by
the arrow in the figure. However, in general the same is not true
upon the SRG evolution, which results in slightly different M0

values. There are two factors that contribute to this difference:
(i) the operators exhibit different short-range properties (in this
case, r versus r2, respectively); and (ii) in calculating M0 as
the square norm of the 2B evolved dipole operator acting on
the ground state, we also implicitly include selected 3B and
4B matrix elements. Similar to what we have observed for
the bare operator, varying the oscillator frequency from 22 to
28 MeV produces little change in the converged value of the
observables. This is not surprising considering the large model
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FIG. 3. (Color online) Convergence of the total dipole strength M0 of 4He as a function of Nmax at �� = 28 MeV using (a) the bare and
(b) the 2B evolved D̂ operator and wave functions from the NN + 3N Hamiltonian with λ = 1.8, 2.2, 2.5, and 3.0 fm−1.
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FIG. 4. (Color online) Convergence as a function of Nmax of the
2B evolved total dipole strength, M0, of 4He computed as ||D̂|�0〉||2
(squares) and D̂†D̂ (circles) for λ = 1.8 fm−1 and �� = 22 MeV
(dashed lines) and 28 MeV (solid lines). The arrow shows the
converged value of M0 computed with the bare operator. Results were
obtained using the wave function from the NN + 3N Hamiltonian.

spaces reached in the present work. More interesting are the
differences in the size of 2B-induced contributions for the total
dipole strength calculated as ||D̂|�0〉||2 versus 〈�0|D̂†D̂|�0〉.
A somewhat larger renormalization is observed in the case of
the former.

Next, in Fig. 5, we consider the electric dipole polarizability,
calculated according to Eq. (15) with M0 = ||D̂|�0〉||2. Two
values of the frequency (�� = 22 and 28 MeV) and the SRG
momentum scale (λ = 1.8 and 2.5 fm−1) are explored for Nmax

values varying between 2 and 18. The convergence patterns
obtained for the bare versus 2B evolved operator are once again
very similar, although a slightly faster flattening of the curves
can be observed for the latter, and the two frequencies adopted
yield very similar results at Nmax = 18. As with the total dipole
strength, the inclusion of the 2B evolved operator reduces the
spread in the SRG momentum scale and the contribution of
the 2B-induced terms is larger for λ = 1.8 fm−1.

To conclude this section, we assess by means of Fig. 6 the
sensitivity of the 4He photoabsorption cross section, computed
according to Eq. (8), to variations of the HO model-space
size and frequency. The total dipole strength entering the
evaluation of the LIT (12), and hence of the response function
R(ω) of Eq. (9), was obtained as M0 = ||D̂|�0〉||2 using the
2B evolved operator. Both NN + 3N -induced and NN + 3N
Hamiltonians are considered. For the sake of comparison, after
being computed, all theoretical cross sections are shifted to the
experimental threshold for the 4He photodisintegration, Eth =
19.8 MeV (ω → ω + �Eth, with �Eth being the difference
of the calculated and experimental thresholds). This allows us
to highlight differences beyond those occurring at the level of
the 4He and 3H binding energies. Due to the selection rules
associated with the dipole operator (10), for a given Nmax in
the JπT = 0+0 model space used to expand |�0〉, a complete
calculation of Eq. (12) requires the expansion of the starting
Lanczos vector |ϕ0〉 = M

−1/2
0 D̂|�0〉 over a JπT = 1−1 space

up to Nmax + 1. This is the origin of the odd/even notation for
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FIG. 5. (Color online) Convergence of the bare (circles) and 2B
SRG evolved (squares) electric polarizability of 4He as a function
of Nmax for (a) λ = 1.8 fm−1 with �� = 22 MeV (dashed line) and
28 MeV (solid line) and (b) with fixed �� = 28 MeV at λ = 1.8
(dashed line) and 2.5 fm−1 (solid line). Results were obtained using
the wave function from the NN + 3N Hamiltonian.

Nmax introduced in Fig. 6. The relative uncertainty due to the
finite size of the HO space, estimated from the difference of the
cross section calculated at Nmax = 18/19 and 16/17 is largest
for the NN + 3N Hamiltonian, remaining below 2% above
ω ∼ 22 MeV. At lower energies—where the cross section is
smaller—the relative uncertainty grows somewhat reaching a
value of ∼8% at threshold. Varying the HO frequency from
28 to 22 MeV produces results within 3%, except for energies
very close to threshold. Finally, as shown in Fig. 6(b), the
present NN + 3N -induced results are consistent with those
obtained in Ref. [33] using a LS transformation of the N3LO
NN potential at the 3B cluster level, in which the dipole
operator was not renormalized.

C. SRG resolution scale dependence

In Fig. 7, we study the dependence on the SRG evolution
parameter of the 4He total dipole strength and electric dipole
polarizability. These results were obtained with an oscillator
frequency of �� = 28 MeV and converged calculations at
Nmax = 18.

The behavior of the total dipole strength as a function of λ,
presented in Fig. 7(a), is consistent with that obtained in our
previous study [26] of the evolution of the D̂†D̂ operator up
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FIG. 6. (Color online) Dependence of the 4He total photoabsorp-
tion cross section computed with the NN + 3N -induced (region
delimited by dashed [blue] lines) and NN + 3N (region delimited
by solid [red] lines) Hamiltonians and a 2B evolved dipole operator
on (a) the model-space size Nmax at �� = 28 MeV and λ = 1.8 fm−1

and (b) the HO frequency �� at Nmax = 18/19 and λ = 2.5 fm−1.
Also shown (dotted [black] line) is the result of the LS calculation of
Ref. [33] using the N3LO NN interaction.

to the 3B level. Different from that work, here we also show
results obtained by computing M0 as the norm ||D̂|�0〉||2
of the 2B evolved dipole operator acting on the g.s. wave
function. When using the bare operator, the observables have
a significant dependence on λ, particularly at smaller values.
When using the 2B evolved operators, this dependence is
reduced. The difference between the bare and 2B evolved
operator, which we refer to as the 2B contribution to the
evolution, is larger at smaller values of λ and tends to decrease
rapidly as λ increases. Further, such a 2B contribution is found
to be larger when the total strength is calculated as ||D̂|�0〉||2
using the 2B evolved dipole operator. This is related to the
longer range of the D̂†D̂ operator compared to the dipole itself.
For the time being, results for the evolution at the 3B level have
been obtained only for the scalar D̂†D̂ operator [26]. The 3B
contribution to the operator evolution is much smaller than the
2B contribution, establishing a hierarchy in the magnitude of
the SRG-induced terms for operator evolution. Overall, the
smallest spread in λ is found using the 3B evolved D̂†D̂
operator. The slight residual dependence on λ is due to the
induced 4B terms that we do not take into account for these
calculations.

The electric dipole polarizabilty, presented in Fig. 7(b),
shows a trend similar to that of the total dipole strength. The
inclusion of the 2B-induced terms of the operator provides
a substantial correction to the polarizability, especially at
smaller values of λ. To estimate the contribution to this
observable of 3B-induced terms of the operator, in Fig. 7(b)
we also show the polarizability (triangles) obtained by
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2B evolved D̂

Bare operator

FIG. 7. (Color online) Dependence of (a) total strength of the
dipole transition and (b) electric dipole polarizability on variations
of the SRG flow parameter, λ, for Nmax = 18 and �� = 28 MeV,
obtained using wave functions from the NN + 3N -induced (dashed
lines) and NN + 3N (solid lines) Hamiltonians along with four types
of operators: bare (circles), 2B evolved D̂ (squares), 2B evolved D̂†D̂
(diamonds), and 3B evolved D̂†D̂ (triangles). The dotted line in panel
(b) indicates the evaluation of Ref. [34] based on a LS renormalization
of the N3LO NN plus N2LO 3N interactions and bare dipole operator.
See the text for more details.

rescaling the 2B evolved polarizability (squares), by the ratio
〈�0|D̂†D̂|�0〉/||D̂|�0〉||2, where the D̂†D̂ operator is evolved
in the 3N space and ||D̂|�0〉||2 is evolved in the NN space. The
residual dependence on λ displayed by these rescaled results
comes then from 4B-induced SRG terms but also from missing
3B-induced dipole operator terms in the calculation of the
Green’s function, G(E0), of Eq. (15). This latter contribution
is expected to be small if the Hamiltonian is evolved up to
the 3B level. Also shown in the figure as a dotted line is
the evaluation of Ref. [34] based on a LS renormalization of
the N3LO NN plus N2LO 3N interactions and bare dipole
operator.

Finally, in Fig. 8 we explore the effect of the SRG evolution
of the transition operator on the 4He photoabsorption cross
section. This study was performed using our largest model
space of Nmax = 18/19 at �� = 28 MeV and both NN + 3N -
induced and NN + 3N wave functions, varying the SRG
resolution scale between 1.8 and 3.0 fm−1. We choose this
range of λ because previous structure calculations show that
the g.s. energy is mostly independent of the transformation in
this region. As shown in Fig. 8(a), when using the bare dipole
operator there is a clear dependence of the cross section on λ,
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FIG. 8. (Color online) Dependence (represented as the width of the bands) on the variation of λ between 1.8 and 3.0 fm−1 of the 4He
photoabsorption cross section, σγ (ω), as a function of the photon energy, ω, at Nmax = 18/19 and �� = 28 MeV, using the NN + 3N -induced
(dashed contours) and NN + 3N (solid contours) wave functions. Calculations were obtained (a) with the bare dipole operator; (b) with the
2B evolved dipole operator; and (c) by rescaling the 2B evolved results by the ratio 〈�0|D̂†D̂|�0〉/||D̂|�0〉||2, with the D̂†D̂ operator evolved
in the 3N space (3B rescaled operator, see text for details).

and the spread is slightly larger for the calculation using the
NN + 3N Hamiltonian. Specifically, beginning at a photon
energy of 26 MeV and persisting up to the largest energy
shown here, there is a spread of more than 0.2 mb between the
NN + 3N cross sections obtained with the smallest and largest
values of λ (corresponding, respectively, to the upper and
lower bounds of the shaded areas). This amounts to an effect
between 6% and 11%, depending on the photon energy, which
is substantially larger than our uncertainty due to the finite
size of the HO model space or choice of frequency. Further,
this spread is comparable to the contribution coming from the
inclusion of the initial chiral 3N force into the Hamiltonian,
which—at a given λ value—quenches the peak of the cross
section by about 0.25 mb. When we evolve the dipole operator
in the 2B space [see Fig. 8(b)], the spread in the cross section is
a factor of 3 tighter, about 0.06 mb (between 2% and 4% in the
range 24 MeV � ω � 35 MeV), and the effect of the inclusion
of the initial chiral 3N force can be clearly singled out. To
take into account 3B-induced terms of the transition operator,
at least in part, the cross sections of Fig. 8(b) can be further
rescaled by the ratio 〈�0|D̂†D̂|�0〉/||D̂|�0〉||2, with the D̂†D̂
operator evolved in the 3N space (3B rescaled operator). The
result of this operation, shown in Fig. 8(c), is mainly an overall
small reduction of all curves and a very minor narrowing of

the spread in λ. The remaining λ dependence is due, once
again, to 4B-induced SRG terms and from missing 3B-induced
dipole operator terms in the calculation of the Green’s function,
G(E0), of Eq. (12).

D. Comparison with literature and experiment

Table I presents a summary of our results for the total dipole
strength 〈�0|D̂†D̂|�0〉 and the electric dipole polarizability
αE obtained employing the NN + 3N -induced and NN + 3N
Hamiltonians along with the 3B evolved D̂†D̂ operator in the
largest model space. For the electric polarizability, these results
represent an upper bound because the effects of 3B-induced
dipole operator terms in the calculation of the Green’s function
of Eq. (15) are still missing. Two values of λ, 1.8 and 3.0 fm−1,
are shown to help quantify the effect of missing induced terms.
For completeness, we also show the corresponding values of
the g.s. energy, E0, and the point-proton root-mean-square

radius,
√

〈r2
p〉, of Ref. [26], including 3B-induced terms. The

error estimates of the observables are computed as the differ-
ence between the value at the largest model space, Nmax = 18,
and at the next smallest model space, Nmax = 16. The present
results for the g.s. energy are the same as the previous NCSM

TABLE I. Calculated 4He g.s. energy E0, point-proton root-mean-square radius
√

〈r2
p〉, total dipole strength 〈�0|D̂†D̂|�0〉, and electric

dipole polarizability αE using the using the λ = 1.8 and 3.0 fm−1 NN + 3N -induced and NN + 3N Hamiltonians along with 3B evolved
operators compared to results published in the literature and experiment. See the text for more details.

Interaction λ (fm−1) Eg.s. (MeV)
√

〈r2
p〉 (fm) 〈�0|D̂†D̂|�0〉 (fm2) αE (fm3)

NN + 3N -induced 1.8 −25.325(1) 1.5231(11) 0.9520(3) 0.08647(5)
3.0 −25.348(2) 1.5165(12) 0.9439(4) 0.08404(5)

N3LO NN (LS) [33] − −25.39(1) 1.515(2) 0.943(1) −
NN + 3N 1.8 −28.464(2) 1.4723(7) 0.8867(4) 0.07093(5)

3.0 −28.458(3) 1.4651(5) 0.8776(5) 0.06861(5)
Evaluation (LS) [34] − − − − 0.0683(8)(14)
Expt. − − 28.296 [53] 1.455(7) [54] − 0.072(4) [58]

0.076(8) [59]
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FIG. 9. (Color online) The 4He photoabsorption cross section as
a function of excitation energy, ω, for NN + 3N -induced (blue
dashed line) and NN + 3N (red solid line) interactions with a
model-space truncation of Nmax = 18/19 and oscillator frequency of
�� = 28 MeV. The total cross section is compared to experimental
results from Wells et al. [60], Shima et al. [61], Nilsson et al. [62],
Nakayama et al. [63], and Raut et al. [64]. See the text for more
details.

calculation of Ref. [8] and those for the NN + 3N -induced
point-proton radius and total dipole strength are consistent
with those obtained in Ref. [33] using a LS transformation of
the N3LO NN potential at the 3B cluster level, in which the
operators were not renormalized. In particular, the agreement
with the LS values is excellent for λ = 3.0 fm−1, where the
contribution of 4B-induced terms is negligible. A similar
comparison for the NN + 3N Hamiltonian is not possible,
because the results of Ref. [33] were obtained with a sightly
different parametrization of the N2LO 3N force. Also in very
good agreement with the evaluation of Ref. [34] and with
experiment is the electric dipole polarizability computed with
the NN + 3N interaction.

For completeness, in Fig. 9, we compare our results for the
4He photoabsorption cross section of Fig. 8(c) to experimental
data in the region ω < 40 MeV, where corrections to the
unretarded dipole approximation used here to describe the pho-
todisintegration process are expected to be largely negligible.
As for the electric polarizability, the present results represent
an upper bound due to the missing effect of 3B-induced dipole
operator terms in the calculation of the Green’s function of
Eq. (15). The photodisintegration of 4He has been the subject
of many experiments (see, e.g., Refs. [61–64] for the most
recent ones) and has already been investigated in ab initio
calculations including 3N forces [33,65]. The results obtained
here with the NN + 3N -induced Hamiltonian are close to the
recent coupled cluster calculation of Ref. [66], using the bare
N3LO potential. Different from Ref. [33], here the NN + 3N
results have been obtained starting from the N2LO 3N force of
Ref. [49]. Therefore, the two calculations cannot be compared
directly. Nevertheless, the overall picture drawn by the present

study is not very dissimilar from that of Ref. [33] or Ref. [65].
In particular, although the inclusion of the 3N force and
the evolved dipole operator produces a seemingly improved
agreement with experiment, the considerable scatter of the
experimental data in the peak region continues to prevent a
definitive conclusion concerning the quality of the interactions
used. Note that in Fig. 9 we estimated the total cross section
from the 4He(γ,n) measurements of Ref. [62] by assuming
σγ (ω) ≈ 2σγ,n(ω) and that from the 4He(γ,p)3H of Ref. [64]
by assuming σγ (ω) ≈ σγ,p(ω) + σγ,p(ω + 0.5 MeV).

IV. CONCLUSION

We have, for the first time, SRG evolved the dipole operator
in the 2B space and computed the total strength of the
dipole transition, the electric dipole polarizability, and the
total photoabsorption cross section of 4He. Because the dipole
operator acts primarily at long range, we see little change in
the convergence properties of these observables over using the
bare operator.

For all three observables, there is a significant reduction
of the dependence on the SRG evolution parameter when
evolving the dipole operator in the 2B space. Generally, this
reduction is on the order of the effect of including the 3N force.
So although the reduction is relatively small in magnitude,
its effects are not negligible. Any residual dependence on λ
in our calculations is due to the induced 3B and 4B terms
that we do not take into account. Based on our experience
with calculations of energies and radii, these higher-order
contributions should be smaller than the 2B contributions to
the evolution. Consistently evolving operators is important
for maintaining the rigorous nature of ab initio calculations
based on SRG evolved Hamiltonians. Although we have, so
far, been concerned with long-range operators for which the
principle benefit of the evolution is the reduced dependence
on λ, there are other shorter-range operators (e.g., β- or
ββ-decay operators including 2B currents) for which the SRG
transformation will likely have a larger effect, including on the
convergence pattern. At the same time, a study of the evolution
of both long- and short-range operators in heavier nuclei will be
needed to clarify whether the reduction in λ dependence and/or
improvement in convergence rates are substantial enough to
motivate the extra step of systematically evolving operators.

Future work will include evolving the dipole operator, and
other nonscalar operators, in the 3B space. This will allow us
to investigate the 3B and 4B contributions to the evolution of
these operators in the A = 4 system. We also plan to extend
these calculations to heavier systems (e.g., up to A = 12),
where it is advantageous to work with single-particle Slater
determinant basis states. We will do this by transforming our
2B and, eventually, 3B nonscalar operators, presently in a
translationally invariant Jacobi-coordinate basis, into matrix
elements over Slater determinate basis states.
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